
General Curved Interfaces and Biomembranes 

 

 

137

 
Chapter 4 in the book: 
P.A. Kralchevsky and K. Nagayama, “Particles at Fluid Interfaces and Membranes” 
(Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-Dimensional Arrays) 
Elsevier, Amsterdam, 2001; pp. 137-182. 
 
 

 

CHAPTER  4 

GENERAL  CURVED  INTERFACES  AND  BIOMEMBRANES 

 
Mechanically, the stresses and moments acting in an interface or biomembrane can be taken 
into account by assigning tensors of the surface stresses and moments to the phase boundary. 
The three equations determining the interfacial/membrane shape and deformation represent the 
three projections of the vectorial local balance of the linear momentum. Its normal projection 
has the meaning of a generalized Laplace equation, which contains a contribution from the 
interfacial moments. Alternatively, variational calculus can be applied to derive the equations 
governing the interfacial/membrane shape by minimization of a functional − “the thermo-
dynamic approach”. The correct minimization procedure is considered, which takes into 
account the work of surface shearing. 

Thus it turns out that the generalized Laplace equation can be derived following two 
alternative approaches: mechanical and thermodynamical. In fact, they are mutually 
complementary parts of the same formalism; they provide a useful tool to verify the 
selfconsistency of a given model. The connection between them has the form of relationships 
between the mechanical and thermodynamical surface tensions and moments. Different, but 
equivalent, forms of the generalized Laplace equation are considered and discussed. 

The general theoretical equations can give quantitative predictions only if rheological 
constitutive relations are specified, which characterize a given interface (biomembrane) as an 
elastic, viscous or visco-elastic two-dimensional continuum. Thus the form of the generalized 
Laplace equation can be specified. Further, it is applied to determine the axisymmetric shapes 
of biological cells; a convenient computational procedure is proposed. 

Finally, micromechanical expressions are derived for calculating the surface tensions and 

moments, the bending and torsion elastic moduli, kc and ck , and the spontaneous curvature, 

H0, in terms of combinations from the components of the pressure tensor. 
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4.1. THEORETICAL APPROACHES FOR DESCRIPTION OF CURVED INTERFACES 

A natural mathematical description of arbitrarily curved interfaces is provided by the 

differential geometry based on the apparatus of the tensor analysis. Our main purpose in this 

chapter is to demonstrate the application of this apparatus for generalization of the 

relationships described in Section 3.2 for spherical interface.  

Firstly, the generalization of the theory includes presentation of the surface stresses and 

moments as tensorial quantities. Secondly, generalizations of the theoretical expressions, such 

as the Laplace equation and the micromechanical expressions (3.69)−(3.70), are considered. A 

special attention is paid to the connection between the two equivalent and complementary 

approaches: the thermodynamical and the mechanical one.  

The thermodynamical approach to the theory of the curved interfaces, which is outlined 

in Sections 3.1 and 3.2 above, originates from the works of Gibbs [1] and has been further 

developed by Boruvka & Neumann [2]. In this approach a heterogeneous (multiphase) system 

is formally treated as a combination of bulk, surface and linear phases, each of them 

characterized by its own fundamental thermodynamic equation. The logical scheme of the 

Gibbs' approach consists of the following steps: 

(1) The extensive parameters (such as internal energy U, entropy S, number of molecules of the 

i-th component Ni , etc.) and their densities far from the phase boundaries are considered to be, 

in principle, known. 

(2) An imaginary idealized system is introduced, in which all phases (bulk, surface and linear) 

are uniform, the interfacial transition zones are replaced with sharp boundaries (geometrical 

surfaces and lines), and the excesses of the extensive parameters (in the idealized with respect 

to the real system) are ascribed to these boundaries; for example − see Figs 1.1 and 3.3. 

(3) The Gibbs fundamental equations are postulated for each bulk, surface and linear phase. 

Since the densities of the extensive parameters can vary along a curved interface, a local 

formulation of the fundamental equations should be used, see Eq. (3.13). 

(4) The last step is to impose the conditions for equilibrium in the multiphase system. These 

are (i) absence of hydrodynamic fluxes (mechanical equilibrium) (ii) absence of diffusion 
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fluxes (chemical equilibrium) and (iii) absence of heat transport (thermal equilibrium). As 

known [3], the conditions for thermal and chemical equilibrium imply uniformity of the 

temperature and the chemical potentials in the system. The conditions for mechanical 

equilibrium are multiform; examples are the Laplace and Young equations (Chapter 2). All 

conditions for equilibrium can be deduced by means of a variational principle, that is by 

minimization of the grand thermodynamic potential of the system, see Chapter 2 and Section 

4.3.1. 

 The mechanical approach originates from the theory of elastic deformations of "plates" 

and "shells" developed by Kirchhoff [4] and Love [5]; a comprehensive review can be found in 

Ref. [6]. For the linear theory by Kirchhoff and Love it is typical that the stress depends 

linearly on the strain, and that the elastic energy is a quadratic function of the deformation. 

Similar form has Eq. (3.7), postulated by Helfrich [7,8], which expresses the work of flexural 

deformation as a quadratic function of the variations of the interfacial curvatures. Evans and 

Skalak [9] demonstrated that a relatively complex object, as a biomembrane, can be treated 

mechanically as a two-dimensional continuum, characterized by dilatational and shearing 

tensions, and elastic moduli of bending and torsion. The logical scheme of the mechanical 

approach consists of the following steps: 

(1) Strain and stress tensors, as well as tensors of the moments (torques), are defined for the 

bulk phases and for the boundaries between them. A phase with a (nonzero) tensor of moments 

is termed continuum of Cosserat [10]; the liquid crystals represent an example [11]. Here we 

will restrict our considerations to bulk fluid phases without moments; action of moments will 

be considered only at the interfaces. 

(2) Equations expressing the balances of mass, linear and angular momentum are postulated; 

they provide a set of differential equations and boundary conditions, which describe the 

dynamics of the processes in the system. In particular, the Laplace equation (2.17) can be 

deduced as a normal projection of the interfacial balance of the linear momentum; see 

Eq. (4.51) below and Refs. [12-14]. 

(3) The properties of a specific material continuum are taken into account by postulating 

appropriate rheological constitutive relations, which define connections between stresses (or 
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moments) and strains. In fact, the rheological constitutive relations represent mechanical 

models, say viscous fluid, elastic body, visco-elastic medium, etc. In Section 4.3.4 we 

demonstrate that the Helfrich equation (3.7) leads to a constitutive relation for the tensor of the 

interfacial moments. 

In summary, the thermodynamical and the mechanical approaches are based on different 

concepts and postulates, but they are applied to the theoretical description of the same subject: 

the processes in multiphase systems. Then obligatorily these two approaches have to be 

equivalent, or at least complementary. One of our main goals below is to demonstrate the 

connections between them. The combination of the two approaches provides a deeper 

understanding of the meaning of quantities and equations in the theory of curved interfaces 

(membranes) and provides a powerful apparatus for solving problems in this field. 

Below we first present the mechanical approach to the curved interfaces and membranes. Next 

we consider the connections between the thermodynamical and mechanical approaches. 

Further, we give a derivation of the generalized Laplace equation by minimization of the free 

energy of the system. A special form of this equation for axisymmetric interfaces is considered 

with application for determination of the shape of biological cells. Finally, some micro-

mechanical expressions for the interfacial (membrane) properties are derived. 

 

4.2. MECHANICAL APPROACH TO ARBITRARILY CURVED INTERFACES 

4.2.1. ANALOGY WITH MECHANICS OF THREE-DIMENSIONAL CONTINUA 

 Balance of the linear momentum. First, it is useful to recall the “philosophy” and basic 

equations of the mechanics of three-dimensional continua. Consider a material volume V, 

which is bounded by a closed surface S with running outer unit normal n. On the basis of the 

second Newton's law it is postulated (see e.g. Ref. 15) 

∫∫ ∫ +⋅=
VV S

dVdsdV
dt
d fTnv ρρ        (4.1) 

Here t is time, v is the velocity field; Т is the stress tensor; ds is a scalar surface element; ρ is 
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the mass density; f is an acceleration due to body force (gravitational or centrifugal). Equation 

(4.1) expresses the integral balance of the linear momentum for the material volume V; indeed, 

Eq. (4.1) states that the time-derivative of the linear momentum is equal to the sum of the 

surface and body forces exerted on the considered portion of the material continuum. Using the 

Gauss theorem and the fact that the volume V has been arbitrarily chosen, from Eq. (4.1) one 

can deduce the local balance of the linear momentum [15]: 

fTv ρρ +⋅∇=
dt
d          (4.2) 

In the derivation of Eq. (4.2) the following known hydrodynamic relationships have been used: 

∫∫ 



 ⋅∇+=

VV dt
ddVdV

dt
d vvvv ρ

ρ
ρ

)(       (4.3) 

0=⋅∇+ vρρ
dt
d          (4.4) 

Equation (4.3) is a corollary from the known Euler formula, whereas Eq. (4.4) is the continuity 

equation expressing the local mass balance [15].  

 Rheological models. The continuum mechanics can give quantitative predictions only if 

a model expression for the stress tensor T is specified. As a rule, such an expression has the 

form of relationship between stress and strain, which is termed rheological constitutive relation 

(defining, say, an elastic or a viscous body, see below). The vectors of displacement, u, and 

velocity, v, are simply related: 

dt
duv =           (4.5) 

Further, the strain and rate-of-strain tensors are introduced: 

Φ = 2
1 [∇u +(∇u)T]  (strain tensor)      (4.6) 

Ψ = 2
1 [∇v +(∇v)T]  (rate-of-strain tensor)     (4.7) 

As usual, ∇ denotes the gradient operator in space and “T” denotes conjugation. The tensors Φ 

and Ψ are related as follows: 

Φ = Ψ δt          (4.8) 
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Here δt denotes an infinitesimal time interval. 

An elastic body is defined by means of the following constitutive relation [16] 

T = λ Tr(Φ) U + 2µ [Φ − 3
1 Tr(Φ) U]   (Hooke's law)   (4.9) 

where U is the spatial unit tensor; λ and µ are the dilatational and shear bulk elastic moduli; as 

usual, “Tr” denotes trace of a tensor. Note that λ and µ multiply, respectively, the isotropic and 

the deviatoric part of the strain tensor Φ. (The trace of the deviatoric part is equal to zero, i.e. 

no dilatation, only shearing deformation). Similar consideration of the isotropic part 

(accounting for the dilatation) and deviatoric part (accounting for the shear deformation) is 

applied also to viscous bodies and two-dimensional continua (interfaces, biomembranes), see 

below.  The substitution of Eq. (4.9) into the balance of linear momentum, Eq. (4.2), along with 

Eq. (4.6), yields the basic equation in the mechanics of elastic bodies [16]: 

( ) fuuu ρµλµρ +⋅∇∇++∇= 3
12

2

2

dt
d   (Navier equation)  (4.10) 

Likewise, a viscous body (fluid) is defined by means of the constitutive relation [17] 

T = −P U + ζv
 Tr(Ψ) U + 2ηv

 [Ψ − 3
1 Tr(Ψ) U] (Newton's law)  (4.11) 

where P is pressure, ζv and ηv are the dilatational and shear bulk viscosities; in fact ηv is the 

conventional viscosity of a liquid, whereas ζv is related to the decay of the intensity of sound in 

a liquid. The substitution of Eq. (4.11) into the balance of linear momentum, Eq. (4.2), along 

with Eq (4.7), yields the basic equation of hydrodynamics [15, 17]: 

( ) fvvv ρηζηρ +⋅∇∇++∇+−∇= v3
1

v
2

vP
dt
d  (Navier-Stokes equation) (4.12) 

In Section 4.2.4 we will consider the two-dimensional analogues of Eqs. (4.1)-(4.12). Before 

that we need some relationships from differential geometry. 

 
4.2.2. BASIC EQUATIONS FROM GEOMETRY AND KINEMATICS OF A CURVED SURFACE 

The formalism of differential geometry, which is briefly outlined and used in this chapter, is 

described in details in Refs. [12, 18-20]. Let ( 21,uu ) be curvilinear coordinates on the dividing 
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surface between two phases, and let ),,( 21 tuuR  be the running position-vector of a material 

point on the interface, which depends also on the time, t. We introduce the vectors of the 

surface local basis and the surface gradient operator: 

µ
µ

µµ ∂
∂

∂
∂

uu s aRa =∇= ,   (µ =1, 2)    (4.13) 

Here and hereafter the Greek indices take values 1 and 2; summation over the repeated indices 

is assumed. The curvature tensor b is defined by Eq. (3.21); b is a symmetric surface tensor, 

whose eigenvalues are the principal curvatures c1 and c2. The surface unit tensor Us and 

curvature deviatoric tensor q are defined as follows 

( )ss H
D

UbqaaU −≡≡
1,µ

µ      (4.14) 

where, as before, H and D denote the mean and deviatoric curvature, see Eq. (3.3). For every 

choice of the surface basis the eigenvalues of Us are both equal to 1; the tensor q has diagonal 

form in the basis of the principal curvatures and has eigenvalues 1 and −1. In particular, the 

covariant components of Us , 

νµµν aa ⋅≡a           (4.15) 

represent the components of the surface metric tensor; here “⋅” is the standard symbol for 

scalar product of two vectors. The covariant derivative of µνa  is identically zero, 0, =νλµa , 

whereas the covariant derivative νλµ ,q  of the components of the tensor q is not zero, although 

its eigenvalues are constant at each point of the interface; in particular, the divergence of q is 

[13]: 

( )µ
λµ

µ
λµ

µ
λµ

,,, 1 DqHa
D

q −=        (4.16) 

In view of Eq. (4.14), the curvature tensor can be expressed as a sum of an isotropic and a 

deviatoric part: 

λµλµλµ qDaHb +=          (4.17) 
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The velocity of a material point on the interface is defined as follows 

21, uut 








=

∂
∂ Rv          (4.18) 

According to Еliassen [21], the interfacial rate-of-strain tensor, which describes the two-

dimensional dilatational and shear deformations, is defined by the expression: 

( )( )nb
t

a
d vvv ,, µνµννµ

µν
µν 2

2
1

2
1

−+=
∂

∂
=      (4.19) 

where 
( ) v.nv.a == nv;v µµ        (4.20) 

are components of the velocity vector v. Despite the fact that we will finally derive some 

quasistatic relationships, it is convenient to work initially with the rates (the time derivatives) 

of some quantities. For example, if δ t is a small time interval and H&  is the time derivative of 

the mean curvature then δH = tHδ&  is the differential of Н, which takes part in Eq. (3.1).  

We will restrict our considerations to processes, for which the rate-of-strain tensor has always 

diagonal form in the basis of the principal curvatures. For example, such is the case of an 

axisymmetric surface subjected to an axisymmetric deformation [9]. A more general case is 

considered in Ref. [22]. In such cases the quantities α&  and β& , defined by the relationships 

µν
µν

µν
µν βα dqda == && , ,      (4.21) 

express the local surface rates of dilatation and shear [23]. Then, the infinitesimal deformations 

of dilatation and shearing, corresponding to a small time increment, δ t, will be 

tt δβδβδαδα && ==      ;        (4.22) 

The latter two differentials also take part in Eq. (3.1). In view of Eq. (4.21) we can present dµν 

as a sum of an isotropic and a deviatoric part 

µνµνµν βα qad &&
2
1

2
1

+=         (4.23) 
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4.2.3. TENSORS OF THE SURFACE STRESSES AND MOMENTS 

Owing to the connections between stress and strain, an expression similar to Eq. (4.23) holds 

for the surface stress tensor [24]:  

µνµνµν ησσ qa +=          (4.24) 

(Each of Eqs. 4.23 and 4.24 represent the respective tensor as a sum of an isotropic and a 

deviatoric part.)  Let σ1 and σ2 be the eigenvalues of the tensor σµν
 . The tensions σ1 and σ2 are 

directed along the lines of maximum and minimum curvature. From Eq. (4.24) it follows  

)(
2
1     ; )(

2
1

2121 σσησσσ −=+=      (4.25) 

 

 
 

Fig. 4.1. Mechanical meaning of the components of (a) the surface stress tensor, σµν and σµ
(n) ;  (b) the 

tensor of surface moments Мµν ;  (c) the tensor of surface moments Nµν . The relationship 
between Мµν  and Nµν  is given by Eq. (4.29).  
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In fact, the quantity σ is the conventional mechanical surface tension, while η is the 

mechanical shearing tension [9, 24]. The physical meaning of the components σµν (µ,ν = 1,2) 

in an arbitrary basis is illustrated in Fig. 4.1. Note that in general the surface stress tensor σ is 

not purely tangential, but has also two normal components, σµ(n), µ = 1,2, see Refs. [6, 12]: 

σ  (n)µ
µ

µν
νµ σσ naaa +=         (4.26) 

In other words, the matrix of the tensor σ is rectangular: 









= )n(222

)n(112

21

11

σσ
σσ

σ
σσ         (4.27) 

Let us consider also the tensor of the surface moments (torques),  

µνµνµν qMMaMMM )(
2
1)(

2
1

2121 −++= ,     (4.28) 

which is defined at each point of the interface; M1 and M2 are the eigenvalues of the tensor Mµν 

supposedly it has a diagonal form in the basis of the principal curvatures. In the mechanics of 

the curved interfaces the following tensor is often used [6, 12]  

νλ
λ
µµν εMN =          (4.29) 

where εµν is the surface alternator [19]: a=12ε , a−=21ε , 02211 == εε ; a is the 

determinant of the surface metric tensor aµν , see Eq. (4.15) The mechanical meaning of the 

components of the tensors Mµν and Nµν is illustrated in Fig. 4.1b,c. One sees that N11 and N22 

are normal moments (they cause torsion of the surface element), while N12 and N21 are 

tangential moments producing bending. In this aspect there is an analogy between the 

interpretations of Nµν and σµν (Fig. 4.1a). Indeed, if ν is the running unit normal to a curve in 

the surface (ν is tangential to the surface), then the stress acting per unit length of that curve is 

t = ν⋅σ and the moment acting per unit length is m = ν⋅N. On the other hand, as seen from Eqs. 

(4.28) and (4.29), the tensor Nµν is not symmetric. For that reason the symmetric tensor Mµν is 

often preferred in the mechanical description of surface moments [6, 9]. A necessary condition 

for mechanical equilibrium of an interface is 
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αβ
αβ

µν
µν σε=Nb ,         (4.30) 

which expresses the normal resultant of the surface balance of the angular momentum; see also 

Eq. (4.44) below. Substituting σµν from Eq. (4.24) and Nµν from Eqs. (4.28)−(4.29) into 

Eq. (4.30) one could directly verify that the latter condition for equilibrium (with respect to the 

acting moments) is satisfied by the above expressions for σµν and Nµν . 

 
4.2.4. SURFACE BALANCES OF THE LINEAR AND ANGULAR MOMENTUM 

Balance of the linear momentum. First, let us identify the surface (two-dimensional) 

analogues of Eqs. (4.1)−(4.4). Following Podstrigach and Povstenko [12] we consider a 

material volume V, which contains a portion, А, from the boundary between phases I and II, 

together with the adjacent volumes, VI and VII, from these phases, see Fig. 4.2. In analogy with 

Eq. (4.1) one can postulate the integral balance of the linear momentum for the considered part 

of the system [12]: 

∫∫∑ ∫ ∫∑ ∫ ∫ ⋅+Γ+












+⋅=













Γ+

== LA
s

Y S V
YYY

Y V A
sYY dldsdVdsdsdV

dt
d

Y YY

σνρρ ffTnvv
III,III,

      (4.31) 

 

 

 

 

Fig. 4.2. Sketch of a material volume V, which contains a 
portion, А, of the boundary between phases I and 
II;  VI, VII and SI, SII are parts of the volume V 
and its surfaces, which are located on the 
opposite sides of the interface A. 

 

 
In Eq. (4.31) the subscript “s” denotes properties related to the interface; VI, VII and SI, SII are 

the two parts of the considered volume and its surface separated by the dividing surface A;  L is 

the contour which encircles А; ν is an unit normal, which is simultaneously perpendicular to L 
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and tangential to А (Fig. 4.2); Γ is the surface excess of mass per unit area of the interface; as 

before, n is running unit normal and σ is the surface stress tensor, see Eq. (4.26) and Fig. 4.1. 

For the sake of simplicity we will assume that the normal component of the velocity is 

continuous across the dividing surface: 

( ) ( ) 0III =⋅−=⋅− nvvnvv ss        (4.32) 

Then the surface analogues of Eqs. (4.3) and (4.4) have the form [21]: 

∫∫ 




 ⋅∇Γ+
Γ

=Γ
A

sss
s

A
s dt

d
dVdV

dt
d vv

v
v

)(
      (4.33) 

0=⋅∇Γ+
Γ

ssdt
d v          (4.34) 

The latter equation is valid if there is no mass exchange between the bulk phases and the 

interface. Next, we will transform Eq. (4.31) with the help of the integral theorem of Green, 

which in a general vectorial form reads [12, 25]: 

∫∫∫ ⋅−⋅=⋅∇
ALA

s HdAdldA TnTT 2ν    (Green theorem)  (4.35) 

Here Т is an arbitrary vector or tensor; the meaning of ν is the same as in Fig. 4.2. If Т is a 

purely surface tensor, viz. µν
νµ TaaT = , or if T has a rectangular matrix like that in Eqs. 

(4.26)−(4.27), then n ⋅T = 0 and the last integral in Eq. (4.35) is zero. In particular, the Green 

theorem (4.35), along with Eq. (4.26), yields 

∫∫ ⋅∇=⋅
A

s
L

dAdl σσν          (4.36) 

With the help of Eqs. (4.32)−(4.34), (4.36) and the versions of Eq. (4.1) for the material 

volumes VI and VII , from Eq. (4.31) one deduces the local surface balance of linear momentum 

[12]: 

( )III TTnfv
−⋅+Γ+⋅∇=Γ ss

s

dt
d σ        (4.37) 

Here ТI and ТII are the subsurface values of the respective tensors. The last term in Eq. (4.37), 
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which accounts for the interaction of the interface with the two neighboring bulk phases, has 

no counterpart in Eq. (4.2). Differential geometry [18-21] yields the following expression for 

the surface divergence of the tensor σ  defined by Eq. (4.26): 

( ) ( )na )n(
,

)n(
,

µ
µ

µν
µνµ

νµ
ν

νµ
ν σσσσσ ++−=⋅∇ bbs      (4.38) 

Here µνb  are components of the curvature tensor, see Eq. (4.17). In view of Eq. (4.38), the 

projections of Eq. (4.37) along the basis vectors aµ and n have the form 

( )µµµνµ
ν

νµ
ν

µ σσ )n(
I

)n(
II

)n(
, TTfbi s −+Γ+−=Γ   µ = 1, 2  (4.39) 

( ))n)(n(
I

)n)(n(
II

)n()n(
,

)n( TTfbi s −+Γ++=Γ µν
µν

µ
µ σσ   (normal balance) (4.40) 

where µi  and )n(i  are components of the vector of acceleration, dvs/dt. Equations (4.39) and 

(4.40) coincide with the first three basic equations in the theory of elastic shells by Kirchhoff 

and Love, see e.g. Refs. [6, 12].  

 Balance of the angular momentum. In mechanics the rotational motion is treated 

similarly to the translational one. In particular, instead of velocity and force, angular velocity 

and force moment (torque) are considered. Three- and two-dimensional integral balances of the 

angular momentum, i.e. analogues of Eqs. (4.1) and (4.31), are postulated; see Refs. [6, 12] for 

details. From them the local form of the surface balance of the angular momentum can be 

deduced [12]:  

α Γ(dω /dt)  ⋅+Γ+⋅∇= nmN ss [(σ :  ε)Us + σ ⋅ ε]     (4.41) 

The last equation is the analogue of Eq. (4.37) for rotational motion. Here α is a coefficient 

accounting for the interfacial moment of inertia; ω is the vector of the angular velocity; ms is a 

counterpart of fs in Eq. (4.37); 

)n(µ
µ

µν
νµ NN naaaN +=         (4.42) 

is the tensor of the surface moments (Fig. 4.1c); ε 
µν

νµ εaa=  is the surface alternator. 

Comparing Eqs. (4.37) with (4.41) one sees that for rotational motion N plays the role of σ for 

translational motion. Using Eq. (4.38) with N instead of σ , along with Eqs. (4.26) and (4.42), 
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one can deduce equations, which represent the projections of the surface balance of the angular 

momentum, Eq. (4.41), along the basis vectors aµ and n [12]: 

)()n(
,

n
s amNbNj λ

νλ
µνµνµ

ν
νµ
ν

µ σεα +Γ+−=Γ   µ = 1, 2.  (4.43) 

νµ
µν

µν
µν

µ
µ σεα −Γ++=Γ )n()n(

,
)n(

smNbNj   (normal balance) (4.44) 

Here µj and )(nj  are the respective projections of the angular acceleration vector dω /dt. 

Equations (4.43) and (4.44) represent the second group of three basic equations in the theory of 

elastic shells by Kirchhoff and Love, see e.g. Refs. [6, 12]. 

 Simplification of the equations. For fluid interfaces and biomembranes one can simplify 

the general surface balances of the linear and angular momentum, Eqs. (4.39)−(4.40) and 

(4.43)−(4.44), by using the following relevant assumptions: 

(i) Negligible contributions from the body forces (fs ≈ 0) and couples (ms ≈ 0). 

(ii) Quasistatic processes are considered ( αi = )n(i = 0, αj = )n(j = 0). 

(iii) The stress tensors in the bulk phases are isotropic: 

UTUT IIIIII , PP −=−=       (4.45) 

(iv) σµν  and Mµν are symmetric surface tensors defined by Eqs. (4.24) and (4.28). 

(v) The transversal components of the tensor N are equal to zero ( )n(αN = 0); in such a case, 

with the help of Eq. (4.29), we can transform Eq. (4.42): 

γβα
γβα

αβ
βα εMN aaaaN ==        (4.46) 

If the above assumptions are fulfilled, then Eq. (4.44), representing the tangential resultant of 

the surface balance of the angular momentum, is identically satisfied; see Eq. (4.30) and the 

related discussion. The remaining balance equations, (4.39), (4.40) and (4.43), acquire the 

form: 
)n(

,, )( ν
µνν

ν
µµ σησ bq =+ ,    µ = 1, 2.   (4.47) 

III
)n(

,22 PPDH −=++ µ
µσησ  (normal balance of linear momentum) (4.48) 
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µν
ν

µσ ,
)n( M−=      µ = 1, 2.   (4.49) 

To derive Eqs. (4.48) and (4.49) we have used Eqs. (4.17) and (4.29), respectively. Finally, 

substituting )n(µσ  from Eq. (4.49) into Eqs. (4.47) and (4.48) we obtain 

µνν
ν
µµ ησ bq −=+ ,, )( νλ

λ,M     µ = 1, 2.   (4.50) 

III,22 PPMDH −=−+ µν
µνησ   (generalized Laplace equation) (4.51) 

Eqs. (4.50) and (4.51) have the meaning of projections of the interfacial stress balance in 

tangential and normal direction with respect to the dividing surface. In fact, Eq. (4.51) 

represents a generalized form of the Laplace equation of capillarity. Indeed, if the effects of the 

shearing tension and surface moments are negligible (η = 0, Mµν = 0), then Eq. (4.51) reduces 

to the conventional Laplace equation, Eq. (2.17). In addition, a version of the generalized 

Laplace equation can be derived by using the thermodynamic approach, that is by 

minimization of the free energy of the system, see Eq (4.71) below. Of course, the two versions 

of that equation must be equivalent. Thus we approach the problem about the equivalence of 

the mechanical and thermodynamical approaches, which is considered in the next section. 

 

4.3. CONNECTION BETWEEN MECHANICAL AND THERMODYNAMICAL APPROACHES 

4.3.1. GENERALIZED LAPLACE EQUATION DERIVED BY MINIMIZATION OF THE FREE ENERGY 

In this section we will follow the pure thermodynamic approach, described in Sections 3.1 and 

3.2, to derive the generalized Laplace equation. Our goal is to compare the result with Eq. 

(4.51) which has been obtained in the framework of the mechanical approach. With this end in 

view we consider the two-phase system depicted in Fig. 4.2. The grand thermodynamic 

potential of the system can be expressed in the form  

sb Ω+Ω=Ω           (4.52) 

where Ωb and Ωs account for the contributions from the bulk and the surface, respectively. For 

the bulk phases one has 
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IIIIII VPVPb δδδ −−=Ω ,   III VVV +=     (4.53) 

The integral surface excess of the grand thermodynamic potential Ωs, and its variation δΩs, can 

be expressed in the form 

,dA
A

ss ∫=Ω ω           (4.54) 

∫∫ +==Ω
A

ss
A

ss dAdA )( αδωωδωδδ ,      (4.55) 

where ωs is the surface density of Ωs , defined by Eq. (3.17); we have used the fact that 

δα = δ(dA)/dA, and the integration is carried out over the dividing surface between the two 

phases. A substutution of δωs from Eq. (3.18) into Eq. (4.55), along with the condition for 

constancy of the temperature and chemical potentials at equilibrium, yields 

dADHB
A

s )( δδβδξαδγδ Θ+++=Ω ∫       (4.56) 

The combination of Eqs. (4.52), (4.53) and (4.56) yields [23, 26]: 

+−−−=Ω VPVPP δδδ IIIIII )( dADHB
A

)( δδδβξδαγ Θ+++∫    (4.57) 

Let us consider a small deformation of the dividing surface at fixed volume of the system, 

δV = 0. The change in the shape of the interface is described by the variation of the position-

vector of the points belonging to the dividing surface, 

naR ψζδ µ
µ += ,         (4.58) 

at fixed boundaties: 

0,0 ,
21 ==== µψψζζ   over the contour L   (4.59) 

Here tδζ µµ v=  and tδψ (n)v=  are infinitesimal displacements; L is the contour encircling 

the surface А. With the help of Eqs. (4.19)−(4.22) we obtain [23, 26] 

ψζβδψζαδ σµ
µσ

σµ
µσ DqHa 2,2 ,, −=−= .    (4.60) 
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Likewise, using the identities [12, 21] 

)(
,2

1)(22
, vv)(v nn aDHHH µν

µνσ
σ +++=&       (4.61) 

)(
,2

1)(
, vv2v nn qDHDD µν

µνσ
σ ++=&        (4.62) 

we deduce 

µν
µνσ

σ ψψζδ ,2
122

, )( aDHHH +++= ;         µν
µνσ

σ ψψζδ ,2
1

, 2 qHDDD ++=          (4.63) 

The substitution of Eqs. (4.60) and (4.63) into Eq. (4.57), along with the condition for 

thermodynamic equilibrium, δ Ω = 0, leads to [23, 26]: 

dAMdA

dAHDBDHDHPPDHB

A A

III
A

∫ ∫

∫

++

Θ+++−−−+Θ+=

µσ
µσ

σµ
µσ

µ
µµ

ψζγ

ψξγζ

,,

22
,,

~

}]2)(22[){(0

         (4.64) 

where we have used the auxiliary notations 

µσµσµσ qaBM Θ+≡ 2
1

2
1~         (4.65) 

µσµσµσ ξγγ qa +≡          (4.66) 

γµσ is called the “thermodynamic surface stress tensor” [22]. Next, we transform the integrands 

of the last two integrals in Eq. (4.64) using the identities: 

µσ
µσ

σµ
µσ

σµ
µσ ζγζγζγ ,,, )( −=        (4.67) 

µσ
µσ

σµ
µσ

µσ
µσ ψψψ ,,,,,

~)~(~ MMM −=       (4.68) 

ψψψ µσ
µσ

µσ
µσ

µσ
µσ

,,,,,
~)~(~ MMM −=       (4.69) 

The first term in the right-hand side of Eqs. (4.67)−(4.69) represents a divergence of a surface 

vector. Integrating the latter, in accordance with the Green theorem, Eq. (4.35), we obtain an 

integral over the contour L, which is zero in view of Eq. (4.59). Thus the last two integrals in 

Eq. (4.64), which contain derivatives of ζµ and ψ, are reduced to integrals containing ζµ and ψ 
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themselves. Finally, we set equal to zero the coefficients multiplying the independent 

variations ζµ and ψ in the transformed Eq. (4.64); thus we obtain the following two condition 

for mechanical equilibrium of the interface [26,23,22,13]: 

;2,1,)( ,,,, =Θ+=+ µξγ µµσ
σ
µµ DHBq      (4.70) 

III,2
122 )(2)(22 PPqBaDHBDHDH −=Θ++Θ+++−− µν

µνµνξγ   (4.71) 

Equation (4.71) represents a thermodynamic version of the generalized Laplace equation. From 

a physical viewpoint, Eqs. (4.70)−(4.71) should be equivalent to Eqs. (4.50)−(4.51). This is 

proven below, where relationships between the thermodynamical parameters γ, ξ, B, Θ, and the 

mechanical parameters σ, η, M1, M2 are derived. For other equivalent forms of the generalized 

Laplace equation – see Section 4.3.3.  

 

4.3.2. WORK OF DEFORMATION: THERMODYNAMICAL AND MECHANICAL EXPRESSIONS 

 Relationships between the mechanical and thermodynamical surface tensions and 

moments. In the thermodynamic approach the work of surface deformation (per unit area) is 

expressed as follows: 

DHBws δδβδξαδγδ Θ+++= ,       (4.72) 

see Eq. (3.1). On the other hand, the mechanics provides the following expression for the work 

of surface deformation (per unit area and per unit time): 

=
t

ws

δ
δ

σ:(∇s v + Us × ω) + N:(∇s ω) ,      (4.73) 

see e.g. Eq. (4.26) in the book by Podstrigach and Povstenko [12]. As in Eqs. (1.22)−(1.23), 

here the symbol “:” denotes a double scalar product of two tensors. The vector ω expresses the 

angular velocity of rotation of the running unit normal to the surface, n, which is caused by the 

change in the curvature of the interface [24]: 

ω 
td

dnn×=           (4.74) 
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Here "×" denotes vectorial product of two vectors. Hence, the vector ω is perpendicular to the 

plane formed by the vectors n and dn/dt, which means that ω is tangential to the surface. 

Equation (4.73) (multiplied by δt) should be equivalent to the thermodynamic relationship, 

Eq. (4.72).  

Since σ is a surface tensor (n ⋅ σ = 0), one can prove that σ :(Us × ω) = 0. Next, with the help of 

Eqs. (4.23) and (4.24), one derives [24] 

σ : ( ) βηασσ µν
µν && +==∇ ds v        (4.75) 

Further, after some mathematical transformations described in Ref. [24], one can bring the 

term with the moments in Eq. (4.73) to the form 

N:(∇s ω) = (М1 + М2) )( 2
1

2
1 βα &&& DHH ++ + (М1 − М2) )( 2

1
2
1 βα &&& HDD ++   (4.76) 

Combining Eqs. (4.73), (4.75) and (4.76) one obtains 

)
2
1

2
1)((

)
2
1

2
1)((

21

21

βα

βαβηασ
δ
δ

&&&

&&&&&

HDDMM

DHHMM
t

ws

++−+

+++++=
     (4.77) 

Further, taking into account that tDDtHH δδδδ && ==  ,  and using Eq. (4.22), we get 

DMMHMM

HMMDMM

DMMHMMws

δδ

βδη

αδσδ

)()(

)(
2
1)(

2
1

)(
2
1)(

2
1

2121

2121

2121

−+++

+



 −++++

+



 −+++=

    (4.78) 

which represents a corollary from Eq. (4.73). Comparing Eqs. (4.72) and (4.78) one can 

identify the coefficients multiplying the independent variations [24]:  

21 MMB +=           (4.79) 

21 MM −=Θ           (4.80) 

DHB Θ++= 2
1

2
1σγ          (4.81) 

HDB Θ++= 2
1

2
1ηξ          (4.82) 
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Discussion. Equations (4.79)−(4.80) show that the bending and torsion moments, B and 

Θ, represent isotropic and deviatoric scalar invariants of the tensor of the surface moments, M. 

The substitution of Eqs. (4.79)−(4.80) into (4.28) yields 

µνµνµν qaBM Θ+= 2
1

2
1         (4.83) 

In addition, Eqs. (4.81) and (4.82) express the connection between the mechanical surface 

tensions, σ, η, and the thermodynamical surface tensions γ  and ξ.  

For a spherical interface D = 0 and M1 = M2 = M. Then Eqs. (4.79) and (4.81) are reduced to 

Eqs. (3.61) and (3.60), respectively, while Eqs. (4.80) and (4.82) yield 0,0 ===Θ ηξ ; the 

latter relationship holds for an isotropic deformation of a spherical surface. 

The concepts for the surface tension as (i) excess force per unit length and (ii) excess surface 

energy per unit area are usually considered as being equivalent for a fluid phase boundary [27-

29]. Equation (4.81) shows that this is fulfilled only for a planar interface. In the general case, 

the difference between σ and γ  is due to the existence of surface moments. This difference 

could be important for interfaces and membranes of high curvature and low tension, such as 

microemulsions, biomembranes, etc. 

An interesting consequence from Eq. (4.82) is the existence of two possible definitions of fluid 

interface [13, 14]. From a mechanical viewpoint we could require the two-dimensional stress 

tensor, σµν , to be isotropic for a fluid interface (a two-dimensional analogue of the Pascal law). 

Thus from Eq. (4.25) we obtain as the mechanical definition of a fluid interface in the form 

η ≡ 0. The intriguing point is that for η = 0 Eq. (4.82) yields ξ = 2
1 BD + 2

1 ΘH, and 

consequently the mechanical work of shearing, δβξ , is not zero if surface moments are 

present.  

On the other hand, from a thermodynamical viewpoint we may require the work of quasistatic 

shearing to be zero, that is ξ ≡ 0, for a fluid interface. However, it turns out that for such an 

interface the surface stress tensor σµν is not isotropic; indeed, setting ξ ≡ 0 in Eq. (4.82) we 

obtain η = −( 2
1 BD + 2

1 ΘH). In our opinion, it is impossible to determine which is the "true" 

definition of a fluid interface (η = 0 or ξ = 0) by general considerations. Insofar as every 
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theoretical description represents a model of a real object, in principle it is possible to establish 

experimentally whether the behavior of a given real interface agrees with the first or the second 

definition (η = 0 or ξ ≡ 0). 
 

4.3.3. VERSIONS OF THE GENERALIZED LAPLACE EQUATION 

First of all, using Eqs. (4.81)−(4.83), after some mathematical derivations one can transform 

Eqs. (4.70)−(4.71) into Eqs (4.50)−(4.51), and vice versa [14]. This is a manifestation of the 

equivalence between the mechanical and thermodynamical approaches, which are connected 

by Eqs. (4.81)−(4.83). In particular, Eqs. (4.51) and (4.71) represent two equivalent forms of 

the generalized Laplace equation. Another equivalent form of this equation is [14, 22]: 

III
22 )(2)(22 PPDHBDHDH ss −=∇∇+Θ+++−− M:ξγ            (4.84) 

The most compact form of the latter equation is obviously Eq. (4.51). In terms of the 

coefficients C1 and C2 , see Eqs. (3.5) and (3.6), the generalized Laplace equation can be 

represented in another equivalent (but considerably longer) form [35]: 

III22
2

1
2

2
1

2
2

1 22)2(22 PPCCHCKHCKHCDH ssss −=∇∇+∇−∇−−−−+ :bξγ     (4.85) 

Boruvka and Neumann [2] have derived an equation analogous to (4.85) without the shearing 

term 2Dξ . These authors have used a definition of surface tension, which is different from the 

conventional definition given by Gibbs; the latter fact has been noticed in Refs. [26] and [30]. 

In an earlier work by Melrose [31] an incomplete form of the generalized Laplace equation has 

been obtained, which contains only the first, third and fourth term in the left-hand side of 

Eq. (4.85). Another incomplete form of the generalized Laplace equation was published in 

Refs. [32-34]. 

Further specification of the form of the surface tangential and normal stress balances, Eqs. 

(4.50)−(4.51), can be achieved if appropriate rheological constitutive relations are available, as 

discussed in the next section. For other forms of the generalized Laplace equation – see Eqs. 

(4.99), (4.103), (4.107) and (4.110) below. 
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4.3.4. INTERFACIAL RHEOLOGICAL CONSTITUTIVE RELATIONS 

To solve whatever specific problem of the continuum mechanics, one needs explicit 

expressions for the tensors of stresses and moments. As already mentioned, such expressions 

typically have the form of relationships between stress and strain (or rate-of-strain), which 

characterize the rheological behavior of the specific continuum: elastic, viscous, plastic, etc.; 

see e.g. Refs. [6,20,35,36]. In fact, a constitutive relation represents a theoretical model of the 

respective continuum; its applicability for a given system is to be experimentally verified. 

Below in this section, following Ref. [14], we briefly consider constitutive relations, which are 

applicable to curved interfaces. 

 Surface stress tensor σ. Boussinesq [37] and Scriven [38] have introduced a 

constitutive relation which models a phase boundary as a two-dimensional viscous fluid: 

( )λ
λµνµν

λ
λµνµνµν ηησσ daddaa sd 2

12 −++=      (4.86) 

where dµν is the surface rate-of-strain tensor defined by Eq. (4.19); λ
λd  is the trace of this 

tensor; dη  and sη  are the coefficients of surface dilatational and shear viscosity, cf. Eq. (4.11). 

The elastic (non-viscous) term in Eq. (4.86), µνσ a , is isotropic. Consequently, it is postulated 

that the shearing tension η is zero, see Eq. (4.25), i.e. there is no shear elasticity. In other 

words, in the model by Boussinesq-Scriven the deviatoric part of the tensor σµν has entirely 

viscous origin. In Eq. (4.86) σ is to be identified with the mechanical surface tension, cf. 

Eq. (4.81). For emulsion phase boundaries of low interfacial tension the dependence of σ on 

the curvature should be taken into account. From Eqs. (3.39) and (4.81), in linear 

approximation with respect to the curvature, we obtain 

)( 2
02

1
0 HOHB ++= γσ         (4.87) 

where 0γ  is the tension of a flat interface. For example, for an emulsion from oil drops in 

water we have B0 ≈ 1010−  N and Н ≈ 15 cm10 − ; then we obtain that the contribution from the 

curvature effect to σ is 2
1 B0H ≈ 0.5 mN/m. For such emulsions the latter value could be of the 

order of 0γ , and even larger. Therefore, the curvature effect should be taken into account when 
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solving the hydrodynamic problem about flocculation and coalescence of the droplets in some 

emulsions. 

Since the surface stress tensor σ has also transversal components, )n(µσ , see Eq. (4.26), one 

needs also a constitutive relation for )n(µσ  (µ = 1, 2). In analogy with Eq. (4.86) )n(µσ  can be 

expressed as a sum of a viscous and a non-viscous term [14]: 

)n(
)0(

)n(
)v(

)n( µµµ σσσ +=         (4.88) 

The viscous term can be expressed in agreement with the Newton's law for the viscous friction 

[14]: 

µµ χσ (n),)n(
(v) vs=          (4.89) 

v(n) is defined by Eq. (4.20). As illustrated schematically in Fig. 4.3, equation (4.89) accounts 

for the lateral friction between the molecules in an interfacial adsorption layer; this effect could 

be essential for sufficiently dense adsorption layers, like those formed from proteins. χs is a 

coefficient of surface transversal viscosity, which is expected to be of the order of ηs by 

magnitude. 

For quasistatic processes ( 0v →  and 0)n(
)v( →µσ ), the transversal components of σ reduce to 

)n(
)0(

µσ . Then, in keeping with Eqs. (4.49), (4.83), (4.88) and (4.89), we can write [14]: 

 

 

Fig. 4.3. An illustration of the relative displacement of the neighboring adsorbed molecules (the 
squares) in a process of interfacial wave motion; u is the local deviation from planarity. 
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ν
µνµνµµ χσ ,2

1(n),)n( )(v qBas Θ+−=        (4.90) 

The surface rheological model, based on the constitutive relations (4.86) and (4.90), contains 

3 coefficients of surface viscosity, viz. dη , sη  and χs. Moreover, the surface bending and 

torsion elastic moduli do also enter the theoretical expressions through B and Θ, see Eqs. (3.9) 

and (4.90). 

 Tensor of the surface moments M. Equations (3.9) and (4.83) yield an expression for 

the non-viscous part of M: 

( ) [ ] µνµνµνµνµν DqkaHkkBqaBM ccc −++=Θ+≡ )2(02
1

2
1

)0(    (4.91) 

In keeping with Eqs. (4.17), (4.49), (4.90) and (4.91) the total tensor of the surface moments 

(including a viscous contribution) can be expressed in the form [14]: 

[ ] µνµνµνµν χ abkaHkkBM sccc
(n)

02
1 v)(2 −−++=     (4.92) 

The latter equation can be interpreted as a rheological constitutive relation stemming from the 

Helfrich formula, Eq. (3.7). With the help of the Codazzi equation, µνλλµν ,, bb = , see e.g. Ref. 

[19], we derive: 

µµνλ
νλ

λµν
νλ

µν
ν

,,,
, 2Hbabab ===        (4.93) 

The combination of Eqs. (4.92) and (4.93) yields 

µµµν
ν χ (n),,
,  v2 sc HkM −=         (4.94) 

In the derivation of Eq. (4.94) we have treated B0 as a constant. However, if the deformation is 

accompanied with a variation of the surface concentration Γ, then Eq. (4.94) should be written 

in the following more general form: 

Γ
≡′−+Γ′=
∂
∂

χ µµµµν
ν

0
0

(n),,,
02

1
, ;v2 BBHkBM sc     (4.95) 

The term with 0B′  has been taken into account by Dan et al. [39], as well as in Chapter 10 

below, for describing the deformations in phospholipid bilayers caused by inclusions (like 
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membrane proteins). In the simpler case of a quasistatic process (v(n) = 0) and uniform surface 

concentration (Γ,µ = 0) Eq. (4.95) reduces to a quasistatic constitutive relation stemming from 

the Helfrich model: 

µµν
ν

,
, 2 HkM c=          (4.96) 

It is worthwhile noting that the torsion (Gaussian) elasticity, ck , does not appear in Eqs. 

(4.94)−(4.96). Then, in view of Eq. (4.49) and (4.94), ck  will not appear explicitly also in the 

tangential and normal balances of the linear momentum, Eqs. (4.39) and (4.40), which for 

small Reynolds numbers (inertial terms negligible) acquire the form 

( )µµννµ
ν

νµ
ν χσ )n(

II
)n(

I
(n),,

, )v2( TTHkb sc −=−+   µ = 1, 2.  (4.97) 

( ))n)(n(
II

)n)(n(
I

(n),, )v2( TTaHkb sc −=−− µν
µνµνµν

µν χσ     (4.98) 

σµν is to be substituted from Eq. (4.86). It should be noted that Eq. (4.98) is another form of the 

generalized Laplace equation. In vectorial notation and for quasistatic processes (v(n) → 0) Eq. 

(4.98) reads 

b : σ − 2kc∇s
2H = n⋅(TI − TII)⋅n       (4.99) 

 Application to capillary waves. As an example let us consider capillary waves on a flat 

(in average) interface. It is usually assumed that the amplitude of the waves u (see Fig. 4.3) is 

sufficiently small, and consequently Eqs. (4.97) and (4.98) can be linearized: 

)n)(n(
II

)n)(n(
I

2222 TT
t
uuku sssscs −=∇+∇∇−∇

∂
∂χσ      (4.100) 

sssssds UTTnvv ⋅−⋅=∇+⋅∇∇+∇ )( IIIII
2

II ηησ     (4.101) 

where we have used the constitutive relation, Eq. (4.86), and the relationships 

µ
µ

∂
∂ v,v,2 II

(n)2 av ≡=∇≈
t
uuH s      (4.102) 
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One sees that in linear approximation the dependent variables u and IIv  are separated: the 

generalized Laplace equation, Eq. (4.100), contains the displacement u along the normal, 

whereas the two-dimensional Navier-Stokes equation (4.101) contains the tangential surface 

velocity, IIv . In the linearized theory the curvature elasticities participate only trough kc in the 

normal stress balance, Eq. (4.100); ck  does not appear. 

 

4.4. AXISYMMETRIC SHAPES OF BIOLOGICAL CELLS 

4.4.1. THE GENERALIZED LAPLACE EQUATION IN PARAMETRIC FORM 

Equation (4.99) can be used to describe the shapes of biological membranes. For the sake of 

simplicity, let us assume that the phases on both sides of the membrane are fluid, i.e. Eq. (4.45) 

holds (the effect of citoskeleton neglected). Then substituting Eqs. (4.17), (4.24) and (4.45) 

into Eq. (4.99) one derives [14] 

2Hσ + 2Dη − 2kc∇s
2H = PII − PI       (4.103) 

Further, let us consider the special case of axisymmetric membrane and let the z-axis be the 

axis of revolution. In the plane xy we introduce polar coordinates (r,ϕ); z = z(r) expresses the 

equation of the membrane shape. Then ∇s
2H can be presented in the form (see Ref. 37, Chapter 

XIV, Eq. 66): 

( ) ( ) 



 ′+′+=∇

−−

dr
dHzr

dr
dz

r
Hs

2/122/122 111       (4.104) 

where 

θtan==′
dr
dzz          (4.105) 

with θ  being the running slope angle. The two principal curvatures of an axisymmetric surface 

are c1 = d(sinθ)/dr and c2 = sinθ/r.  In view of Eq. (3.3), we have 

,sinsin2,sinsin2
rdr

dD
rdr

dH θθθθ
−=+=     (4.106) 

Finally, with the help of Eqs. (4.104)−(4.106) we bring Eq. (4.103) into the form [14] 
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











+∆=






 −+






 + )sin(1coscossinsinsinsin θθθθθηθθσ r

dr
d

rdr
dr

dr
d

r
k

P
rdr

d
rdr

d c   (4.107) 

where ∆P = PII − PI . Equations (4.105) and (4.107) determine the generatrix of the membrane 

profile in a parametric form: r = r(θ), z = z(θ). In the special case, in which η = 0 and kc
 = 0 

(no shearing tension and bending elasticity), Eq. (4.107) reduces to the common Laplace 

equation of capillarity, Eq. (2.24). The approach based on Eq. (4.107) is equivalent to the 

approach based on the expression for the free energy, insofar as the generalized Laplace 

equation can be derived by minimization of the free energy, see Section 4.3.1.  

The form of Eq. (4.107) calls for discussion. The possible shapes of biological and model 

membranes are usually determined by minimization of an appropriate expression for the free 

energy (or the grand thermodynamic potential) of the system, see e.g. Refs. [7,9,40-49]. For 

example, the integral bending elastic energy of a tension-free membrane is given by the 

expression [7] 

∫ +−= dAKkHHkW ccB ])(2[ 2
0        (4.108) 

see Eq. (3.7). The above expression for WB contains as parameters the spontaneous curvature 

H0 and the Gaussian (torsion) elasticity ck , while the latter two parameters are missing in Eq. 

(4.107). As demonstrated in the previous section H0 and ck  must not enter the generalized 

Laplace equation, see Eq. (4.99); on the other hand, H0 and ck  can enter the solution trough 

the boundary conditions [22]. For example, Deuling and Helfrich [43] described the myelin 

forms of an erythrocyte membrane assuming tension-free state of the membrane, that is 

σ = η = 0 and ∆P = 0; then they calculated the shape of the membrane as a solution of the 

equation 

)sin(1 θr
dr
d

r
 = 2H0 = const.        (4.109) 

It is obvious that for σ = η = 0 and ∆P = 0 every solution of Eq. (4.109) satisfies Eq. (4.107), 

and that the spontaneous curvature H0 appears as a constant of integration.  

In a more general case, e.g. swollen or adherent erythrocytes [50], one must not set σ = 0 and 
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∆P = 0, since the membrane is expected to have some tension, though a very low one. To 

simplify the mathematical treatment, one could set η = 0 in Eq. (4.107), i.e. one could neglect 

the effect of the shearing tension. Setting η = 0 means that the stresses in the membrane are 

assumed to be tangentially isotropic, that is the membrane behaves as a two-dimensional fluid. 

In fact, there are experimental indications that η << σ for biomembranes at body temperature 

[9, 51]. Thus one could seek the membrane profile as a solution of the equation [50] 













+∆=






 + )sin(1coscossinsin θθθθθσ r

dr
d

rdr
dr

dr
d

r
k

P
rdr

d c    (4.110) 

 
4.4.2. BOUNDARY CONDITIONS AND SHAPE COMPUTATION 

To find the solution of Eq. (4.110), along with Eq. (4.105), one needs 4 boundary conditions. 

The following boundary conditions have been used in Ref. [50] to find the shape of 

erythrocytes attached to a glass substrate (Fig. 4.4): 

(i-ii) z = 0 and θ = 0 at r = 0, i.e. at the apex of the membrane (the point where the membrane 

intersects the z-axis); 

(iii) the membrane curvature varies smoothly in a vicinity of the membrane apex; 

(iv) θ = θh  for  r = rf  (θh – contact angle; rf – radius of the adhesive film); 

(v) the total area of the membrane, AT, is known; this condition was used in Ref. [50] to 

determine the unknown material parameter 

λ = σ / kc          (4.111) 

To solve Eq. (4.110) it is convenient to introduce the auxiliary function 

brdr
dF 2sinsin

−+≡
θθ ,   

P
b

∆
≡

σ2 ,    (4.112) 

where b is constant if the effect of gravity on the membrane shape is negligible. Then 

Eq. (4.110) acquires the form 
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Fig. 4.4. Shape of an erythrocyte adherent to a glass substrate, determined in Ref. [50]; the zone of the 
flat adhesion film is in the lower part of the graph. (a) For osmolarity 143 mOsm of the 
hypotonic solution the non-adherent part of the membrane is spherical; the shape for 
(b) osmolarity 153 mOsm and (c) 156 mOsm is reconstructed from experimental data by 
solving Eq. (4.110) for kc = 1.8 × 10−19 J and for fixed membrane area AT = 188 µm2. 

F
dr
dFr

dr
d

r
λθθ

=





 coscos         (4.113) 

It is convenient to use as an independent variable the length of the generatrix of the membrane 

profile, s, whose differential is related to the differentials of the cylindrical coordinates (r,z) as 

follows: 

dsdzdsdr θθ sin;cos ==         (4.114) 

The introduction of s as a variable of integration helps to avoid divergence in the procedure of 

numerical integration at the "equator" of the erythrocyte, where cosθ = 0. The differential of 

the membrane area, A, is simply related to ds: 

dsrdA π2=           (4.115) 

Combining Eqs. (4.112) and (4.114) one obtains 
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)(sin2 sF
rbds

d
+−=

θθ         (4.116) 

Likewise, from (4.113) and (4.114) one derives 

ds
dF

r
F

ds
Fd |cos|
2

2 θλ −=         (4.117) 

Equations (4.114)−(4.117) form a set of 5 equations for determining the 5 unknown functions 

r(s), z(s), θ(s), F(s) and A(s). In particular, the functions r(s) and z(s) determine the profile of 

the axisymmetric membrane in a parametric form.  

Following Ref. [50], to determine the profile of the adherent erythrocyte (Fig. 4.4) one starts 

the numerical integration of Eqs. (4.114)−(4.117) from the apex of the membrane surface, i.e. 

from the upper point of the profiles in Fig. 4.4, where the generatrix intersects the axis of 

revolution. The boundary conditions are: 

r(s=0) = 0;       z(s=0) = 0;      θ( )s = =0 0       and       A(s=0) = 0   (4.118) 

b is assumed to be a known parameter; in Ref. [50] it has been determined from the 

experimental data. Finally, the two boundary conditions for Eq. (4.117) are: 

F(s=0) = q         and         0=
ds
dF           for s = 0     (4.119) 

The latter boundary condition removes a divergence in Eq. (4.117) for s = 0 (r = 0). On the 

other hand, q is a unknown parameter, which is to be determined, together with the other 

unknown parameter λ, from the area of the free (non-adherent) portion of the membrane: 

AF = AT − 2
frπ          (4.120) 

where AT  is the total area of the membrane, assumed constant; rf  is assumed to be known 

from the experiment. The two unknown parameters, q and λ, are to be determined from the 

following two conditions:  

r rf=         and        θ θ= h         for        A = AF     (4.121) 
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Fig. 4.5. Shape of a closed membrane calculated in Ref. [50] by means of Eq. (4.110): (a) spherocyte; 

(b) discocyte corresponding to σ = 1.8 × 10−4 mN/m and ∆P = 0.036 Pa; (c) discocyte 
corresponding to σ = 3.6 × 10−4 mN/m and ∆P = 0.072 Pa; kc  and AT are the same as in 
Fig. 4.4. 

 
To obtain the profiles of adherent cells shown in Fig. 4.4 one can start the integration from the 

membrane apex, s = 0, with tentative values of the unknown parameters, q and λ. Further, the 

integration continues until the point with A = AF is reached. Then we check whether Eq. 

(4.121) is satisfied. If not, we assign new values of q and λ and start the integration again from 

the apex s = 0. This continues until we find such values of q and λ, which lead to fulfillment of 

Eq. (4.121). These values can be automatically determined by numerical minimization of the 

function  

[ ] [ ]22 ),;(),;(),( hFfF qArqArq θλθλλ −+−=Φ      (4.122) 

with respect of q and λ. Thus one determines the values of λ and q. 

The curves in Fig. 4.5 illustrate what would be the shape of the same erythrocyte (of the same 

fixed area AT = 188 µm2 as in Fig. 4.4) if it were not attached to the substrate. In other words, 

Fig. 4.5 shows the shape of a free (non-attached) erythrocyte of area AT at various values of the 

membrane tension σ  and the transmembrane pressure difference ∆P , specified in the figure 

caption. The curves in Fig. 4.5 are obtained in Ref. [50] by numerical integration of Eqs. 

(4.114)−(4.117). As before, the integration starts from the apex of the profile, i.e. from the 
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intersection point of the generatrix with the axis of revolution, where we set s = 0. The 

numerical integration starts with a tentative value of q in Eq. (4.119). The value of q is 

determined from the condition that when the integration reaches the membrane "equator", 

where cosθ = 0, the membrane area must be A = AT /2. 

Since the membrane profile is symmetric with respect to the "equatorial" plane, in this case we 

carry out the numerical integration above the equator, and then we obtain the profile below the 

equator as a mirror image. Of course, one can continue the numerical integration after crossing 

the equator and the same profile will be obtained; however, due to accumulation of error from 

the numerical procedure this could decrease the accuracy of the calculated profile for the 

higher values of s (below the equator). 

Such calculations indicate that the generalized Laplace equation, Eq. (4.110), or the equivalent 

set of equations (4.114)−(4.117), has at least two types of solutions for a free (non-adherent) 

erythrocyte of fixed area and given membrane tension σ . The first type is a "discocyte" like 

those in Fig. 4.5. The second type looks like an oblong ellipsoid of revolution, which 

resembles the shape of a red blood cell penetrating along a narrow capillary (blood vessel). 

 

4.5. MICROMECHANICAL EXPRESSIONS FOR THE SURFACE PROPERTIES 

In the Section 4.3.2 we derived the formula for the work of interfacial deformation, Eq. (4.72), 

starting from a purely phenomenological expression, Eq. (4.73); as a result we obtained 

relationships between the surface thermodynamical and mechanical properties, Eqs. 

(4.79)−(4.80). In the present section we will derive again Eq. (4.72), however this time by 

taking excesses with respect to the bulk phases; this alternative approach provides 

micromechanical expressions for the surface properties of an arbitrarily curved interface, such 

as generalizations of Eqs. (3.69) and (3.70). 

 

4.5.1. SURFACE TENSIONS, MOMENTS AND CURVATURE ELASTIC MODULI 

Basic relationships. Our purpose here is to extend the hydrostatic approach to the 

theory of a spherical phase boundary from Section 3.2.3 to the general case of an arbitrarily 



General Curved Interfaces and Biomembranes 

 

 

169

curved interface. We follow Refs. [23, 26]. As discussed in Chapter 1, in a vicinity of a real 

fluid interface the pressure Р represents a tensorial quantity, which depends on the position in 

the transition zone between the two phases. After Gibbs [1], let us define an idealized (model) 

system, which is composed of two homogeneous and isotropic fluid phases, I and II, separated 

by a mathematical dividing surface. If ),( 21 uuR  is the running position vector of a point from 

the dividing surface, we can present the position-vector of a given point in space in the form: 

),(),( 2121 uuuu nRr λ+=         (4.123) 

As before, n is the running unit normal to the interface; λ is the distance from the given point 

in space to the dividing surface. The pressure in the idealized system can be expressed in the 

form 

)()(, III λθλθ PPPP +−== UP       (4.124) 

where 





>
<

=
,0for1
;0for0

)(
λ
λ

λθ         (4.125) 

is the step-wise function of Heaviside; PI and PII are the pressures in the bulk of the respective 

two neighboring phases, while U is the unit tensor in space. Having in mind Eq. (1.22), one can 

express the work of interfacial deformation, produced during a time interval δ t, [52]: 

:PP∫ ∫ −−=
A V

s dAw )(δ (Ψδ t) dV       (4.126) 

As before, δws is the work of interfacial deformation per unit area, 212/1 duduadA =  is a 

surface element, and Ψ is the spatial rate-of-strain tensor (the strain tensor is Φ = Ψδ t): 

Ψ  =  2
1 [∇w + (∇w)T]         (4.127) 

Here w is the velocity field in the bulk phases and the superscript “T” symbolizes conjugation. 

For slow quasistatic processes one can use the kinematic formula of Eliassen [21]: 

nvvw ⋅∇−= )( sλ          (4.128) 
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where the surface velocity v is defined by Eq. (4.18). Equation (4.128) corresponds to such a 

deformation, for which every material point is fixed at a point of the curvilinear coordinate 

network ( λ,, 21 uu ), which moves together with the deforming dividing surface. In particular, 

every layer of material points, corresponding to λ =  const., remains parallel to the dividing 

surface in the course of deformation. The integration in the left-hand side of Eq. (4.126) is 

carried out over an arbitrarily chosen parcel A from the dividing surface, while the integration 

in the right-hand side − over the corresponding cylindrical volume depicted in Fig. 4.6. The 

lateral surface of this volume is perpendicular to the dividing surface. The vectorial surface 

element of the lateral surface can be expressed in the form [21]: 

=sd ν dldλL⋅          (4.129) 

where dl is a linear element on the contour C, and ν is an outer unit normal to C, see Fig. 4.6; 

bUL λλ +−= sH )21(         (4.130) 

in Eq. (4.129) is a surface tensor, cf. Eqs. (4.14) and (4.17). The volume element dV can be 

expressed in the form [53]: 

222)1(, DHddAdV λλχλχ −−≡= = 1 − 2λH + λ2K   (4.131) 

A substitution of w from Eq. (4.128) into Eq. (4.127) yields [23] 

 
 

 

 

Fig. 4.6. An imaginary cylinder, whose lateral 
surface is perpendicular to the dividing 
surface between phases I and II, and 
whose bases are parallel to it; n and ν 
(n⊥ν) are running unit normals to the 
dividing surface and to the contour C, 
respectively; moreover, ν is tangential 
to the dividing surface. 

 

 

 



General Curved Interfaces and Biomembranes 

 

 

171

 

Ψ [ ] χλλλ µνµν
σ
µσν

σ
νσµµννµ

νµ 2/v)(2)())(21( (n)
,,,, KabbwbwwwH −−+++−= aa     (4.132) 

Next, with the help of Eqs. (4.17), (4.19), (4.21), (4.128), (4.132) and the identities 

(4.61)−(4.62) one can prove that [23] 

( ) χλλβχαχ /22)()( DHsss
&&&& LqLqUq:qU:U ⋅−−+=+ ΨΨ    (4.133) 

Since the surface parcel А has been arbitrarily chosen, from Eqs. (4.126) and Eq. (4.131), we 

get: 

PPP:P −≡−= ∫ ss
s dtw ,)(

2

1

λχδδ
λ

λ

Ψ      (4.134) 

A further simplification of Eq. (4.134) can be achieved if some specific information about the 

process of deformation is available. To specify the process one can assume that the surface 

rate-of-strain tensor can be expressed in the form [23]: 

q:qU:U )()( 2
1

2
1 ΨΨΨ += ss        (4.135) 

The latter equation implies that the tensor Ψ has diagonal form in the basis of the principle 

curvatures. In other words, the deformation of the dividing surface is related to the deformation 

in the adjacent phases. Using Eq. (4.135) we obtain: 

[ ])()(2
1 ΨΨΨ :qq:UU:P:P += ss

ss       (4.136) 

Equation (4.136) can be also obtained using the alternative assumption that the pressure tensor 

can be expressed in the form 

nnqP:qUP:UP Nss P++= )()( 2
1

2
1       (4.137) 

From Eq. (4.137) one can deduce Eq. (4.136) without imposing any limitations on the form of 

the rate-of-strain tensor Ψ. The expression (4.137), which has been introduced by Buff [54, 

55], means that at every point two of the eigenvectors of the tensor P are directed along the 

lines of maximal and minimal curvature of the surface λ = const., passing through this point, 

whereas the third eigenvector is always normal to the dividing surface. In other words, the 
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orientation of the eigenvectors of Р in a vicinity of the phase boundary is induced by the 

geometry of the interface, which is a reasonable presumption from a physical viewpoint. 

Combining Eqs. (4.133), (4.134) and (4.136) one obtains again the known expression for the 

work of surface deformation, δws = γδα + ξδβ + BδH + ΘδD, see Eq. (3.1), where [23, 26]: 

∫−=
2

1

2
1
λ

λ

λχγ ds
s P:U          (4.138) 

∫−=
2

1

2
1
λ

λ

λχξ dsP:q          (4.139) 

∫=
2

1

λ

λ

λλdB sP:L          (4.140) 

∫ ⋅=
2

1

)(
λ

λ

λλdsP:LqΘ          (4.141) 

Equations (4.138)−(4.141) provide general micromechanical expressions for the interfacial 

tensions and moments of an arbitrarily curved interface. In the special case of a spherical 

interface of radius a Eqs. (4.138) and (4.140) reduce to known expressions first derived by 

Tolman [56]: these are Eq. (3.59) and the equation 

∫ +−=
2

1

)/1)((2
λ

λ

λλλ daPPB T        (4.142) 

The special form of Eqs. (4.138)−(4.141) for a cylindrical surface can be found in Refs. 

[14, 22]. 

 Expressions for the spontaneous curvature and the elastic moduli ck  and ck . From 

Eqs. (4.140)−(4.141) one can deduce micromechanical expressions for the bending moment of 

a planar interface, B0, and for the bending and torsion elastic moduli, ck  and ck . We will use 

the simplifying assumption for “tangential isotropy”, which has been introduced by Buff [53]: 

PPPPPPPP N
s

NT
s

T
s

Ns
s

T
s −≡−≡+= ;;nnUP    (4.143) 

From Eqs. (4.17) and (4.130) we obtain 
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sDH UqLq λλ +−=⋅ )1(         (4.144) 

A substitution of Eqs. (4.143)−(4.144) into Eq. (4.141) yields 

∫=Θ
2

1

22
λ

λ

λλ dPD s
T          (4.145) 

The comparison of the latter equation with Eq. (3.9) gives 

∫−=
2

1

2
λ

λ

λλ dPk s
Tc          (4.146) 

Equation (4.146) has been first obtained by Helfrich [57]. Further, from Eqs. (4.17) and (4.130) 

one can derive 

qUL DH s λλ +−= )1(         (4.147) 

Substituting Eqs. (4.143) and (4.147) into Eq. (4.140) we get 

∫∫
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From the latter equation, in view of Eqs. (3.9), (3.10) and (4.146), we obtain 

∫ ==−=
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As usual, H0 is the spontaneous curvature. Equations (4.149) and (4.150) have been first 

obtained in a quite different way, respectively, by Helfrich [57] and Szleifer et al. [58]. 

Equations (4.146), (4.149) and (4.150) were utilized by Lekkerkerker [59] for calculating the 

electrostatic components of 0B , ck  and ck , see Eqs. (3.91)−(3.93).  

From the above equations we can deduce also expressions for the coefficients C1 and C2, see 

Eqs. (3.5) and (3.6), in the framework of the simplifying assumption for tangential isotropy, 

Eq. (4.143). For example, combining Eqs. (4.145) and (4.148) with Eq. (3.6) one can derive 
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Likewise, a combination of Eqs. (4.131), (4.138) and (4.143) yields 

λλλγ
λ

λ

dPKH s
T∫ +−−=

2

1

)21( 2        (4.152) 

Equations (4.151) and (4.152) are equivalent to the results by Мarkin et al. [30] (the latter 

authors use the notation  J = −2H  and 1
~C  = −С1/2).  

 Expressions for the surface densities of extensive thermodynamic parameters. In Ref. 

[23] a micromechanical derivation of the fundamental thermodynamic equation, Eq. (3.16), 

was given, which provided expressions also for the adsorptions of the species, Γk , and the 

surface excesses of internal energy us and entropy ss , as follows 

λχλχλχ
λ

λ

λ

λ

λ

λ

dsssduuudnn sskkk )(,)(,)(
2

1

2

1

2

1

−=−=−=Γ ∫∫∫   (4.153) 

Here χ is defined by Eq. (4.131), nk , u and s are bulk densities of the k-th spacies, internal 

energy and entropy in the real system; the respective densities in the idealized system are  

)()(,)()(,)()( IIIIIIIII λθλθλθλθλθλθ sssuuunnn kkk +−≡+−≡+−≡ ;  

the superscripts “I” and “II” denote properties of phases I and II. Note that the expression for 

Γk  in Eq. (4.153) represents a generalization of Eq. (1.36) for an arbitrarily curved interface. 

 

4.5.2. TENSORS OF THE SURFACE STRESSES AND MOMENTS 

 General micromechanical expressions. Following Ref. [26] let us consider a sectorial 

strip sA∆ , which is perpendicular to the interface and corresponds to a linear element dl from 

an arbitrarily chosen curve С on the dividing surface (Fig. 4.7). As usual, n and ν (n⊥ν) are, 

respectively, running unit normals to the dividing surface and the curve C. It is presumed that 

the ends of the sectorial strip sA∆ , corresponding to λ = λ1 and λ = λ2, are located in the 
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Fig. 4.7. Sketch of a sectorial strip, which 
is perpendicular to the dividing 
surface. The strip corresponds to 
an element dl from the curve С 
on the dividing surface; n and ν 
are running unit normals to the 
surface and the curve С, 
respectively; in addition, n ⊥ ν. 

 

 

volume of the two adjacent phases,  i.e. far enough from the interface to have isotropic pressure 

tensor Р. The force acting on the strip sA∆  in the real system is 

Pn ⋅∫
∆ sA

ds           (4.154) 

In the idealized system the pressure tensor is assumed to be isotropic by definition, see 

Eq. (4.124); to compensate the difference with the real system, a surface stress tensor, σ, is 

introduced. Hence, the force exerted on the strip sA∆  in the idealized system is  














⋅∫

∆

Pn
sA

ds  − ν⋅σ dl         (4.155) 

Demanding the force acting on the strip sA∆  to be the same in the real and idealized system, 

we obtain [14]: 

ν ⋅ σ = − ν⋅ sd PL ⋅∫
2

1

λ

λ

λ ,   Ps ≡ P − P ,    (4.156) 

where we have used Eq. (4.129). Likewise, demanding the moment acting on the strip sA∆  to 
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be the same in the idealized and the real system, we obtain [14]: 

rPLRN ×⋅⋅−=×⋅−⋅ ∫ sd
2

1

λ

λ

λνσνν        (4.157) 

Using the arbitrariness of ν and the identity µν
µ

ν εana =× , from Eqs. (4.123), (4.156) and 

(4.157) one deduces [14]: 

sd PL ⋅−= ∫
2

1

λ

λ

λσ          (4.158) 

ελλ
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λ

⋅⋅−= ∫ sd PLN
2

1

        (4.159) 

In addition, with the help of the identities ε⋅= NM   and  sU−=⋅εε  from Eq. (4.159) one 

derives 

s
sd UPLM ⋅⋅= ∫ λλ

λ

λ

2

1

        (4.160) 

Equations (4.158)−(4.160) represent the sought for micromechanical expressions for the 

tensors of the surface stresses and moments, see Fig. 4.1. It is worthwhile noting that in 

contrast with the tensor σ , the tensors M and N, defined by Eqs. (4.159) and (4.160), have no 

transversal components (components directed along n), which is consonant with Eqs. (4.28) 

and (4.46). In addition, Eq. (4.83) shows that the bending and torsion moments, B and Θ, are 

equal to the trace and the deviator of the tensor М: 

M:qM:U =Θ= ,sB        (4.161) 

The substitution of М from (4.160) into (4.161) gives exactly Eqs. (4.140) and (4.141), which 

is an additional evidence for the selfconsistency of the theory presented here. Likewise, from 

Eq. (4.24) we obtain 

σησσ :q:U 2
1

2
1 , == s       (4.162) 

Combining Eqs. (4.158) and (4.162) one derives [14]: 
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λσ          (4.163) 
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λη         (4.164) 

One can verify that if the micromechanical expressions for γ, ξ, B, Θ, σ and η, Eqs. 

(4.138)−(4.141) and (4.163)−(4.164), are substituted into Eqs. (4.81) and (4.82), the latter are 

identically satisfied; this is an additional test for selfconsistency of the theory. 

 Special case of tangentially isotropic tensor Р: From the definition Ps ≡ P − P  it 

follows that in such a case the tensor sP  will be also tangentially isotropic, cf. Eq. (4.143), and 

γ  will be given by Eq. (4.152). From Eqs. (4.139), (4.163) and (4.164) we obtain 
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As mentioned at the end of Section 4.3.2, two alternative definitions of fluid interface are 

possible: 

(i) mechanical: the surface stress tensor, σ , is isotropic, that is η = 0. 

(ii) thermodynamical: no work is produced upon a deformation of surface shearing, i.e. ξ = 0. 

Equation (4.166) shows that the hypothesis for tangential isotropy, Eq. (4.143), is consistent 

with the thermodynamic definition for fluid interface, that is ξ = 0. On the other hand, from the 

tangential isotropy of the tensor Р (and sP ) does not follow isotropy of its surface excess, the 

tensor σ , cf. Eq. (4.158). In fact, the anisotropy of σ  stems from the anisotropy of the 

curvature tensor b of the arbitrarily curved interface, see Eqs. (4.130) and (4.158). 

The fact that the hypothesis for tangential isotropy of the pressure tensor Р is consistent with 

the thermodynamic definition of surface fluidity should not be considered as an argument in 
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favor of the latter definition. One should have in mind that, in general, the statistical mechanics 

predicts a non-isotropic pressure tensor P in a vicinity of an arbitrarily curved interface; see the 

review by Kuni and Rusanov [60]. 

 
4.6. SUMMARY 

In mechanics the stresses and moments acting in an interface or biomembrane can be taken into 

account by assigning tensors of the surface stresses, σ, and moments, M, to the phase 

boundary, see Fig. 4.1. Three equations determine the shape and deformation of a curved 

interface or biomembrane: they correspond to the three projections of the vectorial local 

balance of the linear momentum, see Eqs. (4.37), (4.39) and (4.40). Additional useful 

information is provided by the vectorial local balance of the angular momentum, see Eqs. 

(4.43)−(4.44), which imply that the tensor M is symmetric, and that its divergence is related to 

the transverse shear stress resultants of σ, see Eqs. (4.28) and (4.49). The normal projection of 

the surface linear momentum balance has the meaning of a generalized Laplace equation, 

which contains a contribution from the interfacial moments, see Eq. (4.51). 

Alternatively, variational calculus can be applied to derive the equations governing the 

interfacial/membrane shape by minimization of a functional − “the thermodynamic approach”. 

The surface/membrane tension depends on the local curvature of the surface and should not be 

treated as a constant Lagrange multiplier. The correct minimization procedure is considered in 

detail in Section 4.3.1. In the theoretical derivations one should take into account also the work 

of surface shearing, even in the case of fluid interface/membrane; see the discussions after Eqs. 

(4.83) and (4.166). 

Thus it turns out that the generalized Laplace equation can be derived in two alternative ways: 

mechanical and thermodynamical, cf. Eqs. (4.50)−(4.51) and Eqs. (4.70)−(4.71). This fact 

provides a test for a given surface mechanical (rheological) model: if a model is selfconsistent, 

the two alternative approaches must give the same result. The connection between them has the 

form of relationships between the mechanical and thermodynamical surface tensions and 

moments, see Eqs. (4.79)−(4.82). Different, but equivalent, forms of the generalized Laplace 

equation are considered and discussed, see Section 4.3.3. In fact, the mechanical and 
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thermodynamical approaches are mutually complementary parts of the same formalism.  

The general theoretical equations can give quantitative predictions if only rheological 

constitutive relations are specified, which characterize a given interface (biomembrane) as an 

elastic, viscous or visco-elastic two-dimensional continuum. The most popular constitutive 

relations for the tensors of the surface stresses σ and moments M are Eqs. (4.86) and (4.96), 

which stem from the models of Boussinesq-Scriven and Helfrich. The latter leads to a specific 

form of the generalized Laplace equation, which is convenient to use in applications, such as 

determination of the axisymmetric shapes of biological cells, see Eq. (4.103) and the whole 

Section 4.4. In particular, the axial symmetry reduces the generalized Laplace equation to a 

system of ordinary differential equations, for which a convenient method of integration is 

proposed (Section 4.4.2). 

Finally, micromechanical expressions for the surface tensions and moments are derived in 

terms of combinations from the components of the pressure tensor, see Eqs. (4.138)−(4.141) 

and (4.158)−(4.164). As corollaries from the latter general equations one can deduce 

theoretical expressions for calculation of the bending and torsion elastic moduli, kc and ck , and 

the spontaneous curvature, H0, see Eqs. (4.146), (4.149) and (4.150). 
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