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CHAPTER  3 

SURFACE  BENDING MOMENT  AND  CURVATURE  ELASTIC  MODULI 

 
This chapter is devoted to a generalization of the theory of capillarity to cases, in which 
variations of the interfacial (membrane) curvature give an essential contribution to the total 
energy of the system. An interface (or membrane) possesses 4 modes of deformation: 
dilatation, shearing, bending and torsion. The first couple of modes represent two-dimensional 
analogues of respective deformations in the bulk phases. The bending and torsion modes are 
related to variations in the two principle curvatures of the interface, that is to the presence of 
two additional degrees of freedom. From a thermodynamic viewpoint, the curvature effects can 
be accounted for as contributions of the work of interfacial bending and torsion to the total 
energy of the system; the respective coefficients are the interfacial (surface) bending and 
torsion moments, B and Θ. The most popular model of the interfacial curvature effects 
provides an expression for the mechanical work of flexural deformation, which involves 3 

parameters: bending and torsion elastic moduli, kc and ck , and spontaneous curvature, H0.  

Initially we consider the simpler case of spherical geometry. The dependence of the bending 
moment B on the choice of the dividing surface at fixed physical state of the system is 
investigated. The connection between the quantities bending moment, Tolman length and 
spontaneous curvature is demonstrated. Micromechanical expressions are derived, which allow 
one to calculate the surface tension and the bending moment if an expression for the pressure 
tensor is available. 

From the viewpoint of the microscopic theory, various intermolecular forces may contribute to 

the interfacial moments B, Θ, and to the curvature elastic moduli, kc and ck . Such are the van 

der Waals forces, the steric and electrostatic interactions. 

The interfacial bending moment may give an essential contribution to the interaction between 
deformable droplets in emulsions. In general, the curvature effects are expected to be 
significant for interfaces of low tension and high curvature, including biomembranes. 
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3.1. BASIC THERMODYNAMIC EQUATIONS FOR CURVED INTERFACES 

3.1.1. INTRODUCTION 

The curvature dependence of the interfacial tension was first investigated by Gibbs in his 

theory of capillarity [1]. The approach of Gibbs has been further developed by Tolman [2], 

who established that such curvature dependence appears for sufficiently small liquid drops or 

gas bubbles, whose radii are comparable with the so called Tolman length, δ0. The latter 

represents the distance between the surface of tension and the equimolecular dividing surface, 

see Chapter 1. Further development in the thermodynamics of curved interfaces was given in 

the works of Koenig [3] and Buff [4-6]. Kondo [7] investigated how the choice of dividing 

surface affects the surface thermodynamic parameters; see also Refs. [8-11]. 

An additional interest in the curvature effects has been provoked by the studies on 

microemulsions [12-20]. The biomembranes, lipid bilayers and vesicles represent another class 

of systems, for which the curvature effects play an essential role on the background of a low 

interfacial tension. The predominant number of works on lipid membranes is based on the 

mechanics of shells and plates, originating from the studies by Kirchhoff [21], Love [22], see 

also Refs. [23-25], and on the related theory of liquid crystals [26-28], rather than on the Gibbs 

thermodynamics. The mechanics of biomembranes is a complex and rich in phenomena field, 

whose importance is determined by the fact that such membranes are basic structural and 

physiological element of the cells of all living organisms. In particular, in Chapter 10 below we 

apply the mechanics of curved interfaces to describe theoretically the membrane-mediated 

interaction between proteins incorporated in a lipid bilayer. 

3.1.2. MECHANICAL WORK OF INTERFACIAL DEFORMATION 

First we will make an overview of the most important equations in the thermodynamics of the 

curved interfaces. The work of deformation of an elementary parcel, ∆А, of a the boundary 

between two fluid phases, can be expressed in the form [29-31] 

DHBws δδβδξαδγδ Θ+++= ,   δα ≡ δ(∆А)/∆А  (3.1) 



Surface Bending Moment and Curvature Elastic Moduli 

 

 

107

Here δws is the mechanical work of deformation per unit area of the phase boundary; δα is the 

relative dilatation (increase of the area) of the surface element ∆А. If δu11 and δu22 are the two 

eigenvalues of the surface strain tensor, then δα and δβ can be expressed as follows: 

22112211 , uuuu δδβδδδαδ −=+=      (3.2) 

see also Eq. (4.22) below. Consequently, δα and δβ characterize the isotropic and the 

deviatoric part of the surface strain tensor. In particular, δβ characterizes the interfacial 

deformation of shear, see Fig. 3.1. Likewise, the surface curvature tensor has two eigenvalues, 

с1 and с2 , representing the two principal curvatures; then  

( ) ( )2121 2
1,

2
1 ccDccH −=+=      (3.3) 

are the mean and deviatoric curvature; the latter is a measure for the local deviation from the 

spherical shape. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1. Modes of deformation of a surface element: dilatation, shear, bending and torsion. 
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Equation (3.1), without the term ξδβ, was first formulated in the classical work by Gibbs [1], 

and without the curvature terms − in the study by Evans & Skalak [25]. In particular, γδα is the 

work of pure dilatation (δβ = 0; δс1 = δс2 = 0); ξδβ is the work of pure shearing (δα = 0; 

δс1 = δс2 = 0), ВδН is the work of pure bending (δс1 = δс2; δα = δβ = 0) and ΘδD is the work 

of pure torsion (δс1 = −δс2; δα = δβ = 0), termed also “work of saddle-shape deformation”, see 

Fig. 3.1. Correspondingly, В and Θ are called the interfacial bending and torsion moments 

[15]. Often in the literature the Gaussian curvature  

22
21 DHccK −==          (3.4) 

is being chosen as an independent thermodynamic parameter, instead of the deviatoric 

curvature D; then Eq. (3.1) is transformed in the equivalent form 

KCHCws δδβδξαδγδ 21 +++=       (3.5) 

Equation (3.5), without the term ξδβ, is used in the works by Boruvka & Neumann [32] and 

Markin et al. [33]. A comparison between Eqs. (3.1) and (3.5) yields [31,34]: 

DCHCCB 221 2,2 −=Θ+=       (3.6) 

Equation (3.1) is more convenient to use for spherical interfaces (D = 0), and Eq. (3.5) − for 

cylindrical interfaces (K = 0). Below we will follow the Gibbs approach, and will use Н and D 

as thermodynamic variables; the latter have a simple geometric meaning (Fig. 3.1), and the 

respective moments В and Θ have the same physical dimension, in contrast with С1 and С2. 

In general, the surface moments В and Θ depend on the curvature. The latter dependence can 

be expressed in an explicit form by introducing some model of the interfacial flexural 

rheology. The following rheological constitutive relation, introduced by Helfrich [23,24], is 

frequently used in literature 

( ) KkHHkw ccf +−= 2
02         (3.7) 



Surface Bending Moment and Curvature Elastic Moduli 

 

 

109

Here wf is the work of flexural deformation per unit area of the interface; Н0, kс and ck  are 

constant parameters of the rheological model: Н0 is called the spontaneous curvature, kс and 

ck  are the bending and torsion (Gaussian) surface elastic moduli. From Eq. (3.1) it follows 

DHBw f δδδ Θ+=          (3.8) 

Combining Eqs. (3.4), (3.7) and (3.8) one derives [34,35] 

( ) Dk
D

w
HkkB

H
w

B c
H

f
cc

D

f 2,220 −=







∂

∂
=Θ++=








∂

∂
=   (3.9) 

where 

B0 = −4kc H0          (3.10) 

is an expression for the bending moment of a planar interface in the framework of the Helfrich 

model. 

In general, Eqs. (3.9) can be interpreted as truncated power expansions of В and Θ for small 

deviations from planar interface (small H and D; quadratic and higher-order terms neglected). 

On the other hand, the original Helfrich formula, Eq. (3.7), has been postulated to give the 

leading term in the power expansion of wf in the case when H is close to H0. If the values of B0 

and kс are known for a planar interface (Н = 0) and then H0 is formally calculated from 

Eq. (3.10), there is no guarantee that the obtained result for H0 could be physically interpreted 

as a spontaneous curvature, i.e. that for H = H0 the free energy of flexural deformation wf has a 

minimum. In other words, if Eq. (3.8) is integrated, along with Eq. (3.9), in general there is no 

guarantee that the integration constant will be equal to 2
02 Hkc , cf. Eq. (3.7). 

3.1.3. FUNDAMENTAL THERMODYNAMIC EQUATION OF A CURVED INTERFACE 

Let us consider an elementary interfacial parcel of area dA. The Gibbs excesses of internal 

energy, entropy and number of molecules from the i-the species, corresponding to this parcel, 

are 

,,,, dANddAddAsSddAuUd i
s
issssss Γ==Ω== ω    (3.11) 
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where us, ss, ωs and Γi are surface densities of the respective quantities. Further, let the area dA 

of the elementary parcel increases with 

( ) ( ) dAdA
dA
dAdA αδδδ ==         (3.12) 

due to the occurrence of some thermodynamic process. The Gibbs approach to nonuniform 

interfaces consists in application of the fundamental equation of an uniform interface locally, 

i.e. to every element dA of the nonuniform interface [1]. (Of course, this approach is more 

general and applicable to any nonuniform phases, not necessarily curved interfaces.) Thus, in 

the course of a thermodynamic process the variations of the parameters in Eq. (3.11) obey the 

fundamental equation 

( ) ( ) ( ) s

k

i

s
iiss WNddSdTUd δµδδ ++= ∑

=1
     (3.13) 

where Т and µi are the temperature and chemical potential, and δWs is the mechanical work of 

deformation of the surface element dA. In keeping with Eq. (3.1) one can write [30, 31]: 

( )dADHBdAwW ss δδβδξαδγδδ Θ+++==     (3.14) 

With the help of Eqs. (3.11) and (3.12) one obtains 

( ) ( )dAuuUd sss αδδδ +=         (3.15) 

Similar expressions can be deduced also for dSs and s
idN . In this way the fundamental 

equation (3.13) can be transformed to read [29-31] 

( ) DHBsTu s

k

i
iiss δδδβξδαωγδµδδ Θ+++−+Γ+= ∑

=1
   (3.16) 

where 

i

k

i
isss sTu Γ−−= ∑

=1
µω          (3.17) 

is the surface excess of the grand thermodynamic potential. Differentiation of Eq. (3.17) and 

substitution of the result for δus in Eq. (3.16) yields  



Surface Bending Moment and Curvature Elastic Moduli 

 

 

111

( )∑
=

Θ+++−+Γ−−=
k

i
siiss DHBTs

1
δδβδξαδωγµδδωδ    (3.18) 

If the interface can be treated as a two-dimensional fluid, then the interfacial tension equals the 

density of the surface excess grand thermodynamic potential [1] 

sωγ =           (3.19) 

Equation (3.19) can be obtained in the following way. Imagine an elementary interfacial parcel 

of area dA, whose boundary is a contour permeable for the transport of all components. An 

imaginary process of expansion of this contour at constant intensive parameters (δТ = 0, 

δµi = 0, δβ = 0, δH = 0, δD = 0) leads to enlargement of the parcel owing to the transfer of 

molecules across the permeable boundary line. In the course of this process matter with the 

same intensive properties, and especially with the same ωs , is added to the considered parcel. 

Then, setting δωs = 0 in Eq. (3.18) we arrive at Eq. (3.19). 

If the interface represents such a two-dimensional fluid, then Eq. (3.19) is valid irrespective of 

whether components, which are insoluble in the bulk phases, are present at the interface. In this 

case, from Eqs. (3.18) and (3.19) we obtain a generalizes version of the Gibbs adsorption 

equation: 

DHBTs
k

i
iis δδβδξµδδγδ Θ+++Γ−−= ∑

=1
    (3.20) 

cf. Eq. (1.35). 

It is worthwhile noting that the sign of В and Θ is a matter of convention. It is determined by 

the choice of the direction of the running unit normal to the interface, n.  From the differential 

geometry it is known that the surface tensor of curvature, b, can be defined as the surface 

gradient of n [36]: 

b = −∇s n          (3.21) 

The latter equation is known also as the Weingarten's formula [37]. Since the principal 

curvatures, с1 and с2, are the eigenvalues of b, then in view of Eqs. (3.3) and (3.21) an 

inversion of the direction of n will lead to a change of the sign of Н and D. Moreover, δwf in 
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Eq. (3.8) must not depend on the choice of direction of n; consequently, the inversion of the 

direction of n leads also to an inversion of the sign of В and Θ. From Eq. (3.8) it could be 

realized that a positive В tends to bend the interface around the inner phase, that is the phase 

for which n is an outer normal. The latter rule is general, i.e. it is independent of the choice of 

the direction of n. 

 

3.2. THERMODYNAMICS OF SPHERICAL INTERFACES 

3.2.1. DEPENDENCE OF THE BENDING MOMENT ON THE CHOICE OF DIVIDING SURFACE 

Spherical fluid interfaces are often observed due to the fact that the spherical shape 

corresponds to minimal surface energy if the gravitational deformation is negligible. After 

Gibbs [1] an interface can be modeled as a mathematical dividing surface separating two bulk 

phases. As noticed in Chapter 1, in reality there is a narrow transitional zone between the two 

phases, whose thickness could be from few angstroms to dozens of angstroms. For that reason, 

a problem arises about the exact definition of the position of the dividing surface. 

From symmetry considerations it follows that in the case of spherical interface the dividing 

surface must be a sphere. However, an additional condition must be imposed to uniquely 

define the radius of this sphere. It can be proven [7,8] that for an arbitrary definition of the 

spherical dividing surface the following two equations hold: 

ad
a

dwd s 







+=

∂
γ∂

αγ         (3.22) 

III
2 PP

aa
−=








+

∂
γ∂γ         (3.23) 

Here a is the radius of the dividing surface, РI and РII are the pressures, respectively, inside and 

outside the spherical drop (bubble, vesicle); [∂γ /∂a] is a formal derivative of γ with respect to 

the radius а; here and hereafter the brackets symbolize formal derivatives, which correspond to 

an imaginary variation of the choice of а at fixed physical state of the system. The comparison 

of Eqs. (3.22) and (3.1) (the latter for δβ = 0, δD = 0 and а = −1/Н) yields [29-31]: 
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







=

a
aB

∂
γ∂2 ,          (3.24) 

that is the formal derivative turns out to be proportional to the bending moment В. One way to 

uniquely define the dividing surface is to impose the additional condition the formal derivative 

of γ  to be always equal to zero: 

02 =







=

=
=

s
s

aa
aa a

aB s ∂
γ∂         (3.25) 

This special dividing surface, introduced by Gibbs [1], is called the surface of tension, cf. 

Eq. (1.13); here its radius is denoted by as. For this dividing surface Eq. (3.23) reduces to the 

common capillary equation of Laplace: 

III
2

PP
as

s −=
γ

         (3.26) 

Eliminating РI − PII between Eqs. (3.23) and (3.26) we obtain 

022
=−+ y

xxd
yd          (3.27) 

where we have introduced the notation 

ss yaax γγ /,/ ==         (3.28) 

The solution of Eq. (3.27), satisfying the boundary condition у(1) = 1, reads 

( ) x
x

xy
3
2

3
1

2 +=          (3.29) 

The latter equation, first derived by Kondo [7], describes the dependence of the interfacial 

tension γ on the choice of the dividing surface at fixed physical state of the system. From Eqs. 

(3.24), (3.28) and (3.29) one can deduce a similar dependence for the bending moment В [29]: 

12
1

2 3

3

+
−

=≡
x
x

a
BB
γ

         (3.30) 
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Fig. 3.2. Dependence of the thermodynamic interfacial tension, γ, and the dimensionless bending 

moment, B , on the choice of the dividing surface (of radius a) for a fixed physical state of 
the system.  

 
Equations (3.29) and (3.30) are illustrated graphically in Fig. 3.2. In accordance with Eq. 

(3.25), the surface of tension corresponds to the minimum of the curve γ  vs. а. Moreover, the 

dimensionless bending moment, B , which takes part in the Laplace equation, 

( ) ,1 III PPB
a

−=+
2γ          (3.31) 

cf. Eq. (3.23), (3.24) and (3.30), turns out to be a function of a with bounded variation 

(Fig. 3.2). In addition, one could verify that the dependence В vs а, 











−=

a
a

a
aaB s

s
ss 2

2

3
2γ ,        (3.32) 

which stems from Eqs. (3.28)−(3.30), satisfies the differential equation [31] 

γ
∂
∂ 2=








a
B ,          (3.33) 

which is analogous to Eq. (3.24).  

The surface of tension turns out to be convenient in many cases, because it simplifies the shape 

of the Laplace equation, which determines the shape of interfaces in the capillary hydrostatics, 

x = a/as 

y = γ/γs 

B = B/(2γ a) 

y, B  
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see Chapter 2. On the other hand, as noticed by C. Miller [17], in the case of low interfacial 

tension (critical emulsions, microemulsions, lipid vesicles, biomembranes) the mathematical 

surface of tension is situated away from the physical transition zone between the two phases; 

see also eq. (3.62) below. In such a case, which is equivalent to the presence of essential 

contribution from the interfacial bending moment, it is appropriate to use the equimolecular 

dividing surface.  

 

3.2.2. EQUIMOLECULAR DIVIDING SURFACE AND TOLMAN LENGTH 

As mentioned above, an additional condition must be imposed to define uniquely the radius of 

the dividing surface. Instead of setting the formal derivative [∂γ /∂a] equal to zero, as it is for 

the surface of tension, one could require the formal derivative to be equal to the physical 

derivative, viz. 

( )
v

v

v
v

v
aa

aa aa =
=

≡=







γγ

∂
γ∂

∂
γ∂     (3.34) 

where av is the radius of the dividing surface defined by Eq. (3.34), termed the equimolecular 

dividing surface [2,3,6,8]; see also Section 1.2.2 above. The partial derivative ∂γv
 /∂av is related 

to the physical dependence of γv on av for fixed values of the other thermodynamic parameters 

of state. Different possible choices of the latter parameters correspond to different definitions 

of av . The distance 

saa −= vδ           (3.35) 

between the surface of tension and the equimolecular dividing surface is called the Tolman 

length. Tolman [2] has derived the equation 

,...
2

1
v

0
0v 








+−=

a
δ

γγ         (3.36) 

δδγγ
∞→∞→

==
vv
lim,lim 0v0 aa

       (3.37) 

which expresses in first approximation the physical dependence of γv on the interfacial 

curvature. Setting а = av in Eq. (3.32) and expanding in series for δ0/av << 1 we obtain [38]: 
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( )
vv00v ...2 aaBBB

=
≡+= δγ      (3.38) 

The next terms in the expansion (3.38) can be found only if the dependence δ = δ(av) is known. 

From Eqs. (3.36) and (3.38) we deduce 

00v0
v

0
0v 2,... δγγγ =≡+−=

∞→aBB
a
B

    (3.39) 

The last equation allows estimates for the magnitude of B0 to be made. For example, for the 

surface of liquid argon at temperature −188.85°С, we have γ0 = 13.45 mN/m, δ0 = 3.6 Å, see 

Ref. [39], and then from Eq. (3.39) we compute В0 = 9.7 × 10−12 N. Equation (3.39) 

demonstrates the connection between the Tolman length, δ0, and the bending moment B0, 

which in its own turn is proportional to the Helfrich's spontaneous curvature H0, see Eq. (3.10); 

all these quantities are related to the curvature dependence of the surface tension.  

Another relationship between the Tolman length and the parameters of the equimolecular 

dividing surface can be obtained in the following way. From Eqs. (3.28) and (3.29) one can 

deduce 











+= 3

v

3

v

v

3
1

3
2

a
a

aa
s

s

sγγ
        (3.40) 

Likewise, from Eqs. (3.26), (3.30) and (3.31) we obtain 

s

s

aa
B

a
γγ 22

2
v

v

v

v =+          (3.41) 

The elimination of γs /as between Eqs. (3.40) and (3.41), along with Eq. (3.35), yields the 

sought for expression for δ [31]: 


























+
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−=
3/1

vv2
1

v

vvv
v /

/
1

aB
aB

a
γ
γ

δ        (3.42) 

Equation (3.42) shows that the sign of δ is connected with the sign of Вv: indeed, one could 

verify that Eq. (3.42) yields δv > 0 for  Вv > 0, and vice versa, δv < 0 for Вv < 0. 
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3.2.3. MICROMECHANICAL APPROACH 

 Mechanical definitions of surface tension and bending moment. The hydrostatic 

approach to the theoretical description of curved interfaces has been developed by Buff [5], 

Ono & Kondo [8] and Rusanov [9]. Owing to the spherical symmetry, the pressure tensor can 

be expressed in the form [8] 

P = PN er er + PT (eθ eθ + eϕ eϕ)       (3.43) 

where (r, θ, ϕ) are polar coordinates with center in the center of spherical symmetry; еr, eθ  and 

eϕ are the unit vectors of the curvilinear local basis; РN and РТ represent the normal and 

tangential component of the tensor Р with respect to the spherical interface. 

Let us consider a part of the system, which is confined between two concentric spheres of radii 

r1 and r2, see Fig. 3.3. The total force acting on the shaded sectorial strip (Fig. 3.3) is [8]  

∫
2

1

r

r
T drrPdθ           (3.44) 

see Fig. 3.3 for the notation. The respective force moment is given by the expression  

∫
2

1

2
r

r
T drrPdθ           (3.45) 

Following Gibbs [1] we define an idealized (model) system consisting of one spherical 

dividing surface of radius a and two bulk fluid phases, I and II, which are uniform and 

isotropic up to the very dividing surface. The pressure in the idealized system can be expressed 

in the form 





>
<

=
arP
arP

P
for
for

II

I          (3.46) 

As noted in Chapter 1 (Figs. 1.1 – 1.3) the pressure tensor Р is not isotropic in a vicinity of an 

interface. To compensate this difference between the real and the idealized system, the 

dividing 
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Fig. 3.3. Sketch of the real and idealized systems, and of the sectorial strip (shaded) used to give a 

mechanical definition of the surface tension, σ, and the bending moment, M. 
 
 
surface is treated as a membrane with surface (membrane) tension σ and surface bending 

moment M, see Fig. 3.3b. Then the counterparts of Eqs. (3.44) and (3.45) for the idealized 

system are [31]: 

∫ −
2

1

r

r

ddrrPd θσθ          (3.47) 

θθσθ daMdadrrPd
r

r

+−∫
2

1

22        (3.48) 

To make the idealized system mechanically equivalent to the real one, we require that the force 

and the moment acting on the sectorial strip in the two systems (Fig. 3.3) to be equal. Thus 

setting equal the expressions in Eqs. (3.44) and (3.47) we obtain 

( ) drrPPa
r

r
T∫ −=

2

1

σ          (3.49) 

Likewise, from Eqs. (3.45) and (3.48) we derive 
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( ) drrPPaMa
r

r
T

22
2

1

∫ −=−σ         (3.50) 

In the above mechanical derivation we deliberately have used the notation σ and М for the 

mechanical surface tension and moment. Indeed, it is not obligatory the latter to coincide with 

their thermodynamic analogues, γ  and В, defined by Eq. (3.1). 

 Relationship between the mechanical and thermodynamical surface tension. Under 

conditions of hydrostatic equilibrium the divergence of the pressure tensor is zero, that is 

∇⋅P = 0. In the considered case of spherical symmetry the latter equation yields [39] 

( ) TN PrPr
rd

d 22 =          (3.51) 

Integrating the latter equation we derive 

( )2
1I

2
2II

2

1
2
1 rPrPdrrP

r

r
T −=∫         (3.52) 

Substituting Eqs. (3.46) and (3.52) into (3.49) we obtain a version of the Laplace equation: 

III
2 PP
a

−=
σ           (3.53) 

The comparison of Eqs. (3.53) and (3.31) yields 

a
B
2

−= σγ           (3.54) 

To find a unique relationship between the couple of mechanical parameters (σ, М) and the 

couple of thermodynamical parameters (γ, В) we need a second relationship, in addition to 

Eq. (3.54). Such an equation can be obtained in the following way. 

Let us consider a purely lateral displacement of the conical surface depicted in Fig. 3.3a. The 

work of this displacement, carried out by the outer forces, is [8] 

( ) ∫∫ −=−=
2

1

2

1

2sin2
r

r
T

r

r
T drrPddrdrrPdW ωθθπ      (3.55) 

where 
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∫=
π

ϕθθω
2

0

sin ddd = 2π sinθ dθ       (3.56) 

is the increment of the spatial angle at the vertex of the cone corresponding to the considered 

infinitesimal displacement of the lateral surface. An alternative expression for dW is provided 

by thermodynamics [8]: 

dAVdPVdPWd γ+−−= IIIIII        (3.57) 

where VI and VII represent the volumes of phases I and II, and А is the area of the spherical 

dividing surface. By means of geometrical considerations one obtains 

ωωω dadArdrdVdrdrdVd
r

a

a

r

22
II

2
I

2

1

;; === ∫∫     (3.58) 

Setting equal the two expressions for dW, Eqs. (3.55) and (3.57), and using Eqs. (3.46) and 

(3.58), one deduces [8] 

( )∫ −=
2

1

22
r

r
T drrPPaγ         (3.59) 

Finally, by comparing Eqs. (3.50) and (3.59) we obtain the sought for second equation 

connecting the mechanical and thermodynamical parameters: 

a
M

−= σγ           (3.60) 

Equations (3.54) and (3.60) imply the following relationship between В and М: 

B = 2M          (3.61) 

Generalized versions of Eqs. (3.54) and (3.61) for an arbitrarily curved interface are derived 

below, see Eqs. (4.79) and (4.81). 

Equation (3.54) shows that for a curved interface there is a difference between the mechanical 

and thermodynamical surface tension. This difference is zero only if the dividing surface is 

defined as surface of tensions, for which В = 0 by definition, cf. Eq. (3.25). However, from a 

physical viewpoint the surface of tension not always provides an adequate description of the 

real phase boundary or membrane. To demonstrate the latter fact we will use the equation [31] 
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which follows from Eqs. (3.54) and (3.42). For interfaces of low interfacial tension, σv
 → 0, 

e.g. microemulsions or lipid membranes, Eq. (3.62) gives δ → ∞, that is the surface of tension 

is situated far away from the real boundary between the two phases; see also Ref. [17].  

 Micromechanical expressions for σ, γ and B. The functions РN(r) and РТ(r) provide a 

micromechanical description of the stresses acting in the transitional zone between the two 

neighboring phases [5]. Such a description takes an intermediate position between the 

macroscopic description in terms of quantities like σ, γ and B, and the microscopic description 

in terms of the correlation functions of the statistical mechanics, see e.g. Refs. [39-42]. 

Convenient for applications are expressions which represent the macroscopic parameters as 

integrals of the function  

( ) ( ) ( ) ,rPrPrP TN −=∆         (3.63) 

∆P(r) characterizes the anisotropy of the pressure tensor P in a vicinity of the phase boundary, 

see Eqs. (1.8) and (1.12), as well as Figs. 1.2 and 1.3. For a spherical interface Buff [5] has 

derived the expression 

( ) dr
a
rrP

s

r

r
s 2

22

1

∫ ∆=γ ,         (3.64) 

which is valid only for the surface of tension. Below we describe the derivation of other 

micromechanical expressions obtained in Ref. [31], which are valid for an arbitrary choice of 

the spherical dividing surface. 

Equation (3.51) can be represented in the form 

P
rrd

Pd N ∆=
2           (3.65) 

The integration of Eq. (3.65), along with Eq. (3.53), yields 
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∫ ∆=
2

1

r

r

dr
r
aPσ          (3.66) 

The latter equation specifies that the analogous expression, derived by Goodrich [43], refers to 

the mechanical surface tension, σ, rather than to the thermodynamical one, γ. Further, from 

Eqs. (3.46) and (3.59) we obtain 
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On the other hand, the integration of Eq. (3.51) yields 
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With the help of Eqs. (3.53), (3.66) and (3.68) one can eliminate РI and РII from Eq. (3.67) 

[31]: 
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In accordance with Eq. (3.24) we differentiate Eq. (3.69) to derive a micromechanical 

expression for the interfacial bending moment В [31]: 
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The same expression for В can be obtained by substitution of the expressions for σ and γ , 

Eqs. (3.66) and (3.69), into Eq. (3.54). Moreover, the differentiation of Eq. (3.70), in 

accordance with Eq. (3.33), leads to Eq. (3.69). The latter facts demonstrate that the theory is 

selfconsistent. 

Equations (3.66), (3.69) and (3.70), which are valid for an arbitrary choice of the spherical 

dividing surface, have been used in Refs. [44, 45] to calculate the contribution of the van der 

Waals forces to the interfacial bending moment B.  
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3.3. RELATIONS WITH THE MOLECULAR THEORY AND THE EXPERIMENT 

3.3.1. CONTRIBUTIONS DUE TO VARIOUS KINDS OF INTERACTIONS 

A typical example for an electrically charged fluid interface is shown in Fig. 3.4: the surface 

charge is due to the presence of an adsorption layer of ionic surfactant. Upon bending of the 

interface (decrease of the radius a of the equimolecular dividing surface) the distance between 

the charges of the surface-active ions increases. This is energetically favorable owing to the 

presence of repulsive forces between ions of the same electric charge. As a result, a surface 

bending moment appears, which tends to bend the interface around the non-aqueous phase. 

In reality, not only the electrostatic interactions, but also other type of forces contribute to the 

interfacial bending and torsion moments; such are the van der Waals forces and the steric 

interactions between the hydrophilic headgroups and the hydrophobic tails of the surfactant 

molecules (Fig. 3.4). From Eq. (3.16) it follows 
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=     (3.71) 

Insofar as the van der Waals, the electrostatic, and the steric interactions can be considered to 

be independent, they give additive contributions to the surface density of the internal energy us. 

Then, from Eq. (3.71) it follows that these interactions give also additive contributions to the 

interfacial bending and torsion moments, 

stelvwstelvw BBBB Θ+Θ+Θ=Θ++= ,      (3.72) 

Here and hereafter the superscripts “vw”, “el” and “st” denote terms related to the 

corresponding interactions. In view of Eqs. (3.9) and (3.72) B0, kc and ck  can be expressed in 

the form 

st
c

el
c

vw
cc

st
c

el
c

vw
cc

stelvw kkkkkkkkBBBB ++=++=++= ,,0000  (3.73) 

On the other hand, having in mind Eq. (3.10), one sees that the spontaneous curvature, 

)(4
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H
++

++
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is not additive with respect to contributions from the various interactions; instead, H0 

represents a ratio of additive quantities.  

In Ref. [45] an expression for the van der Waals contribution, vwB0 , to the bending moment of 

the boundary between two fluid phases has been derived:  
2/1
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2
H ραρραραπ +−=A       (3.76) 

Here γ0 is the interfacial tension of the planar boundary between the two pure fluids (without 

surfactants) AH is the Hamaker constant, ρ1 and ρ2 are the number densities of the two 

neighboring phases, αik are the constants in the van der Waals potential: uik = −αik /r6;  the 

subscripts "1" and "2" refer to the phase inside and outside the fluid particle, respectively. In 

general, vwB0  tends to bend around the phase, which has a larger Hamaker constant [45]. 

Equation (3.75) has been derived by means of Eq. (3.70) and an appropriate model expression 

for the anisotropy of the pressure tensor, ∆P. For an oil-water interface Eq. (3.75) predicts vwB0  

≈ 5 × 10−11 N. Theoretical expressions for vw
ck  and vw

ck  are not available in the literature. 

The contribution of the steric interaction can be related to the size and shape of the tails and 

headgroups of the surfactant molecules [46-53]. The following expression was proposed [52] 

for such amphiphiles as the n-alkyl-poly(glycol-ethers), (C2H4)n(OCH2CH2)mOH: 
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st
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bkTvk    (3.77) 

where ~ ( ) / ( )ε = − +n m n m  characterizes the asymmetry of the amphiphile, v is the volume of 

an amphiphile molecule, aM is the interfacial area per molecule, k is the Boltzmann constant, b 

is a molecular length-scale in the used self-consistent field model [52]. 
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Fig. 3.4. Sketch of a “molecular condenser” of thickness d, which is formed (a) from adsorbed 
surfactant ions and their counterions and (b) from adsorbed zwitterionic surfactant. The 
dividing surface (of radius a) is chosen to be the boundary between the aqueous and the 
nonaqueous phase; l1 and l2 are the distances from the "charged" surfaces to the dividing 
surface. 

 

Expressions for the electrostatic components of the bending moment, elB0 , and the curvature 

elastic moduli, el
ck and el

ck , have been also derived. For example, one can relate elB0 , el
ck and 

el
ck  to the surface Volta potential, ∆V, which is a directly measurable parameter [54]: 
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Here ε is the dielectric constant, d is the distance between the positive and negative charges; 

the other notation is explained in Fig. 3.4. In Eqs. (3.78) − (3.80) ∆V must be substituted in 
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CGSE-units, i.e. the value of ∆V in volts must be divided by 300. Note that ∆V expresses the 

change of the surface potential due to the presence of an adsorption monolayer. ∆V can be 

measured by means of the methods of the radio-active electrode or the vibrating electrode [55], 

which give the change in the electric potential across the interface.  

Equations (3.78) − (3.80) could be used when the model of the “molecular condenser” is 

applicable, viz.: (i) when there is an adsorption layer of zwitterions or dipoles, such as non-

ionic and zwitterionic surfactants or lipids, at the interface; (ii) when the electrolyte 

concentration is high enough and the counterions are located in a close vicinity of the charged 

interface to form a "molecular capacitor"; (iii) when the surface potential is low: then the 

Poisson-Boltzmann equation can be linearized and the diffuse layer behaves as a molecular 

capacitor of thickness equal to the Debye screening length [56]. For example, taking 

experimental value of the Volta potential for zwitterionic lipids [57], ∆V = 350 mV, and 

assuming ε = 78.2, d = 5 Å, l1/d << 1, from Eqs. (3.78) − (3.80) one calculates elB0  = 

4.2 × 10−11 N, el
ck  = 1.4 × 10−20 J and el

ck  = −0.7 × 10−20 J.  

Since, elB0 , el
ck and el

ck  are proportional to (∆V)2 their sign does not depend on the sign of the 

surface potential ∆V. For oil-water interface elB0  and vwB0  have the same sign: both of them 

tend to bend the interface around the oil phase. In contrast, for air-water interface elB0  and vwB0  

have the opposite signs: elB0  bends around the gas phase, while vwB0  bends around the water 

phase (the phase of higher Hamaker constant). 

Equations (3.78) − (3.80) show also that elB0 , el
ck and el

ck  depend on the choice of the Gibbs 

dividing surface through the distances l1 and l2. Moreover, if  d ≡ l2 − l1 > 0, then el
ck  is 

positive, whereas el
ck  is negative and el

ck  = − el
ck /2. It is interesting to note that the same 

relationship, el
ck  = − el

ck /2, has been obtained by Ennis [51] in the framework of a quite 

different model taking into account the steric interactions. 

The surface charge density σs, i.e. the electric charge Q per unit area of the “plate” of the 

molecular condenser (Fig. 3.4), is simply related to ∆V: 
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Then a substitution of ∆V from (3.81) into Eqs. (3.78) − (3.80), in view of the identity d ≡ 

l2 − l1, leads to 
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As mentioned in Chapter 1, see Fig. 1.4, the double electric layer consists of a Stern layer and 

a diffuse layer, composed, respectively, of bound and free counterions. Correspondingly, the 

bending moment and the curvature elastic moduli are composed of contributions from these 

two layers [31,58]: 

elB0  = StnB0  + difB0 ,      el
ck  = Stn

ck  + dif
ck ,          el

ck  = Stn
ck  + dif

ck   (3.84) 

If the Stern layer is situated at a distance l2 from the dividing surface, then it can be proven 

[31] that StnB0 , Stn
ck  and Stn

ck  can be expressed by analogues of Eqs. (3.82) and (3.83):  
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where, as before, l1 is the distance between the surface charges and the dividing surface, see 

Fig. 3.4a.  

In the case of low surface electric potential, the Poisson-Boltzmann equation, describing the 

diffuse electric double layer (see Chapter 1) can be linearized. In such a case it turns out that 

the counterions can be treated as being situated at a distance l2 + κ−1 from the dividing surface, 

where κ−1 is the Debye length, see Eq. (1.56) and (1.64); the derived expressions for elB0 , 

el
ck and el

ck  in this case are [31] 



Chapter 3 

 

128

[ ]2
1

21
2

2
0 )(2 llB s
el −+= −κσ

ε
π        (3.87) 

( ) el
c

el
cs

el
c kkllk

2
1,

3
4 3

1
31

2
2 −=



 −+= −κσ

ε
π     (3.88) 

The latter equations look like Eqs. (3.82)−(3.83) in which l2 is formally replaced by (l2 + κ−1). 

In accordance with Eq. (3.84) the respective contributions of the diffuse part of the electric 

double layer can be obtained by subtraction of Eqs. (3.85)−(3.86) from their counterparts 

among Eqs. (3.87)−(3.88): 
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In the case of moderate and high surface electric potentials the expressions related to the Stern 

layer, Eqs. (3.85)−(3.86) can be applied again, whereas Eqs. (3.89)−(3.90) are no longer valid. 

In this more complicated case expressions for difB0 , dif
ck  and dif

ck  have been derived by means 

of a thermodynamic approach [31], and independently in Ref. [59] by using a hydrostatic 

approach based on Eqs. (4.146), (4.149) and (4.150) – see below. The results are [31,58] 
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Here c0 is the bulk concentration of a Z:Z electrolyte; x and y are quantities related to the 

surface potential as follows: 

2
2
2
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π      (3.94) 
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In the latter expression the signs “+” and “−” refer to an electric double layer, respectively, 

inside an aqueous drop and outside a non-aqueous drop (bubble). Setting l2 = 0, that is 

neglecting the distance between the equimolecular dividing surface and the surface of location 

of the bound counterions, Eqs. (3.91)−(3.93) are reduced to the expressions derived by 

Lekkerkerker [59].  

Numerical calculations based on Eqs. (3.84)−(3.86) and (3.91)−(3.93) show that elB0  is 

dominated by StnB0 , i.e. by the contribution of the Stern layer, whereas el
ck and el

ck  contain a 

considerable contribution from the diffuse layer, that is from dif
ck  and dif

ck . The magnitude of 

elB0 , el
ck and el

ck  is higher for lower electrolyte concentrations. For example, for c0 = 10−5 M 

one computes elB0 ≈ 5 × 10−11 N, el
ck ≈ 1 × 10−19 J and el

ck ≈ −3 × 10−19 J [58]. 

 

3.3.2. BENDING MOMENT EFFECTS ON THE INTERACTION BETWEEN DROPS IN EMULSIONS 

 Interaction between deforming emulsion drops. The collisions between the drops in an 

emulsion are accompanied with a flattening in the zone of contact between such two drops, see 

Fig. 3.5. The conditions for the formation of a flat film between two similar droplets have been 

studied by Danov et. al. [60] and Denkov et al. [61]. A modeling of the shape of a deformed 

drop with portions of a sphere and a plane (Fig. 3.5) proved to be a very good approximation 

[62]. Despite the fact that area of the formed flat film is relatively small, its appearance leads to 

a strong enhancement (with dozens of kT) of the energy of interaction between the two drops. 

 

 
 
 
 
 
 
 
 

Fig. 3.5. Scheme of two emulsion drops deformed upon collision; the magnitude of the radius, r, of the 
formed flat film and its thickness, h, are exaggerated. 
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We have in mind interactions due to the various components of the disjoining pressure: 

electrostatic, van der Waals, steric, depletion, oscillatory-structural, etc., see Chapter 5 for 

details. It has been taken into account [61,63] that if an initially spherical droplet deforms at 

fixed volume, its surface area increases, which gives rise to an effective interdroplet repulsion. 

Moreover, work of flexural (bending) deformation is conducted when the initially spherical 

interface in the zone of contact is converted into the planar surface of the film (Fig. 3.5). To 

estimate this work one can use Eq. (3.7); viz. by expanding Eq. (3.7) in series, keeping linear 

terms with respect to the curvature one obtains [63] 

)2(22)( 0
2
0

22 ⋅⋅⋅++=≡ HBHkrwrHW cff ππ ,  2)/( ar << 1.  (3.95) 

cf. Eq. (3.10); here r is the radius of the flat film; the multiplier 2 accounts for the fact that the 

film has two surfaces. The increment of fW , which is due to the formation of a flat film, is 

⋅⋅⋅+=+−=−≡∆ aBrHOHBrHWWW fff /2)(2)()0( 0
22

0
2 ππ   (3.96) 

The bending moment can be estimated as follows: N105|||| 11
000

−×≈+≈ elvw BBB , see the 

numerical values given above in this chapter. Using the latter value together with 
21101.4 −×=kT  J (room temperature) and a tentative value 20/ar ≈ , from Eq. (3.96) we 

estimate 

( ) kTaW f ××≈∆ −16 cm102        (3.97) 

Consequently, for emulsion drops of radii cm10cm10 46 −− << a  the contribution of the 

interfacial bending moment to the energy of interaction between two drops will be 

kTWkT f 2002 <∆< . In other words, we arrive at the conclusion that the interfacial bending 

moment B0 could be important for the interactions between sub-µm, and even µm-sized, drops 

[63]. This conclusion is intriguing insofar as it is usually believed that the bending energy is 

essential only for objects of very high interfacial curvature, like the nuclei of a new fluid phase 

and the droplets in microemulsions. 

It should be also noted that 00 >B  for emulsions type "oil-in-water", whereas 00 <B  for 

emulsions type "water-in-oil". Consequently, in view of Eq. (3.96) the energy of interfacial 
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bending deformation contributes to a repulsion between oil drops in water (∆ fW > 0), but to an 

attraction between water drops in oil (∆ fW < 0) [63]. For example, Koper et al. [64] have 

observed formation of doublets (with energy of bonding ≈ kT10 ) from aqueous microemulsion 

drops dispersed in oil; this phenomenon could be attributed, at least in part, to the effect of 

∆ fW < 0. 

 Interactions between drops in double emulsions. As mentioned above, the effect of the 

interfacial bending moment B0 can be important for emulsion systems of low interfacial 

tension. It has been demonstrated by Binks [65], that after intensive stirring in such systems 

one could observe a simultaneous formation of emulsion and microemulsion drops, see 

Fig. 3.6. Having in mind the above discussion, one expects that ∆ fW > 0 helps for stabilization 

of the formed emulsion. Indeed, for ∆ fW > 0 the bending moment opposes the flattening of the 

drops in the contact zone thus decreasing the probability for formation (and consecutive 

rupturing) of a thin liquid film between two colliding droplets; in other words, the bending 

moment counteracts the coalescence of emulsion drops. It is reasonable to assume that the 

condition ∆ fW > 0 is fulfilled for the microemulsion drops, which do not increase their size 

with time, despite the intensive Brownian collisions between them. For the system depicted in 

Fig. 3.6a the microemulsion drops are in the continuous phase, i.e. the emulsion and 

microemulsion  drops  have  the same sign of the curvature.  Therefore,  one could expect  that 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.6. Sketch of an emulsion drop coexisting with smaller microemulsion drops (a) in the continuous 

and (b) in the disperse phase. The running unit normal to the interface, n, is directed from 
phase 1 toward phase 2. 
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∆ fW > 0 for the emulsion drops, as well. On the contrary, for the system depicted in Fig. 3.6b, 

that is the microemulsion drops are in the disperse phase, the emulsion and microemulsion 

drops have the opposite sign of the curvature, which is determined by the direction of the unit 

normal n, see Eq. (3.21). Hence, if ∆ fW > 0 for the micro-emulsion drops, then ∆ fW < 0 for 

the emulsion drops. Consequently, for the system in Fig. 3.6b the bending moment contributes 

to an attraction between the emulsion drops and favors their coalescence. 

According to Davies and Riedal [66] both types of emulsions, those from Fig. 3.6a,b and 3.6b, 

are formed upon stirring. That type of emulsion survives, for which the coalescence is slower. 

If the effect of the interfacial bending moment dominates the interactions between the emulsion 

droplets, one can expect that the emulsion in Fig. 3.6a will survive [63]. In fact, this is 

observed experimentally; viz. the emulsion which contains microemulsion drops in the 

continuous phase is more stable [65].  

It is worthwhile noting that in emulsions the effect of the interfacial bending moment acts 

simultaneously with other type of interactions between the droplets, such as the surface forces 

of various origin: van der Waals interactions, electrostatic (double-layer), steric, depletion, 

oscillatory-structural, hydration and other forces. For that reason, the analysis of the stability of 

an emulsion needs a careful estimate of the relative contributions of various factors to the drop-

drop interaction energy; see Ref. [67] for details. 

It should be also noted that the bending effects may influence the stability of an emulsion when 

the rupturing of thin emulsion films happens through nucleation of pores, see e.g. Ref. [68]. 

 

3.4. SUMMARY 

An interface (or membrane) possesses 4 modes of deformation: dilatation, shearing, bending 

and torsion (Fig. 3.1). The first couple of modes represent two-dimensional analogues of 

respective deformations in the bulk phases. The bending and torsion modes are related to 

variations in the two principle curvatures of the interface, that is to the presence of two 

additional degrees of freedom. From a thermodynamic viewpoint, the curvature effects can be 

accounted for as contributions of the work of interfacial bending and torsion to the total energy 
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of the system; the respective coefficients are the interfacial (surface) bending and torsion 

moments, B and Θ, see Eq. (3.1). The most popular model of the interfacial curvature effects 

provides an expression for the mechanical work of flexural deformation, Eq. (3.7), which 

involves 3 parameters: bending and torsion elastic moduli, kc and ck , and spontaneous 

curvature, H0.  

First we have considered the simpler case of spherical geometry. The dependence of the 

bending moment B on the choice of the dividing surface at fixed physical state of the system is 

investigated, see Eq. (3.32), (3.33) and Fig. 3.2. The connection between the quantities bending 

moment, Tolman length and spontaneous curvature has been demonstrated, see Eqs. (3.10) and 

(3.39). Micromechanical expressions, Eqs. (3.69) and (3.70), allow one to calculate the surface 

tension and the bending moment if an expression for the pressure tensor is available. 

From the viewpoint of the microscopic theory, various intermolecular forces may contribute to 

the interfacial moments B, Θ, and to the curvature elastic moduli, kc and ck , see Eqs. (3.72) 

and (3.73). Such are the van der Waals forces, Eq. (3.75), the steric interactions, Eq. (3.77) and 

the electrostatic interactions, Eqs. (3.78)−(3.80) and (3.82)−(3.93). 

The interfacial bending moment may give an essential contribution to the interaction between 

deformable droplets in emulsions, see Eq. (3.96). In general, the curvature effects are expected 

to be significant for interfaces of low tension and high curvature. An example are the 

biomembranes, which usually have low tension. The present chapter is an introduction to the 

next Chapter 4, in which the general theory of curved interfaces and biomembranes is 

considered. 
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