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Abstract

The phase shift of electron waves due to charging of thin films is investigated using the contrast transfer properties of
the microscope. We take two photos, one with film at the back focal plane and the other one without film. The phase
difference between the contrast transfer functions of the two photos is evaluated using our theoretical predictions. The
theoretical model is based on an analytical solution of the Laplace equation with appropriate boundary conditions.

From the resulting electrostatic potential function the phase shift of electron waves is derived in a weak lens
approximation. With this method, information about the radius of the electron beam and the magnitude of the
electrostatic potential at the thin film is obtained. The excellent agreement between the theoretical model and

experimental results is observed. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The charging effect due to electron beam
irradiation is a well known and, in most cases,
an undesirable effect. The phenomenon has been
studied for a long time now but mainly in relation
to scanning electron microscopy (SEM) (see the
references in Ref. [1]). The conditions in the

transmission electron microscope (TEM) are
somewhat different in that the specimens are very
thin films and the electron energies used are much
higher. Detailed description of the process and the
resulting macroscopic effects in TEM conditions
has been given by Cazeaux [2].
There are few experimental works utilizing

electron holography in which the charging of
dielectric spheres as well as electric potentials and
magnetic fields in solids have been investigated
[3–6]. Another application, where electron-induced
charging is employed, is the electrostatic phase
plate proposed by Unwin [7] which uses the
potential produced in the central portion of a thin
thread placed on a microscope aperture.
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Theoretical modeling of the phase shift of
electron waves is based on the numerical solution
of the Laplace equation for the electric potential
with different geometries of the conducting walls
and different boundary conditions [1,8]. Krakow
and Siegel [9] investigated, both analytically and
experimentally, the transfer characteristics of an
electrostatic phase plate similar to one described
by Unwin [7] as functions of the magnitude of
charge and defocus. Such a model was used in Ref.
[10] to describe the electric field induced in
insulators by electron bombardment. From the
solution of the Laplace equation, Matsumoto and
Tonomura [11] proved that the phase shift, which
is proportional to the potential integrated along
the optical axis, is constant inside the ring of a
Boersch-type phase plate. The problem of the
determination of the electron wave phase shift
becomes more important in thin-film phase plates
and thin-foil lens techniques when the charging
effect takes place.
In this paper we present a new technique of

measuring electron wave phase shift similar to the
one proposed by Hoppe (see p. 612 in Ref. [12]).
Using the fact that electron waves traveling
through an electrostatic field experience a phase
shift, our method exploits the influence on the
phase contrast transfer properties of the transmis-
sion electron microscope. Placing a charged film at
the back focal plane of the objective lens results in
a change of the phase contrast transfer function.
Taking two photos of an amorphous weak-phase
object with and without film at the back focal
plane, the phase shift by charging is extracted
(Section 4.1). In Ref. [12, p. 611] the phase shift
measurement in the back focal plane of the
objective lens is called ‘‘interferometry with the
electron microscope’’. Because in our case the
difference between two measurements (photos) is
used we will refer to this technique as differential
electron interferometry (DEI).
In the electron holography [3–6] the phase shift

of the electron waves and the electrostatic poten-
tial are measured inside the field of the main
electron beam. The DEI measures the potential
not only inside the irradiated by the main beam
area but also outside where the low-intensity
scattered electrons act as a non-influencing probe

beam. The sensitivity is very high allowing for
measurements of potentials in the order of
hundredths of volt. However, some limitations
exist: the specimen should be in the form of thin
uniform film with constant thickness and isotropic
electric properties; the condition investigated is at
electrostatic equilibrium and the currents flowing
across the film could not be observed.
We propose a theory concerning the spatial

dependence of the electrostatic potential. The
geometry of the used setup is separated into two
parts with different boundary conditions. For each
part the Laplace problem for the electrostatic
potential function is solved analytically. From the
electrostatic potential function the phase shift of
electron waves is derived in a weak lens approx-
imation. This theoretical estimation is then used to
fit the results from the DEI measurements. In this
way, the parameters characterizing the dependence
of the electrostatic potential on the surface of the
film are calculated.

2. Theory

We will consider the spatial dependence of the
electrostatic potential function, V r; zð Þ, in the case
of axial symmetry, where the radial and vertical
coordinates are r and z, respectively (see Fig. 1).
The vertical axis of the cylindrical coordinate
system coincides with the axis of symmetry and the
film is at the plane z=0. The film separates the
areas of calculations into two parts. We will call
the region above the aperture ‘‘area I’’ and the
region below the film in the channel of the aperture
‘‘area II’’.
In Ref. [10] in the case of uniform positive

charges inside a thin cylinder (polycrystalline or
amorphous specimens), the electrostatic potential
V0 rð Þ is given by the relationship (see Eqs. (A.4)
and (A.5) in Ref. [10]):

V0 rð Þ ¼ Q

4peh
1þ 2 ln r0

a

� �
� r2

a2

� �
for 04r4a;

ð1Þ

V0ðrÞ ¼
Q

2peh
ln

r0
r

� �
for a4r4r0: ð2Þ
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where Q is the total charge trapped in the
specimen, h is the thickness of the plate, e is the
dielectric constant, a is the radius of the irradiated
area, and r0 is the radius at which the potential
becomes zero (see Fig. 1a). Area II is assumed to
be an infinite cylinder with radius rc. At the
boundary of area II, r ¼ rc and z40, as well as at
the boundary of the area I, r5r0 and z ¼ 0, the
potential function V0 is zero. Generally, r0 should
be equal to rc, but our experimental results show
that r05rc (see Section 4). From a physical
viewpoint the vanishing of the electric potential
at the distances r05rc may be attributed to the
following two basic hypotheses:

(i) Secondary electrons coming from the sur-
roundings neutralize the charges on the film. This
effect has been observed by Unwin [7] in his
electrostatic phase plate experiments.
(ii) The charging occurs mainly at the surface

of the film where some contamination could
reside. In this case the film is assumed to be
conducting and the contamination layer acts as an
insulating covering. The second hypothesis
seems to be more realistic for our experimental
investigations.

In the case of axial symmetry the electro-
static potential function in the working region

satisfies the following two-dimensional Laplace
equation [1,9,11]:

1

r

@

@r
r
@V

@r

� �
þ @2V

@z2
¼ 0: ð3Þ

Solving Eq. (3) with the boundary conditions (1)
and (2) gives the electrostatic potential of the
whole area and the corresponding phase shift of
the electron waves can then be calculated.

2.1. Solution of the Laplace equation for
electrostatic potential

In potential theory, the method of separation of
variables is used to solve the Laplace equation in
cylindrical coordinates. The general solution of
Eq. (3) in the finite region II can be expressed in
terms of the Fourier–Bessel series (see Eq. (11) in
Ref. [1]):

V ¼ Q

4peh

X1
k¼1

AkJ0 ak
r

rc

� �
exp ak

z

rc

� �
; ð4Þ

where Jn is the Bessel function of the nth order.
The roots of the zero-order Bessel function, ak,
provide satisfaction of the boundary condition at
the aperture wall, r ¼ rc. We chose only the
solution with a positive sign in the exponent
because of the vanishing of the potential at infinity
(z ! �1). The coefficients Ak, appearing in Eq.
(4), are calculated from the boundary condition at
the film surface by means of Eqs. (1) and (2). The
exact result for them reads (see Appendix A.1) as

Ak ¼
4

a2kJ
2
1 akð Þ

2

ak

rc
a
J1 ak

a

rc

� �
� J0 ak

r0
rc

� �� �
: ð5Þ

In area I above the film, z50, the general solution
of Eq. (4) can be presented applying the Fourier–
Bessel integral transformation as

V ¼ Q

4peh

Z 1

0

~V0 sð Þexp �s
z

r0

� �

� J0 s
r

r0

� �
s ds;

ð6Þ

where ~V0 sð Þ is the inverse Fourier–Bessel trans-
form of the electrostatic potential function at the
film, given by Eqs. (1) and (2). The negative sign in
the exponent of solution (6) is used in order to
satisfy the boundary condition at infinity (z ! 1).

Fig. 1. (a) Electrostatic potential, V0ðrÞ, at the plate. (b) System
under consideration: r and z are the coordinates in the

cylindrical coordinate system, a is the radius of the electron

beam, h is the thickness of the irradiated plate.
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In Appendix A.2 this image is evaluated and the
exact formula for ~V0 sð Þ is

~V0 sð Þ ¼ 2

s2
J2 s

a

r0

� �
þ J0 s

a

r0

� �
� J0 sð Þ

� �
: ð7Þ

For small values of a, r0, r and z the numerical
computation of the integral in Eqs. (6) and (7) is
very difficult because of the slow convergence at
large values of s. That is why the calculation of the
electrostatic potential function is a difficult task.
Fortunately, in the experimental work the most
important parameter is the radial dependence of
the phase shift which is derived in the next section.

2.2. Phase shift of the electron waves

The phase shift of the electron waves, j, can be
estimated in a negligible lens approximation as [14]

j ¼ �p
1þ 2aU0
1þ aU0

1

lU0

Z 1

�1
V dzþ hV0 þ hVin

� �
;

ð8Þ
where l is the electron wavelength, U0 is the
accelerating voltage, a ¼ 0:9785�10�6 V�1, and
Vin is the internal potential which is an intrinsic
property of the specimen material. The integral in
Eq. (8) represents the influence of the electrostatic
potential in the whole working area. It can be
divided into two parts:Z 1

�1
V r; zð Þ dz ¼ �Qrc

2peh
fII þ fIð Þ; ð9Þ

where the dimensionless functions fI rð Þ and fII rð Þ
depend only on the geometry of the electrostatic
potential function in areas I and II, respectively.
Knowing the constants Ak from Eq. (5), the

exact series for the phase-shift geometrical func-
tion, fII rð Þ, is easy to derive from Eq. (4) as

fII ¼ �1
2

X1
k¼1

Ak

ak
J0 ak

r

rc

� �
: ð10Þ

In an analogous way, if the dimensionless Fourier–
Bessel image ~V0 sð Þ is calculated from Eq. (7), then
the phase-shift geometrical function fI rð Þ is calcu-
lated from the following integral:

fI ¼ � r0
2rc

Z 1

0

~V0 sð ÞJ0 s
r

r0

� �
ds: ð11Þ

For numerical computations series (10) is very
convenient but the integral (11) converges very
slowly for large values of s. From a physical
viewpoint, because of the infinity, the electrostatic
potential decreases more slowly in area I than in
the area inside the aperture, i.e. fIj j > fIIj j for each
possible value of the radius r. For that reason, we
pay special attention to find an analytical result for
fI rð Þ. Using the Weber–Schafheitlin integrals [13]
we found the result for fI rð Þ in terms of the
classical hypergeometric functions, 2F1 (see Ap-
pendix A.3).

2.3. Numerical results

To show the typical behavior of the electrostatic
potential function in the whole working region we
calculated the dimensionless potential factor [from
Eqs. (4) and (6)]:

n r; zð Þ ¼
X1
k¼1

AkJ0 ak
r

rc

� �
exp ak

z

rc

� �
for

r4rc and z40;

ð12Þ

n r; zð Þ ¼
Z 1

0

~V0 sð Þexp �s
z

r0

� �
J0 s

r

r0

� �
s ds

for z50:

ð13Þ

The geometrical parameters used for calculations
depicted in Fig. 2 were the radius of the irradiated
area, a ¼ rc=6, and the radius at which the
potential becomes zero, r0 ¼ rc=2. The two-dimen-
sional plot is given in the Cartesian coordinate
system, with the center coinciding with the center
of the film and x coordinate forward to the
aperture. It is well illustrated that the electrostatic
potential in area inside the aperture decreases
faster than in area I. As expected, at the center of
the electron beam the decay length of the
electrostatic potential for z > 0 is larger than that
for z50. For large distances from the irradiated
area the electrostatic potential is different from
zero and this fact gives an additional phase shift
coming from area I close to the aperture.
In order to demonstrate the influence of the

screening of electrostatic potential we calculated
the dimensionless phase-shift factors, fI and fII,
defined by Eqs. (10) and (11), and the total
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dimensionless phase-shift factor, ftot 
 fI þ fII, for
two values of r0. The numerical results, shown in
Figs. 3 and 4, are given for r0 ¼ rc and for
r0 ¼ rc=3, respectively. The radius of the irradiated
area, a, was kept constant, a ¼ rc=6, in both cases.
The general trend of decreasing of the absolute
value of the phase shift with distance from the
irradiated area is illustrated. Because of the faster
decay of the electrostatic potential in the area
inside the aperture channel the phase shift factor
fIIj j is always smaller than the one from the area
above the film, fIj j. The difference between them is
larger in the case r0 ¼ rc (cf. the corresponding
curves in Figs. 3 and 4). Moreover, close to the
aperture walls the total phase shift is not zero
because the electrostatic potential in area I is not
zero at r ¼ rc (see Fig. 2), and therefore it
influences the total phase shift through the integral
appearing in Eq. (11). The absolute value of the
total phase shift at r ¼ rc in the case r0 ¼ rc=3 is
smaller than that for r0 ¼ rc. For one and the same
total charge trapped in the specimen and radii of
the irradiated area, the change of the zeroing
distance of the potential at r0 influences not only
the magnitude of the phase shift but also its
dependence on the radial distance. The bell-shape
behavior of the phase-shift functions becomes more
pronounced when r05rc (see Fig. 4). Comparing

the magnitude of dimensionless phase-shift func-
tions depicted in Figs. 3 and 4, we can conclude
that the screening of the electrostatic potential
suppresses the phase shift about four times.
The total phase shift factor, ftot, is shown for the

case r0 ¼ rc in Fig. 5, and for the case r0 ¼ rc=3 in
Fig. 6. In both figures the radius of the electron
beam, a, was varied from 0:1r0 to 0:9r0. If the total
charge trapped in the specimen is constant while
increasing the irradiated area (larger values of a)
the resulting electrostatic potential functions are
more scattered. Generally, it leads to lower
absolute values of the total phase shift. In the
case r0 ¼ rc (see Fig. 5) the difference between the
curves at large radii is more pronounced than for
r0 ¼ rc=3 (Fig. 6), where for large values of r the
phase shift comes primarily from the area above
the film.

Fig. 2. Typical two-dimensional plot of the dimensionless

electrostatic potential function, nðx; zÞ, for a ¼ rc=6 and

r0 ¼ rc=2.

Fig. 3. Radial dependence of the phase-shift factors, fI, fII and

ftot, for a ¼ rc=6 and r0 ¼ rc.

Fig. 4. Phase-shift factors for areas I and II as a function of the

radial distance for a ¼ rc=6 and r0 ¼ rc=3.
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3. Experimental procedure

The film being investigated experimentally is
placed on a standard objective lens aperture (see
Fig. 1b). The aperture is positioned at the back
focal plane of the objective lens and centered so
that the strong central beam of unscattered
electrons passes through the center of the opening.
Amorphous carbon film is placed at the specimen
plane producing a uniform distribution of scat-
tered electrons. The intensity of the central beam is
several orders higher than that of the scattered
ones allowing for the assumption that charging
takes place mainly in the central area.
In the weak phase object approximation, the

phase contrast transfer of the microscope is
described by the contrast transfer function sin gðkÞ½

+jðkÞ� multiplying the Fourier transform of the
object wave. Here j(k) is the phase shift due to
charging and g(k) is the one due to defocus and
spherical aberration, given by the following
relationship [14]:

gðkÞ ¼ 2p �12lbk
2 þ 1

4l
3CSk

4
	 


; ð14Þ
where l is the wavelength, b is the defocus, CS is
the spherical aberration coefficient and k is the
modulus of the spatial frequency vector. From the
Fourier transform of an image it is possible to
extract the total phase shift as a function of k by
fitting the positions of the extrema in the transfer
function. Then, if all the parameters in Eq. (14) are
known, j(k) can be evaluated. Spatial frequency k
and radial distance r in the back focal plane are
related as

k ¼ r

lf0
; ð15Þ

where f0 is the focal length of the objective lens. An
important requirement is that the phase shift due
to charging or due to some varying properties of
the film to have axial symmetry.
The DEI has the advantage that it allows for

measurement of the potential not only inside the
illuminated area but also in the outside area where
scattered electrons pass. It is very sensitive
allowing for measurement of low surface poten-
tials. On the other hand this could cause problems
with rapidly changing or very high potentials in
the case of insulating films. The required density of
experimental points for the whole range covering
the decay of the contrast transfer function (CTF)
can be met by combining the data from several
photos taken at different defocus b.

4. Experimental results and discussion

4.1. Apparatus and procedure

Amorphous carbon film with thickness around
11 nm was used as a test sample. The film was
prepared by vacuum evaporation on freshly
cleaved mica, floated on water and transferred
on standard 50 mm molybdenum apertures. The
experiments were performed by means of a JEOL-
4010N transmission electron microscope with

Fig. 5. Total phase-shift factor for r0 ¼ rc vs. the radial

distance for different radii of the electron beam.

Fig. 6. Total phase-shift factor for r0 ¼ rc=3 vs. the radial

distance for different radii of the electron beam.
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LaB6 gun operated at 300 kV (CS=3mm). At the
specimen stage, an amorphous carbon film sample
was placed producing a uniform diffraction
pattern.
The microscope is aligned and then adjusted at

proper magnification and defocus. After inserting
the aperture with the film, a photo is taken. The
aperture is then changed to one without film and a
second photo is taken. From the second photo
defocus is measured which is subsequently used to
extract only the charging phase shift from the first
one. Work in overfocused condition [b50 in Eq.
(14)] is preferable since it helps for easier
interpretation of the data.
As examples, the CTFs of two images taken at

same defocus (�735 nm overfocus) with and with-
out film at the back focal plane are shown in
Fig. 7. The CTFs are extracted by means of
rotational averaging of the modulus of the Fourier
transforms. The corresponding phase shifts due to
the aperture foils are shown in Fig. 8.

4.2. Results and discussion

The charging phase shift from two experiments
with the same carbon film placed on two apertures
was fitted with the proposed theory. The experi-
mental results and the best theoretical fits from
Eqs. (10) and (11) are shown in Fig. 9. Very good

agreement between the theoretical model and the
experimentally measured phase shift is observed.
Three parameters are used for the fit, i.e. a, r0 and
V0. Note that the zero of the phase shift is chosen
to be in the center of the film.
Both experiments were performed at approxi-

mately identical microscope conditions. The error
between the calculated radii of the charged area a
is 
 1.75% and between the calculated potential in
the center of the film V0ð0Þ is 
 2.15%. This shows
a very good reproducibility. Some differences
could arise due to the deviations in the measured

Fig. 7. CTFs of two images taken at same defocus with and

without phase shifting film in the back focal plane. The curves

are displaced vertically for better viewing.

Fig. 8. Illustration of the extraction of the phase shift due to

charging. From the total phase shift the one due to CTF is

subtracted thus leaving only the phase shift due to charging.

Fig. 9. Experimental results for the phase shifts due to charging

(symbols) and best theoretical fits (lines) by the use of Eqs. (10)

and (11). The results are from two experiments with the same

carbon film placed on two separate apertures.
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aperture inner diameter. The amorphous carbon is
known to be a good conductor making it a
preferable choice for specimen support in TEM.
The calculated potential of 0.28V seems to be a
reasonable value for conducting films. Surpris-
ingly, the electrostatic potential outside the irra-
diated area decreases very fast. The radius r0 at
which the potential becomes zero is 1.20 times the
radius of the irradiated area a in the first
experiment and 1.02 in the second. This fact
supports our two hypotheses given in Section 2.
The real situation may also be a combination of
the above-mentioned effects (i) and (ii). One could
also think about many other factors such as:
beam-induced heating; beam-induced conductiv-
ity; deposit or desorption of matter; surface
migration, etc. [15]. All of these make the
quantitative description of the situation a more
difficult task.

5. Conclusion

The Laplace problem is solved for the case of
cylindrical symmetry of the electrostatic potential
function. Two sets of boundary conditions are
used and for each of them an analytical solution is
obtained. The electron wave phase shift is calcu-
lated in a weak lens approximation. The experi-
mental results show excellent agreement with the
proposed theory. The following conclusions can be
drawn:
(i) The investigated amorphous carbon film

(thickness 11 nm) is charging positively when
irradiated by 300 kV electrons. The fit with the
theoretical model gives a value of 0.28V for the
potential in the center of the film. This confirms
that the number of emitted secondary electrons is
greater than the number of captured incident
electrons.
(ii) The phase of the electron wave at the back

focal plane is very sensitive to the electrostatic
charging of the material film placed there. The
phase disturbance of about 5p (see Fig. 9 radial
distance from 0 to 12 mm) is caused by electrostatic
charging of the film with potential in the center of
only 0.28V. The main part of the phase shift is
attributed to the spatial distribution of the

electrostatic potential around the film. The theory
and experimental procedure described in this
paper can be used for the investigation of the
charging of thin solid films made from different
materials. In this way the best phase-plate material
to be used in the complex electron microscopy [16]
can be found. The solution of the Laplace
equation in the infinite area (Fig. 1b area I) can
be readily applied for the calculation of the
electrostatic potential distribution around the
specimen (in the form of thin film) in the
transmission electron microscopy.
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Appendix A

A.1. Calculation of the constants appearing in
Eq. (4)

The general solution Eq. (4) has to obey the
boundary condition Eqs. (1) and (2) at z ¼ 0.
Therefore, we have

V0 rð Þ ¼ Q

4ped

X1
k¼1

AkJ0 ak
r

rc

� �
: ðA:1Þ

The Bessel functions in Eq. (A.1) are orthogonal in
the interval 0; rc½ � and for that reason the
constants, Ak, are determined as (see Ref. [13])

Ak ¼
4ped
Qr2c

2

J21 akð Þ

Z r0

0

V0 rð ÞJ0 ak
r

rc

� �
r dr: ðA:2Þ

After partial integration of Eq. (A.2) we obtain

Ak ¼ � 4ped
Qrcak

2

J21 akð Þ

Z r0

0

dV0
dr

J1 ak
r

rc

� �
r dr: ðA:3Þ

If the integral in Eq. (A.3) is separated into two
parts, corresponding to the both intervals of the
definition for V0, and Eqs. (1) and (2) are
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substituted into Eq. (A.3), the final result reads as

Ak ¼
4

rcakJ21 akð Þ

Z a

0

r2

a2
J1 ak

r

rc

� �
dr

�

þ
Z r0

a

J1 ak
r

rc

� �
dr

�
: ðA:4Þ

The two integrals in Eq. (A.4) are table integrals
and they can be found in Ref. [13]. Hence the
relationship for Ak transforms to

Ak ¼
4

a2kJ
2
1 akð Þ J2 ak

a

rc

� �
þJ0 ak

a

rc

� �
�J0 ak

r0
rc

� �� �
:

ðA:5Þ
The simple sum of J0 and J2 in Eq. (A.5) reduces it
to Eq. (5).

A.2. Calculation of the Fourier–Bessel image
appearing in Eq. (6)

If we substitute the boundary condition at z ¼ 0
into the general solution Eq. (6), it follows that

V0 rð Þ ¼ Q

4ped

Z 1

0

~V0 sð ÞJ0 s
r

r0

� �
s ds: ðA:6Þ

Using the inverse Fourier–Bessel transformation
of Eq. (A.6), we derive (see Ref. [13])

~V0 sð Þ ¼ 4ped
Qr20

Z 1

0

V0 rð ÞJ0 s
r

r0

� �
r dr: ðA:7Þ

After a partial integration of Eq. (A.7) the integral
is simplified to

~V0 sð Þ ¼ �4ped
Qsr0

Z 1

0

dV0
dr

J1 s
r

r0

� �
r dr: ðA:8Þ

Following an analogous procedure used in the
derivation of Eqs. (A.3) and (A.4), the integral in
Eq. (A.8) is separated into two parts and from
Eqs. (1) and (2) it can be derived that

V0 sð Þ ¼ 2
sr0

Z a

0

r2

a2
J1 s

r

r0

� �
dr

�

þ
Z r0

a

J1 s
r

r0

� �
dr

�
: ðA:9Þ

The two integrals in Eq. (A.9) are table integrals
and they can be found in Ref. [13]. Therefore, the

Fourier–Bessel image has the following exact
formula:

V0 sð Þ ¼ 2

s2
r2

a2
J2 s

r

r0

� �����
a

0

�J0 s
r

r0

� �����
r0

a

� �
; ðA:10Þ

which proves the validity of Eq. (7).

A.3. Calculation of the phase-shift geometrical
function, fI rð Þ

If the formula for the dimensionless Fourier–
Bessel image (7) is substituted into the result for
the phase-shift geometrical function (11), one can
obtain

fI ¼� r0
rc

Z 1

0

J2 s
a

r0

� �
þ J0 s

a

r0

� �
� J0 sð Þ

� �

� J0 s
r

r0

� �
ds

s2
: ðA:11Þ

By using the Weber–Schafheitlin formulas [13] the
integral appearing in Eq. (A.11) can be calculated.
The result is separated for the following three
regions:
(i) in the region of the irradiated area, 04r4a:

fI ¼� a

3rc
F �3

2
;
1

2
; 1;

r2

a2

� �

þ a

rc
F �1

2
;�1
2
; 1;

r2

a2

� �

� r0
rc

F �1
2
;�1
2
; 1;

r2

r20

� �
; ðA:12Þ

(ii) in the area a4r4r0:

fI ¼� a2

8rrc
F
1

2
;
1

2
; 3;

a2

r2

� �

þ r

rc
F �1

2
;�1
2
; 1;

a2

r2

� �

� r0
rc

F �1
2
;�1
2
; 1;

r2

r20

� �
; ðA:13Þ
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(iii) in the area r04r:

fI ¼� a2

8rrc
F
1

2
;
1

2
; 3;

a2

r2

� �

þ r

rc
F �1

2
;�1
2
; 1;

a2

r2

� �

� r

rc
F �1

2
;�1
2
; 1;

r20
r2

� �
; ðA:14Þ

where we denote by F the classical hypergeometric
function 2F1. The convergence of the series
representing the corresponding hypergeometric
functions is very fast.
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