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CHAPTER  1

PLANAR FLUID INTERFACES

An interface or membrane is one of the main “actors” in the process of particle-interface and

particle-particle interaction at a fluid phase boundary. The latter process is influenced by

mechanical properties, such as the interfacial (membrane) tension and the surface (Gibbs)

elasticity. For interfaces and membranes of low tension and high curvature the interfacial

bending moment and the curvature elastic moduli can also become important. As a rule, there

are surfactant adsorption layers at fluid interfaces and very frequently the interfaces bear some

electric charge. For these reasons in the present chapter we pay a special attention to surfactant

adsorption and to electrically charged interfaces.

Our purpose is to introduce the basic quantities and relationships in mechanics,

thermodynamics and kinetics of fluid interfaces and surfactant adsorption, which will be

further currently used throughout the book. Definitions of surface tension, interfacial bending

moment, adsorptions of the species, surface of tension and equimolecular dividing surface,

surface elasticity and adsorption relaxation time are given. The most important equations

relating these quantities are derived, their physical meaning is interpreted, and appropriate

references are provided. In addition to known facts and concepts, the chapter presents also

some recent results on thermodynamics and kinetics of adsorption of ionic surfactants. Four

tables summarize theoretical expressions, which are related to various adsorption isotherms and

types of electrolyte in the solution. We hope this introductory chapter will be useful for both

researchers and students, who approach for a first time the field of interfacial science, as well

as for experts and lecturers who could find here a somewhat different viewpoint and new

information about the factors and processes in this field and their interconnection.
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1.1. MECHANICAL PROPERTIES OF PLANAR FLUID INTERFACES

1.1.1. THE BAKKER EQUATION FOR SURFACE TENSION

The balance of the linear momentum in fluid dynamics relates the local acceleration in the fluid

to the divergence of the pressure tensor, P, see e.g. Ref. [1]:

Pv
����

dt
d

� (1.1)

Here �  is the mass density of the fluid, v is velocity and t is time; in fact the pressure tensor P

equals the stress tensor T with the opposite sign: P = �T. In a fluid at rest v � 0 and Eq. (1.1)

reduces to

0��� P (1.2)

which expresses a necessary condition for hydrostatic equilibrium. In the bulk of a liquid the

pressure tensor is isotropic,

UP BP� (1.3)

as stated by the known Pascal law (U is the spatial unit tensor; PB  is a scalar pressure). Indeed,

all directions in the bulk of a uniform liquid phase are equivalent. The latter is not valid in a

vicinity of the surface of the fluid phase, where the normal to the interface determines a special

direction. In other words, in a vicinity of the interface the force acting across unit area is not the

same in all directions.  Correspondingly, in this region the pressure tensor can be expressed in

the form [2,3]:

zzNyyxxT PP eeeeeeP ��� )( (1.4)

Here ex, ey and ez are the unit vectors along the Cartesian coordinate  axes, with ez being

oriented normally to the interface; PN  and PT  are, respectively, the normal and the tangential

components of the pressure tensor. Due to the symmetry of the system PN  and PT  can depend

on z, but they should be independent of x and y. Thus a substitution of Eq. (1.4) into Eq. (1.3)

yields one non-trivial equation:

0�

z
PN
�

�
(1.5)
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In other words, the condition for hydrostatic equilibrium, Eq. (1.3), implies that PN  must be

constant along the normal to the interface; therefore, PN  is to be equal to the bulk isotropic

pressure, PN  = PB = const.

Let us take a vertical strip of unit width, which is oriented normally to the interface, see Fig.

1.1. The ends of the stripe, at z = a  and  z = b, are supposed to be located in the bulk of phases

1 and 2, respectively. The real force exerted to the strip is

��
b

a
TT dzzPF )((real) (1.6)

On the other hand, following Gibbs [4] one can construct an idealized   system consisting of

two uniform phases, which preserve their bulk properties up to a mathematical dividing surface

modeling the transition zone between the two phases (Fig. 1.1). The pressure everywhere in the

idealized system is equal to the bulk isotropic pressure, PB =PN. In addition, a surface tension �

Fig. 1.1. Sketch of a vertical strip, which is normal to the boundary between phases 1 and 2.
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is ascribed to the dividing surface in the idealized system. Thus the force exerted to the strip in

the idealized system (Fig. 1.1) is

��� �
b

a
NT dzPF )(idealized (1.7)

The role of � is to make up for the differences between the real and the idealized system.

Setting FT
( idealized)

� FT
(real)  from Eqs. (1.6) and (1.7) one obtains the Bakker [5] equation for the

surface tension:

� ��
��

��

�� dzPP TN� (1.8)

Since the boundaries of integration z = a  and  z = b are located in the bulk of phases 1 and 2,

where the pressure is isotropic (PT = PN), we have set the boundaries in Eq. (1.8) equal to ��.

Equation (1.8) means that the real system with a planar interface can be considered as if it were

composed of two homogeneous phases separated by a planar membrane of zero thickness with

z-zv  , Angstroms
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Fig. 1.2. Anisotropy of the pressure tensor, �P, plotted vs. the distance to the equimolecular dividing
surface, z�zv, for interface liquid argon-gas at 84.3 K; Curves 1 and 2 are calculated by the
theories in Refs. [8] and [10].
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tension � given by Eq. (1.8). The latter equation gives a hydrostatic definition of surface

tension. Note that this definition does not depend on the exact location of the dividing surface.

The quantity

�P � PN � PT (1.9)

expresses the anisotropy of the pressure tensor. The function �P(z) can be obtained

theoretically by means of the methods of the statistical mechanics [6-9]. As an illustration in

Figure 1.2 we present data for �P  vs. z�zv   for the interface liquid argon�gas at temperature T

= 84.3 K; zv  is the position of the so called “equimolecular” dividing surface (see Section 1.2.2

below for definition). The empty and full points in Fig. 1.2 are calculated  by means of the

theories  from  Refs. [8] and [10],  respectively.  As  seen in Fig. 1.2, the width of the transition

Fig. 1.3. Anisotropy of the pressure tensor, �P, plotted vs. the distance to the equimolecular dividing
surface,   z�zv, calculated by the theory in Ref. [10] for the phase boundaries n-decane�gas
(curve 1), gas�water (curve 2) and n-decane�water (curve 3).
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zone between the liquid and gas phases (in which �P � 0) is of the order of 10 Å. On the other

hand, the maximum value of the anisotropy �P(z) is about 2 
�

 108 dyn/cm, i.e. about 200

atmospheres, which is an impressive value. The area below the full line in Fig. 1.2 gives the

surface tension of argon at that temperature, � = 13.45 mN/m, in accordance with Eq. (1.8).

Curves 1, 2 and 3 in Fig. 1.3 present �P(z) calculated in Ref. [10] for the interfaces n-

decane/gas, gas/water and n-decane/water, respectively. One see that �P(z)  typically exhibits a

single maximum for a liquid-gas  interface, whereas �P(z) exhibits a loop (maximum and

minimum) for a liquid-liquid  interface. For all curves in Fig. 1.3 the width of the interfacial

transition zone is of the order of 10 Å.

1.1.2 INTERFACIAL BENDING MOMENT AND SURFACE OF TENSION

To make the idealized system in Fig. 1.1 hydrostatically equivalent to the real system we have

to impose also a requirement for equivalence with respect to the acting force moments (in

addition to the analogous requirement  for the acting forces, see above). The moment exerted

on the strip in the real system (Fig. 1.1) is

��
b

a
T dzzzPM )((real) (1.10)

Likewise, the moment exerted on the stripe in the idealized system is [11]:

02
1

0
)(idealized BzdzzPM

b

a
N ��� � � (1.11)

Here z = z0 is the position of the dividing surface and B0 is an interfacial  bending moment

(couple of forces), which is to be attributed to the dividing surface in order to make the

idealized system equivalent to the real one with respect to the force moments. Setting
real)()idealized( MM �  from Eqs. (1.8), (1.10) and (1.11) one obtains an expression for the

interfacial bending moment:
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� ��
��

��

��� dzzzPPB TN )(2 00 (1.12)

As in Eq. (1.8) we have extended the boundaries of integration to ��. From the viewpoint of

mechanics positive B0 represents a force moment (a couple of forces), which tends to bend the

dividing surface around the phase, for which ez is an outer  normal (in Fig. 1.1 this is phase 1).

The comparison of Eqs. (1.8) and (1.12) shows that unlike �, the interfacial bending moment

B0  depends on the choice of position of the dividing surface z0. The latter can be defined by

imposing some additional physical condition; in such a way the “equimolecular” dividing

surface is defined (see Section 1.2.2 below). If once the position of the dividing surface is

determined, then the interfacial bending moment B0 becomes a physically well defined

quantity. For example, the values of the bending moment, corresponding to the equimolecular

dividing surface, for curves No. 1, 2 and 3 in Fig. 1.3 are, respectively [10]: B0 = 2.2, 2.3 and

5.2 
�

 10�11 N.

One possible way to define the position, z0, of the dividing surface is to set the bending

moment to be identically zero:

0
00 �
� szzB (1.13)

Combining Eqs (1.8), (1.12) and (1.13) one obtains [2]

� ��
��

��

�� dzzPPz TNs
�

1 (1.14)

Equation (1.14) defines the so called surface of tension . It has been first introduced by Gibbs

[4], and it is currently used in the conventional  theory of capillarity  (see Chapter 2 below). At

the surface of tension the interface is characterized by a single dynamic parameter, the

interfacial tension �; this considerably simplifies the mathematical treatment of capillary

problems. However, the physical situation becomes more complicated when the interfacial

tension is low; such is the case of some emulsion and microemulsion systems, lipid bilayers

and biomembranes. In the latter case, the surface of tension can be located far from the actual

transition region between the two phases and its usage becomes physically meaningless.
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Indeed, for �	0 Eq. (1.14) yields zs 	�. Therefore, a mechanical description of an interface

of low surface tension needs the usage of (at least) two dynamic quantities: interfacial (surface)

tension and bending moment. In fact, B0 is related to the so called spontaneous curvature of the

interface. In Chapter 3 we will come to this point again.

1.1.3. ELECTRICALLY CHARGED INTERFACES

As a rule, the boundaries between two phases (and the biomembranes, as well) bear some

electric charge. Often it is due to the dissociation of surface ionizable groups or to adsorption

of charged amphiphilic molecules (surfactants). It should be noted that even the boundaries

water-air and water-oil (oil here means any liquid hydrocarbon immiscible with water) are

electrically charged in the absence of any surfactant, see e.g. refs. [12] and [13]. If the surface

of an aqueous phase is charged, it repels the coions, i.e. the ions of the same charge, but it

attracts the counterions , which are the ions of the opposite charge, see Fig. 1.4.  Thus a non-

uniform distribution of the ionic species in the vicinity of the charged interface appears, which

is known as electric  double layer  (EDL), see e.g. Ref. [14].

The conventional model of the EDL stems from the works of Gouy [15], Chapman [16] and

Stern [17]. The EDL is considered to consist of two parts: (I) interfacial (adsorption) layer  and

(II) diffuse layer. The interfacial (adsorption) layer includes charges, which are immobilized

(adsorbed) at the phase boundary; this includes also adsorbed (bound) counterions, which form

the so called Stern layer, see Fig. 1.4. The diffuse layer consists of free ions in the aqueous

phase, which are involved in Brownian motion  in the electrical field created by the charged

interface. The boundary, which separates the adsorption from the diffuse layer, is usually called

the Gouy plane.

The conventional theory of the electric double layer is briefly presented in Section 1.2.4 below.

For our purposes here it is sufficient to take into account that the electric potential varies across

the EDL: � = �(z). The thickness of the diffuse EDL could be of the order of hundred (and

even thousand) nm, i.e. it is much greater than the thickness of the interfacial transition zone

(cf. Figs. 1.2 and 1.3). This fact requires a special approach to the theoretical description of the



Planar Fluid Interfaces 9

charged interfaces, which can be based on the expression for the Maxwell electric stress tensor

[18]:

Fig. 1.4. Sketch of the electric double layer in a vicinity of an adsorption monolayer of ionic surfactant.
(a) The diffuse layer contains free ions involved in Brownian motion, while the Stern layer
consists of adsorbed (bound) counterions. (b) Near the charged surface there is an
accumulation of counterions and a depletion of coions, whose bulk concentrations are both
equal to c�.
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�

� (1.15)

Here �ik is the Kronecker symbol (the unit matrix), � is the dielectric permittivity of the

medium (usually water), Ei  is the i-th component of the electric field,

�
c

z
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E
�

�� , (1.16)

x = x1,  y = x2  and  z = x3  are Cartesian coordinates, and Po  is an isotropic pressure, which

can vary across the EDL due to the osmotic effect of the dissolved ionic species.

As already mentioned, in the case of plane interface we have � = �(z), and then Eq. (1.15)

reduces to the following two expressions:

2

o 8
�
�

�
�
�

�
��	

dz
dPPP zzN
�

�

� (1.17)

2

o 8
�
�

�
�
�

�
���	

dz
dPPPP yyxxT
�

�

� (1.18)

Eqs. (1.17) and (1.18) can be applied to describe the pressure tensor within the diffuse part of

the electric double layer.

Now, let us locate the plane z = 0 in the Gouy plane separating the diffuse (at z > 0) from the

adsorption layer. Then by means of the Bakker equation (1.8) one can represent the surface

tension � as a sum of contributions from the adsorption and diffuse layers:

da ��� �� (1.19)

where

��
��

��

����

0

0

)(,)( dzPPdzPP TNdTNa �� (1.20)

Substituting Eqs. (1.17) and (1.18) into the above equation for �d, one obtains a general

expression for the contribution of the diffuse layer to the interfacial tension [19,20]:

dz
dz
d

d �
�

�
�

�
�
�

�
��

0

2

4
�

�

�
� (1.21)

Equation (1.21) shows that the contribution of the diffuse electric double layer to the interfacial

tension, �d, is always negative, i.e. the interactions in the diffuse layer tend to decrease the total
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interfacial tension �. Explicit expressions for �d , obtained by means of the double layer theory

for various types of electrolytes, can be found in Table 1.3 below.

1.1.4. WORK OF INTERFACIAL DILATATION

Let us consider an imaginary  rectangular box containing portions of phases 1 and 2, and of the

interface between them. As before, we will assume that the interface is parallel to the

coordinate plane xy, and the sides of the rectangular box are also parallel to the respective

coordinate planes. Moving the sides of the box one can create a small change of the volume of

the box, �V, with a corresponding small change of the interfacial area, �A. The work �W carried

out by the external forces to create this deformation can be calculated by means of a known

equation of fluid mechanics [1]:

���

V

dVW ):( DP �� (1.22)

Here 
D is the strain tensor (tensor of deformation) and “:” denotes double scalar product of

two tensors (dyadics):

))(()(:)( CBDACDAB ��� (1.23)

Since we consider displacements  of the sides of our rectangular box along the normals to the

respective sides, the strain tensor has diagonal form in the Cartesian basis [21,22]:

dz
dz

dy
dy

dx
dx

zzyyxx
)()()( ���

� eeeeeeD ��� (1.24)

Here �(dx) denotes the extension of a linear element dx of the continuous medium in the course

of deformation. Equation (1.24) shows that the eigenvalues of the strain tensor are the relative

extensions of linear elements along the three axes of the Cartesian coordinate system.

Substituting Eqs. (1.4) and (1.24) into Eq. (1.22) one can derive [22]:

� ��� ��
�

�
��
�

�
�����

�

�
��
�

�
���	

V
TN

V
N dzdydx

dy
dy

dx
dxPPdzdydx

dz
dz

dy
dy

dx
dxPW )()()()()( �����

�        (1.25)

The increments of the elementary volume and area in the process of deformation are
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 )()()(),()()()( dydxdxdydAdzdydxdydzdxdxdzdydV ������� ����� (1.26)

Combining Eqs. (1.8), (1.25) and (1.26) one finally obtains

AVPW N ���� ��� (1.27)

Here �PN�V  expresses the work of changing the volume and ��A  is the work of interfacial

dilatation.  Equation (1.27) gives a connection between the mechanics and thermodynamics of

the fluid interfaces.

1.2. THERMODYNAMICAL PROPERTIES OF PLANAR FLUID INTERFACES

1.2.1. THE GIBBS ADSORPTION EQUATION

Let us consider the same system as in section 1.1.4 above.  The Gibbs fundamental equation,

combining the first and the second law of thermodynamics, is [2,4]

�����

i
iiN dNdAdVPTdSdU �� , (1.28)

where T is the temperature; U and S are the internal energy and entropy of the system,

respectively; �i  and Ni  are the chemical potential and the number of molecules of the i-th

component (species); the summation in Eq. (1.28) is carried out over all components in the

system. Equation (1.28) states that the internal energy of the system can vary because of the

transfer of heat (TdS) and/or matter ( �idNi
i
� ), and/or due to the mechanical work, �W, carried

out by external forces, see Eq. (1.27).

Following Gibbs [4], we construct an idealized system consisting of two bulk phases, which

are uniform up to a mathematical dividing surface modeling the boundary between the two

phases. Since the dividing surface has a zero thickness, the volumes of the two phases in the

idealized system are additive:

)2()1( VVV �� (1.29)
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We assume that the bulk densities of entropy, s(k), internal energy, u(k), and number of

molecules, ni
(k ), are known for the two neighboring phases (k = 1,2). Then the entropy, internal

energy and number of molecules for phase “k” of the idealized system are:

)2,1(;; )()()()()()()()()(
���� kVnNVuUVsS kk

i
k

i
kkkkkk (1.30)

Each of the two uniform bulk phases has its own fundamental equation [2,4]:

�

�

���

���

i
iiB

i
iiB

dNdVPTdSdU

dNdVPTdSdU

)2()2()2()2(

)1()1()1()1(

�

�

(1.31)

It is presumed that we deal with a state of thermodynamic equilibrium, and hence the

temperature T and the chemical potentials �i are uniform throughout the system [23]; in

addition, PN  = PB = const., see Eq. (1.5) above. Next, we sum up the two equations (1.31) and

subtract the result from Eq. (1.28); thus we obtain:

����

i

s
ii

ss dNdAdSTdU )()()(
�� , (1.32)

where
)2()1()()2()1()()2()1()( ,, iii

s
i

ss NNNNSSSSUUUU ��������� (1.33)

are, respectively, surface excesses of internal energy, entropy and number of molecules of the

i-th species; these excesses are considered as being attributed to the dividing surface. Equation

(1.32) can be interpreted as the fundamental equation  of the interface [4, 24]. Since the

interface is uniform, then dU(s), dS(s) and dNi
(s ) can be considered as amounts of the respective

extensive thermodynamic parameters corresponding to a small portion, dA, of the interface;

then Eq. (1.32) can be integrated to yield [2,4]:

����

i

s
ii

ss NATSU )()()(
�� , (1.34)

Finally, we differentiate Eq. (1.34) and compare the result with Eq. (1.32); thus we arrive at the

Gibbs [4] adsorption equation:
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i
i

i

s

ddT
A
Sd �� �����

)(

(1.35)

where

� � � ���
��

��

������

0

0
)2()1(

)(

)()(
z

ii

z

ii

s
i

i dznzndznzn
A

N
(1.36)

is the adsorption of the i-th species at the interface; ni(z)  is the actual concentration of

component “i” as a function of the distance to the interface, z, cf. Eq. (1.33); z0 denotes the

position of the dividing surface. Figure 1.5a shows qualitatively the dependence ni(z) for a non-

amphiphilic component, i.e. a component, which does not exhibit a tendency to accumulate at

the interface; if phase 1 is an aqueous solution, then the water can serve as an example for a

non-amphiphilic component. On the other hand, Figure 1.5b shows qualitatively the

dependence ni(z) for an amphiphilic component (surfactant), which accumulates (adsorbs) at

the interface, see the maximum of ni(z) in Fig. 1.5b.

1.2.2. EQUIMOLECULAR DIVIDING SURFACE

As discussed in section 1.1.2 above, the definition of the dividing surface is a matter of choice.

In other words, one has the freedom to impose one physical condition in order to determine the

position of the dividing surface. This can be the condition the adsorption of the i-th component

to be equal to zero [4]:

0
v0
��

�zzi (equimolecular dividing surface) (1.37)

The surface thus defined is called equimolecular dividing surface with respect to component

“i”. In order to have �i � 0 the sum of the integrals in Eq. (1.36) must be equal to zero. This

means that the positive and negative areas, which are comprised between the continuous and

dashed lines in Fig. 1.5a,b and denoted by (+) and (�), must be equal.
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Fig. 1.5. Illustrative dependence of the density ni of the i-th component on the distance z to the
interface for  (a) non-amphiphilic component and  (b) amphiphilic component; zv denotes the
position of the equimolecular dividing surface; ni

(1) and ni
(2) are the values of ni in the bulk of

phases 1 and 2.

As seen in Fig. 1.5a, if component “i”  is non-amphiphilic (say the water as a solvent in an

aqueous solution), the equimolecular dividing surface, z = zv, is really situated in the transition

zone between the two phases. In contrast, if component “i”   is an amphiphilic one, then the

equimolecular dividing surface, z = zv, is located far from the actual interfacial transition zone

(Fig. 1.5b). Therefore, to achieve a physically adequate description of the system, the

equimolecular dividing surface is usually introduced with respect to the solvent; it should never

be introduced with respect to an amphiphilic component (surfactant).

1.2.3. THERMODYNAMICS OF ADSORPTION OF NONIONIC SURFACTANTS

A molecule of a nonionic surfactant (like all amphiphilic molecules) consists of a hydrophilic

and a hydrophobic moiety. The hydrophilic moiety (the “headgroup”) can be a water soluble

polymer, like polyoxiethylene, or some polysaccharide [25]; it can be also a dipolar headgroup,

like those of many phospholipids. The hydrophobic moiety (the “tail”) usually consists of one

or two hydrocarbon chain(s). The adsorption of such a molecule at a fluid interface is

accompanied with a gain of free energy, because the hydrophilic part of an adsorbed molecule

is exposed to the aqueous phase, whereas its hydrophobic part contacts with the non-aqueous

(hydrophobic) phase.

Let us consider the boundary between an aqueous solution of a nonionic surfactant and a

hydrophobic phase, air or oil. We choose the dividing surface to be the equimolecular dividing
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surface with respect to water, that is �w = 0. Then the Gibbs adsorption equation (1.35) reduces

to

11 �� dd ��� (T = const.) (1.38)

where the subscript “1” denotes the nonionic surfactant. Since the bulk surfactant concentration

is usually relatively low, one can use the expression for the chemical potential of a solute in an

ideal solution [23]:

1
)0(

11 ln ckT�� �� (1.39)

where c1 is the concentration of the nonionic surfactant and )0(
1�  is a standard chemical

potential, which is independent of c1, and k is the Boltzmann constant. Combining Eqs. (1.38)

and (1.39) one obtains

11 ln cdkTd ���� (1.40)

The surfactant adsorption isotherms, expressing the connection between �1 and c1  are usually

obtained by means of some molecular model of the adsorption. The most popular is the

Langmuir [26] adsorption isotherm,

1

11
1 Kc

Kc
�

�
�

�

�

(1.41)

which stems from a lattice model of localized  adsorption of non-interacting   molecules [27].

In Eq. (1.41) �� is the maximum possible value of the adsorption (�1���  for c1��). On the

other hand, for c1�0 one has �1 � Kc1; the adsorption parameter K characterizes the surface

activity of the surfactant: the greater K  the higher the surface activity.

Table 1.1 contains the 6 most popular surfactant adsorption isotherms, those of Henry,

Freundlich, Langmuir, Volmer [28], Frumkin [29], and van der Waals [27]. For c1�0 all other

isotherms (except that of Freundlich) reduce to the Henry isotherm. The physical difference

between the Langmuir and Volmer isotherms is that the former corresponds to a physical

model of localized adsorption, whereas the latter � to non-localized adsorption. The Frumkin

and  van der Walls  isotherms  generalize,  respectively,  the Langmuir and Volmer isotherms

for  the  case,  when  there  is  interaction between the adsorbed molecules;  �  is the parameter,
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Table 1.1. The most popular surfactant adsorption isotherms and the respective surface tension
isotherms.

� Surfactant adsorption isotherms
(for nonionic surfactants:a1s � c1 )

Henry

�
�

�
�

1
1sKa

Freundlich m

F
sKa

/1

1
1 ��

�

�
��
�

�

�

�
�

Langmuir

1

1
1

���

�
�

�

sKa

Volmer
��
�

�
��
�

�

���

�

���

�
	

�� 1

1

1

1
1 expsKa

Frumkin
�
�

�
�
�

� �
�

���

�
	

�
kT

Ka s
1

1

1
1

2
exp

�

van der Waals
��
�

�
��
�

� �
�

���

�

���

�
	

��
kT

Ka s
1

1

1

1

1
1

2exp �

� Surface tension isotherm
 dkTJ ��� ��� 0

(for nonionic surfactants:�d � 0)

Henry
1��J

Freundlich
m

J 1�
�

Langmuir
��
�

�
��
�

�

�

�
���	

�

�

11lnJ

Volmer

1

1

���

��
�

�

�J

Frumkin

kT
J

2
111ln �

���
�

�
��
�

�

�

�
���	

�

�

�

van der Waals

kT
J

2
1

1

1 �
�

���

��
	

�

�
�
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which accounts for the interaction. In the case of van der Waals interaction � can be expressed

in the form [30,31]:

��
��

�
�
�



�
�

�
�
�

�
�
�

�
���	

00

)()(exp1
rr

drrru
kT

rukT ���

where u(r) is the interaction energy between two adsorbed molecules and r0 is the distance

between the centers of the molecules at close contact. The comparison between theory and

experiment shows that the interaction parameter � is important for air-water interfaces, whereas

for oil-water interfaces one can set � = 0 [32,33]. The latter fact, and the finding that � > 0 for

air-water interfaces, leads to the conclusion that �  takes into account the van der Waals

attraction between the hydrocarbon tails of the adsorbed surfactant molecules across air (such

attraction is missing when the hydrophobic phase is oil).

What concerns the parameter K in Table 1.1, it is related to the standard free energy of

adsorption, )0(
1

)0(
1 sf �� ��� , which is the energy gain for bringing a molecule from the bulk of

the water phase to a diluted adsorption layer [34,35]:

��
�

�
��
�

� �

�
	

�
kT

K s
)0(

1
)0(

11 exp
��� (1.42)

Here �1 is a parameter, characterizing  the  thickness of the adsorption layer, which can be set

(approximately) equal to the length of the amphiphilic  molecule.

Let us consider the integral

1
1

1

0
1

1

1

0
1

ln11

�
�

���� ��
�

d
d

cd
c
cdJ

c

(1.43)

The derivative 11 /ln �dcd  can be calculated for each adsorption isotherm in Table 1.1, and

then the integration in Eq. (1.43) can be carried out analytically. The expressions for J,

obtained in this way, are also listed in Table 1.1. The integration of the Gibbs adsorption

isotherm, Eq. (1.40), along with Eq. (1.43) yields

kTJ�� 0�� , (1.44)

which in view of the expressions for J in Table 1.1 presents the surfactant adsorption isotherm,

or the two-dimensional (surface) equation of state.
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Table 1.2. Expressions for the Gibbs elasticity of adsorption monolayers (valid for both nonionic and
ionic surfactants), which correspond to the various types of isotherms in Table 1.1.

Type of surface
tension isotherm Gibbs elasticity EG

Henry 1�	 kTEG

Freundlich

m
kTEG

1�
�

Langmuir

1
1

���

�
��

�

�kTEG

Volmer

� �21

2

1
���

�
��

�

�kTEG

Frumkin
��
�

�
��
�

� �
�

���

�
�	

�

�

kT
kTEG

1

1
1

2�

van der Waals

� � �
�
�

�

�
�
�

� �
�

���

�
�	

�

�

kT
kTEG

1
2

1

2

1
2�

An important thermodynamic parameter of a surfactant adsorption monolayer is its Gibbs

(surface) elasticity:

T
GE ��

�

�
��
�

�

�
��	

1
1
�

�� (1.45)

Expressions for EG, corresponding to various adsorption isotherms, are shown in Table 1.2. As

an example, let us consider the expression for EG, corresponding to the Langmuir isotherm;

combining results from Tables 1.1 and 1.2 one obtains

1kTKcEG �
�� (for Langmuir isotherm) (1.45a)

One sees that for Langmuirian adsorption the Gibbs elasticity grows linearly with the surfactant

concentration c1. Since the concentration of the monomeric surfactant cannot exceed the

critical micellization concentration, c1 � cCMC,  then from Eq. (1.45a) one obtains
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 � � CMCmax KckTEE GG �
��� (for Langmuir isotherm) (1.45b)

Hence one could expect higher elasticity EG for surfactants with higher cCMC; this conclusion is

consonant with the experimental results [36].

The Gibbs elasticity characterizes the lateral fluidity of the surfactant adsorption monolayer.

For high values of the Gibbs elasticity  the adsorption monolayer at a fluid interface  behaves as

tangentially immobile. Then, if a particle approaches such an interface, the hydrodynamic flow

pattern, and the hydrodynamic interaction as well, is approximately the same as if the particle

were approaching a solid surface. For lower values of the Gibbs elasticity the so called

“Marangoni effect” appears, which can considerably affect the approach of a particle to a fluid

interface. These aspects of the hydrodynamic interactions between particles and interfaces are

considered in Chapter 6 below.

The thermodynamics of adsorption of ionic surfactants (see Section 1.2.5 below) is more

complicated because  of the presence of long-range electrostatic interactions in the system. As

an introduction, in the next section we briefly present the theory of the electric double layer.

1.2.4. THEORY OF THE ELECTRIC DOUBLE LAYER.

Boltzmann equation and activity coefficients. When ions are present in the solution, the

(electro)chemical potential of the ionic species can be expressed in the form [23]

��� eZakT iiii ��� ln)0( (1.46)

which is more general than Eq. (1.39) above; here e  is the elementary electric charge, �  is the

electric potential, Zi is the valency of the ionic component “i”, and ai is its activity. When an

electric double layer is formed in a vicinity a charged interface, see Fig. 1.4, the electric

potential  and the activities  of the ionic species become dependent on the distance z from the

interface:  � = �(z),  ai = ai(z).  On the other hand, at equilibrium the electrochemical potential,

�i, is uniform throughout the whole solution, including the electric double layer (otherwise

diffusion fluxes would appear) [23]. In the bulk of solution (z��) the electric potential  tends

to a constant value, which is usually set equal to zero; then one can write
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0)(lim �

��

z
z

� (1.47)

0lim ��
�

�
�
�

�

�� dz
d

z

� (1.48)

Setting equal the expression for �i at z�� and that for �i at some finite z, and using Eqs. (1.46)

and (1.47), one obtains [23]:

�
�

�
�
�

�
��

� kT
zeZ

aza i
ii

)(
exp)(

�
(1.49)

where ai�  denotes the value of the activity of ion “i” in the bulk of solution. Equation (1.49)

shows that the activity obeys a Boltzmann type distribution across the electric double layer

(EDL). If the activity in the bulk, ai� , is known, then Eq. (1.49) determines the activity ai(z) in

each point of the EDL. The studies on adsorption of ionic surfactants [32,33,20] show that a

good agreement between theory and experiment can be achieved using the following

expression for ai� :

���
� ii ca � (1.50)

where ci�  is the bulk concentration of the respective ion, and the activity coefficient �� is to be

calculated from the known semiempirical formula [37]

bI
IdB

IZZA

i

�

�

��
��

� 1
log� (1.51)

which originates from the Debye-Hückel theory; I denotes the ionic strength of the solution:

��� i
i

i cZI 2
2
1 (1.52)

where the summation is carried out over all ionic species in the solution. When the solution

contains a mixture of several electrolytes, then Eq. (1.51) defines ��  for each separate

electrolyte, with Z+ and Z� being the valences of the cations and anions for this electrolyte, but

with I  being the total ionic strength of the solution, accounting for all dissolved ionic species

[37]. The log in Eq. (1.51) is decimal, di is the diameter of the ion, A, B, and b are parameters,
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whose values can be found in the book by Robinson and Stokes [37]. For example, if the ionic

strength I is given in moles per liter (M), then for solutions of NaCl at 25�C the parameters

values are A = 0.5115 M�1/2,  Bdi = 1.316 M�1/2 and b = 0.055 M�1.

Integration of Poisson-Boltzmann equation. The Poisson equation relating the

distribution of the electric potential �(z) and electric charge density, �e(z), across the diffuse

double layer can be presented in the form [14]

ezd
d

�
�

�� 4
2

2
��  , (1.53)

Let us choose component 1 to be a coion, that is an ion having electric charge of the same sign

as the interface. It is convenient to introduce the variables

11

1 ,~,)()(
Z
Z

z
eZkT

zeZz k
k

e
e ����

�
�

�  (k = 1,2,...N) (1.54)

For symmetric electrolytes � and e�
~  thus defined are always positive irrespective of whether

the interface is positively or negatively charged. Combining Eqs. (1.49), (1.53) and (1.54) one

obtains

)exp(~
1

2
2
12

2
1

2

2
������

�

�

�

� ii

N

i
icec zaz

zd
d

��� (1.55)

where

kT
eZ

c
�

�

�

22
12 8

�  (1.56)

As usual, the z-axis is directed along the normal to the interface, the latter corresponding to

z = 0. To obtain Eq. (1.55) we have expressed the bulk charge density in terms of effective

concentrations, i.e. activities, �)(ze� Zieai(z)
i
� , rather than in terms of the net concentra-

tions, �)(ze� Zieci (z)
i
� . For not-too-high ionic strengths there is no significant quantitative

difference between these two expressions for )(ze� , but the former one considerably simplifies

the mathematical derivations; moreover, the former expression has been combined with
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Eq. (1.49), which is rigorous in terms of activities (rather than in terms of concentrations).

Integrating Eq. (1.55) one can derive

� �1)exp(
1

2
2

�����
�

�
�
�

	 �
�
�

� i

N

i
ic za

dz
d

� (1.57)

where the boundary conditions 0��
��z  and � � 0/ ��

��zzdd  have been used, cf. Eqs.

(1.47), (1.48) and (1.54). Note that Eq. (1.57) is a nonlinear ordinary differential equation of

the first order, which determines the variation of the electric potential �(z) across the EDL. In

general, Eq. (1.57) has no analytical solution, but it can be solved relatively easily by numerical

integration. Analytical solution can be obtained in the case of symmetric electrolyte, see Eq.

(1.65) below.

Further, let �s be the surface electric charge density, i.e. the electric charge per unit area of the

interface. Since the solution, as a whole, is electroneutral, the following relationship holds [14]:

�
�

��

0

)( dzzes �� (1.58)

Substituting )(ze�  from Eq. (1.55) into Eq. (1.58) and integrating the second derivative,

22 / dzd � , one derives

eZzd
d s

ssc
z 1

2
2
1

0

~,~ �
��� �����

�

�
��
�

	 


�

(1.59)

The combination of Eqs. (1.57) and (1.59) yields a connection between the surface charge

density, �s, and the surface potential, �s � �(z=0), which is known as the Gouy equation

[15,38]:

� �

2/1

1
1)exp(2~
��

�
�
�

��

�
�
�

�	�
 �
�

� si

N

i
i

c
s za

�
� ,

kT
eZ s

s
�1

�� (1.60)

Note that because of the choice component 1 to be a coion, the sign of �s and s�
~  is always

positive and that is the reason why in Eq. (1.60) we have taken sign “+” before the square root.
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To obtain an expression for calculating the diffuse layer contribution to the surface tension, �d,

we first combine Eqs. (1.21) and (1.54):

��
�

�
�
�

� �
��

�

�
�
�

� �
	� ��

��

d
dz
dkTdz

dz
dkT s
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2

0

2

2

22
��

� (1.61)

A substitution of Eq. (1.57) into Eq. (1.61) yields

� � �
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dzakT s
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1)exp(2

�

� (1.62)

Expressions for �d, obtained by means of Eq. (1.62) for solutions of surfactant and various

electrolytes, can be found in Table 1.3 below, as well as in Ref. [20].

Analytical expressions for Z1:Z1 electrolyte. Analytical expression for �(z) can be

obtained in the simpler case, when the solution contains only symmetric, Z1:Z1 electrolyte, that

is Z2 = �Z1 (Zi = 0 for i > 2). In this case Eq. (1.57) can be represented in the form

�
�

�
�
�

� �
�	

�

2
sinh2�

dz
d (Z1:Z1 electrolyte) (1.63)

where

�

�

�� i
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i
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1

2
2
1
�� (1.64)

 is known as the Debye screening parameter. The integration of Eq. (1.63) yields an analytical

expression for the variation of the electric potential �(z) across the EDL [14]:

�
�

�
�
�

�
�
�

	


�
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�
 z)exp(-

4
tanharctanh4)( s

�z (Z1:Z1 electrolyte)  (1.65)

Equation (1.65) shows that the electric potential, created by the charged interface, decays

exponentially in the depth of solution, that is �(z) � exp(��z) for z��. The inverse Debye

parameter, ��1, represents a decay length, which characterizes the thickness of the EDL. The

Gouy equation (1.60), giving the connection between surface charge and surface potential, also

simplifies for Z1:Z1 electrolyte:
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�
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sinh4~

221
s

c
s a

�
� (Z1:Z1 electrolyte)   (1.66)

where �1 and �2 are the adsorptions of the ionic components 1 and 2, respectively. For the

same case the integration in Eq. (1.62) can be carried out analytically and the following simpler

expression for the diffuse layer contribution to the surface tension can be derived [19,38,39]:

�
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�
�
�

�
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2
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2
s

c
d akT

�

� (Z1:Z1 electrolyte) (1.67)

The above equations serve as a basis of the thermodynamics of adsorption of ionic surfactants.

1.2.5. THERMODYNAMICS OF ADSORPTION OF IONIC SURFACTANTS

Basic equations. Combining Eqs. (1.46), (1.47) and (1.49) one obtains a known

expression for the chemical potential: 
�

�� iii akT ln)0(
�� . The substitution of the latter

expression into the Gibbs adsorption equation (1.35) yields [19,33,40,41]:

�
�

�
���

N

i
ii adkTd

1
ln~

� (T = const) (1.68)

Here with i�
~  we denote the adsorption of the i-th component; i�

~  represents a surface excess of

component “i” with respect to the uniform bulk solution. For an ionic species this means that

i�
~  is a total adsorption, which include contributions from both the adsorption layer (surfactant

adsorption layer + adsorbed counterions in the Stern layer, see Fig. 1.4) and the diffuse layer.

Let us define the quantities

�
�

�
���

0

])([ dzaza iii  , iii �����
~ (1.69)

�i and �i can be interpreted as contributions of the diffusion and adsorption layers,

respectively, into the total adsorption i�
~ . Using the theory of the electric double layer and the

definitions (1.69) one can prove (see Appendix 1A) that the Gibbs adsorption equation (1.68)

can be presented into the following equivalent form [20]
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�
�

���

N

i
isia adkTd

1
ln� (T = const) (1.70)

where �a = �  � �d  is the contribution of the adsorption layer into the surface tension, �d is the

contribution of the diffuse layer, defined by Eq. (1.21), and

)exp( siiis zaa ���
�

,
1Z

Z
z i

i � , (1.71)

is the subsurface activity of the i-th ionic species. The comparison between Eqs. (1.68) and

(1.70) shows that the Gibbs adsorption equation can be expressed either in terms of �, ~
�i  and

ai� , or in terms of �a , �i and ais . In Appendix 1A it is proven that these two forms are

equivalent. To derive explicit adsorption and surface tension isotherms, below we specify the

type of ionic surfactant and non-amphiphilic salt in the solution.

Surfactant and salt are 1:1 electrolytes.  We consider a solution of an ionic surfactant,

which is a symmetric 1:1 electrolyte, in the presence of additional common symmetric 1:1

electrolyte (salt). Here we assume that the counterions due to the surfactant and salt are

identical. For example, this can be a solution of sodium dodecyl sulfate (SDS) in the presence

of NaCl. We denote by c1� , c2�  and c3�  the bulk concentrations of the surface active ions,

counterions, and coions, respectively. For the special system of SDS with NaCl c1� , c2�  and

c3�  are the bulk concentration of the DS�, Na+ and Cl� ions, respectively. The requirement for

the bulk solution to be electroneutral implies c2�  = c1� + c3� . The multiplication of the last

equation by �
�

, which according to Eq. (1.51) is the same for all monovalent ions, yields

a2� = a1� + a3� (1.72)

The adsorption of the coions of the non-amphiphilic salt is expected to be equal to zero, �3 = 0,

because they are repelled by the similarly charged interface (however, �3 	 0: the integral in

Eq. (1.69) gives a negative �3, see Fig. 1.4; hence 0~
33 ���� ). Then the Gibbs adsorption

equation (1.70) can be presented in the form

)lnln( 2211 ssa adadkTd ������ (1.73)
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The differentials in the right-hand side of Eq. (1.73) are independent (one can vary

independently the concentrations of surfactant and salt), and moreover, d� a is an exact (total)

differential. Then according to the Euler condition [23] the cross derivatives must be equal, viz.

ss aa 1

2

2

1
lnln �

�

�

� �
�

�
(1.74)

A surfactant adsorption isotherm, �1 � �1 (a1s, a2s ), and a counterion adsorption isotherm,

�2 � �2 (a1s ,a2s ) , are thermodynamically compatible if they satisfy Eq. (1.74). Integrating Eq.

(1.74) one obtains

sa
J

2
2 ln�

�
�� (1.75)

where we have introduced the notation

s

s
ss a

ad
aaJ

sa

1

1
2

0
11 ˆ

ˆ
),ˆ(

1

� �� (1.76)

To determine the integration constant in Eq. (1.75) we have used the condition that for a s1 = 0

(no surfactant in the solution) we have �1 = 0 (no surfactant adsorption) and �2 = 0 (no binding

of counterions at the headgroups of adsorbed surfactant). The integral J in Eq. (1.76) can be

taken analytically for all popular surface tension isotherms, see Table 1.1. Differentiating Eq.

(1.76) one obtains saJ 11 ln/���� . The substitution of the latter equation, together with Eq.

(1.75) into Eq. (1.73), after integration yields

kTJa �� 0�� , (1.77)

where �0 is the value of � for pure water.  Combining Eqs. (1.19) and (1.77) one obtains the

surface tension isotherm of the ionic surfactant:

dkTJ ��� ��� 0 , (1.78)

where �d is given by Eq. (1.67) and expressions for J, corresponding to various adsorption

isotherms, are available in Table 1.1. Note that for each of the  isotherms in Table 1.1 �1

depends on the product sKa1 , that is �1=�1 ( sKa1 ). Then Eq. (1.76) can be transformed to read
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X
dXXJ

sKa
)(

1

0
1��� (1.79)

Differentiating Eq. (1.79) one can bring Eq. (1.75) into the form [20]

sa
K

2
12 ln

ln
�

�
��� (1.80)

which holds for each of the surfactant adsorption isotherms in Table 1.1. Note that Eq. (1.80) is

valid for a general form of the dependence K = K( a s2 ), which expresses the dependence of the

equilibrium constant of surfactant adsorption on the concentration of the salt in solution.

Let us consider a linear dependence K = K( a s2 ), that is

saKKK 221 �� (1.81)

where K1 and K2 are constants. The physical meaning of the linear dependence of K on a2s in

Eq. (1.81) is discussed below, see Eqs. (1.118)�(1.128) and the related text. The substitution of

Eq. (1.81) into Eq. (1.80) yields [20]

s

s
aKK

aK

221

22

1

2
�

�
�

�
(1.82)

Equation (1.82) is in fact a form of the Stern isotherm [17,38]. One can verify that the Euler

condition (1.74) is identically satisfied if �2 is substituted from Eq. (1.82) and �1 is expressed

by either of the adsorption isotherms in Table 1.1. In fact, Eq. (1.81) is the necessary and

sufficient condition for thermodynamic compatibility of the Stern isotherm of counterion

adsorption, Eq. (1.82), with either of the surfactant adsorption isotherms in Table 1.1. In other

words, a given isotherm from Table 1.1, say the Langmuir isotherm, is thermodynamically

compatible with the Stern isotherm, if only the adsorption parameters K, K1 and K2 in these

isotherms are related by means of Eq. (1.81). The constants K1 and K2 have a straightforward

physical meaning. In view of Eqs. (1.42) and (1.81)
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11
1 exp
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(1.83)
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where ��1
0( )  has the meaning of standard free energy of adsorption of surfactant from ideal

dilute solution to ideal adsorption monolayer in the absence of dissolved non-amphiphilic salt;

the thickness of the adsorption layer �1 is about 2 nm for SDS. Note that the Langmuir and

Stern isotherms, Eqs. (1.41) and (1.82), have a similar form, which corresponds to a statistical

model considering the interface as a lattice of equivalent, distinguishable, and independent

adsorption sites, without interactions between bound molecules [27]. Consequently, an

expression, which is analogous to Eq. (1.83), holds for the ratio K2/K1 [the latter is a

counterpart of K in Eq. (1.41)]:

�
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�

�

�
�

�
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�
	

�
kTK

K )0(
22

1

2 exp
��

(1.84)

where �2 is the thickness of the Stern layer (c.a. the diameter of a hydrated counterion) and

��2
(0)  has the meaning of standard free energy of adsorption (binding) of a counterion from an

ideal dilute solution into an ideal Stern layer. In summary, the parameters K1 and K2 are related

to the standard free energies of surfactant and counterion adsorption.

The above equations form a full set for calculating the surface tension as a function of the bulk

surfactant and salt concentrations (or activities), � = �( a1� , a2� ). There are 6 unknown

variables: �, � s , a s1 ,�1 , a s2  and �2 . These variables are to be determined from a set of 6

equations as follows. Equation (1.49) for i = 1,2 provides 2 equations. The remaining 4

equations are: Eqs. (1.66), (1.78), (1.82) and one surfactant adsorption isotherm from Table

1.1, say the Langmuir isotherm.

Comparison of theory and experiment. As illustration we consider an interpretation of

experimental data by Tajima et al. [42,43] for the surface tension vs. surfactant concentrations

at two concentrations of NaCl: c3� = 0 and c3� = 0.115 M, see Fig. 1.6. The ionic surfactant

used in these experiments is tritiated sodium dodecyl sulfate (TSDS), which is 1:1 electrolyte

(the radioactivity of the tritium nuclei have been measured by Tajima et al. to determine

directly the surfactant adsorption). Processing the set of data for the interfacial tension

),( 21 ��
� cc��  as a function of the bulk concentrations of surfactant ions, c1� , and

counterions,  c2� ,  one  can  determine  the  surfactant  adsorption,  �1 1 2( , )c c
� �

, the counterion
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Fig. 1.6. Surface pressure at air-water interface, �0��, vs. the surfactant (TSDS) concentration, c1�, for
two fixed NaCl concentrations: 0 and 0.115 M; the symbols are experimental data from Refs.
[42] and [43]; the continuous lines represent the best fit by means of the theory from Ref. [20].

adsorption, �2 1 2( , )c c
� �

, and the surface potential, � s c c( , )1 2� �
. To fit the data in Fig. 1.6 the

Frumkin isotherm is used (see Table 1.1). The theoretical model contains four parameters, �,

�� , K1 and K2, whose values are to be obtained from the best fit of the experimental data. The

parameters values can be reliably determined if only the set of data for � ��
� �

( , )c c1 2

contains experimental points for both high and low surfactant concentrations, and for both high

and low salt concentrations; the data by Tajima et al. [42,43] satisfy the latter requirement. (If

this requirement is not satisfied, the merit function exhibits a flat and shallow minimum, and

therefore it is practically impossible to determine the best fit [20]).

The value of �
�

, obtained in Ref. [20] from the best fit of the data in Fig. 1.6, corresponds to

1/�
�

= 37.6 Å2. The respective value of K1 is 156 m3/mol, which in view of Eq. (1.83) gives a

standard free energy of surfactant adsorption ��1
0( ) = 12.8 kT per TDS� ion, that is 31.3 kJ/mol.

The determined value of K2/K1 is 8.21����� m3/mol, which after substitution in Eq. (1.84)

yields a standard free energy of counterion binding ��2
0( ) = 1.64 kT per Na+ ion, that is 4.04

kJ/mol.
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Fig. 1.7. Plots of the calculated adsorptions of surfactant �1/�� (the full lines), and counterions �2/��

(the dotted lines), vs. the surfactant (TSDS) concentration, c1�. The lines correspond to the
best fit of the data in Fig. 1.6 obtained in Ref. [20].

The value of the parameter �  is positive (2���/kT = +0.8), which indicates attraction between

the hydrocarbon tails of the adsorbed surfactant molecules.

Figure 1.7 shows calculated curves for the adsorptions of surfactant, �1  (the full lines), and

counterions, �2  (the dotted lines), vs. the TSDS concentration, c1� . These lines represent the

variation of �1  and �2  along the two experimental curves in Figure 1.6. One sees that both �1

and �2  are markedly greater when NaCl is present in the solution. The highest values of �1  for

the curves in Fig. 1.7 are 4.30 � ���� mol/m2 and 4.20 � ���� mol/m2 for the solutions with and

without NaCl, respectively. The latter two values compare well with the saturation adsorptions

measured by Tajima [42,43] for the same system by means of the radiotracer method, viz.

�1  = 4.33 
�

 
��

�� mol/m2 and 3.19 
�

 
��

�� mol/m2 for the solutions with and without NaCl.

In Fig. 1.8 the occupancy of the Stern layer, � =�2 / �1, is plotted vs. the surfactant

concentration for the curves in Fig. 1.7. For the solution without NaCl � �2 1/  rises from 0.15
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Fig. 1.8. Calculated occupancy of the Stern layer by adsorbed counterions, �2/�1, vs. the surfactant
(TSDS) concentration, c1�, for two fixed NaCl concentrations: 0 and 0.115 M. The lines
correspond to the best fit obtained in Ref. [20] for the data in Fig. 1.6.

up to 0.74 and then exhibits a tendency to level off. As it could be expected, the occupancy

� �2 1/  is higher for the solution with NaCl; even at TSDS concentration 10�� M the occupancy

is about 0.40; for the higher surfactant concentrations �  levels off at � �2 1/  = 0.74 (Fig. 1.8).

The latter value is consonant with data of other authors [44�47], who have obtained values of

� �2 1/  up to 0.70 � 0.90 for various ionic surfactants; pronounced evidences for counterion

binding have been obtained also in experiments with solutions containing surfactant micelles

[48�53]. These results imply that the counterion adsorption (binding) should be always taken

into account.

The fit of the data in Fig. 1.6 gives also the values of the surface electric potential, � s . For the

solutions with salt the model predicts surface potentials varying in the range |� s | = 55 � 95 mV

within the experimental interval of surfactant concentrations, whereas for the solution without

salt the calculated surface potential is higher: |� s | = 150 - 180 mV (note that for TSDS � s  has

a negative sign). Thus it turns out that measurements of surface tension, interpreted by means
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of an appropriate theoretical model, provide a method for determining the surface potential � s

in a broad range of surfactant and salt concentrations. The results of this method could be

compared with other, more direct, methods for surface potential measurement, such as the

electrophoretic �-potential measurements [12,13,54,55], or Volta (�V) potential measurements,

see e.g. Ref. [56].

Surfactant is 1:1 electrolyte, salt is Z3:Z4 electrolyte.  In this case we will number the

ionic components as follows: index “1” � surfactant ion, index “2” � counterion due to the

surfactant, index “3” � coion due to the salt, and index “4” � counterion due to the salt. As

before, we assume that the coions due to the salt do not adsorb at the interface:  �3 = 0. The

counterions due to the surfactant and salt are considered as separate components, which can

exhibit a competitive adsorption in the Stern layer (see Fig. 1.4). The analogs of Eqs. (1.81)

and (1.82) for the case under consideration are [20]:

ss aKaKKK 44221 ��� (1.85)

ss

isii
aKaKK

aK

442211 ��
�

�

�
(i = 2,4) (1.86)

where K1, K2 and K4 are constants. All expressions for surfactant adsorption isotherms and

surface tension isotherms given in Table 1.1 are valid also in the present case. Different are the

forms of the Gouy equation and of the expression for �d , which depend on z3 and z4 in

accordance with Eqs. (1.60) and (1.62). In particular, the integration in Eq. (1.62) can be

carried out analytically for some types of electrolyte. Table 1.3 summarizes the expressions for

the Gouy equation and �d , which have been derived in Ref. [20] for the cases, when the salt is

1:1, 2:1, 1:2 and 2:2 electrolyte. (Here 2:1 electrolyte means a salt of bivalent counterion and

monovalent coion.) One may check that in the absence of salt (a4� = 0) all expressions in Table

1.3 reduce either to Eq. (1.66) or to Eq. (1.67). More details can be found in Ref. [20].

Gibbs elasticity  for ionic surfactants.  The definition of Gibbs (surface) elasticity is not

well elucidated in the literature for the case of ionic surfactant adsorption monolayers. That is

the reason why here we devote a special discussion to this issue.



Chapter 134

Table 1.3. Special forms of the Gouy equation (1.60) and of the expression for �d , Eq. (1.62), for

solutions of surfactant which is 1:1 electrolyte, and salt which is 1:1, 2:1, 1:2 and 2:2 electrolyte.

Type

of salt

Expressions

obtained from Eqs. (1.60) and (1.62)
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The physical concept of surface elasticity is the most transparent for monolayers of insoluble

surfactants. The changes of �  and �1 in the expression EG = ��1(��/��1) correspond to

variations in surface tension and adsorption during a real process of interfacial dilatation.

In the case of a soluble nonionic surfactant the detected increase of �  in a real process of

interfacial dilatation can be a pure manifestation of surface elasticity only if the period of

dilatation, �t, is much shorter than the characteristic relaxation time of surface tension,

�t << �� . Otherwise the adsorption and the surface tension would be affected by the diffusion

supply of surfactant molecules from the bulk of solution toward the expanding interface. The

diffusion transport tends to reduce the increase of surface tension upon dilatation, thus

apparently rendering the interface less elastic and more fluid. To describe the variation of the

surface tension after an initial dilatation one is to solve the diffusion equation using an

appropriate initial condition (see Section 1.3.1 for details). In such a case the Gibbs elasticity,

EG, enters the theoretical expressions through this initial condition, which corresponds to an

“instantaneous” dilatation of the interface (that is �t << ��), see e.g. Ref. [57]. This

“instantaneous” dilatation decreases the adsorptions �i and the subsurface concentrations cis  of

the species (the subsurface is presumed to be always in equilibrium with the surface), but the

bulk concentrations ci�  remain unaffected [58,59]. This initially created difference between cis

and ci�  further triggers the diffusion process. Now, let us try to extend this approach to the case

of ionic surfactants.

In the case of solution of an ionic surfactant, a non-uniform diffuse electric double layer (EDL)

is formed in a vicinity of the interface; this is the major difference with the case of nonionic

surfactant. The main question is whether or not the electric field in the EDL should be affected

by the initial “instantaneous” dilatation of the interface. This problem has been examined in

Ref. [60] and it has been established that a variation of the electric field during the initial

dilatation leads to theoretical results devoid of sense. This is due to the following two facts:

(i) The speed of propagation of the electric signals is much greater than the characteristic rate

of diffusion.  (2) Even a small initial variation in the surface charge density �s  immediately

gives rise to an electric potential, which is linearly increasing with the distance from the

interface (potential of a planar wall). Thus a small initial perturbation of the interface would
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immediately affect the ions in the whole solution; of course, such an initial condition is

physically unacceptable. In reality, a linearly growing electric field could not appear in the

ionic solution, because a variation of the surface charge density would be immediately

suppressed by exchange of counterions, which are abundant in the subsurface layer of the

solution (see Fig. 1.4). The theoretical equations suggest the same: to have a mathematically

meaningful initial condition for the diffusion problem, the initial dilatation must be carried out

at constant surface charge density �s (�s = const. means also �s = const., see Eq. 1.66). Thus

we can conclude that the initial “instantaneous” interfacial dilatation, which is related to the

definition of Gibbs elasticity of a soluble ionic surfactant, must be carried out at �s = const.

From Eq. (1.19) one obtains

� � � � � �
sss da ddd

���
��� �� (1.87)

We recall that �a and �d  are, respectively, the contributions of the adsorption and diffusion

layers to the total interfacial tension, �.  An interfacial dilatation at constant �s and �s does not

alter the diffuse part of the EDL, and consequently, � � 0�

sdd
�

� . Since, �a � �0 � kTJ , the

expressions for J in Table 1.1 show that �a depends only on �1 at constant temperature. Then

the definition of Gibbs elasticity of nonionic adsorption layers, Eq. (1.45), can be extended to

ionic adsorption layers in the following way:
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The dependence of �  on �1 for nonionic surfactants is the same as the dependence of �a on �1

for ionic surfactants, see the surface tension isotherms in Table 1.1. Then Eqs. (1.45) and (1.88)

show that the expressions for EG in Table 1.2 are valid for both nonionic and ionic surfactants.

The effect of the surface electric potential on the Gibbs elasticity EG of an ionic adsorption

monolayer is implicit, through the equilibrium surfactant adsorption �1, which depends on the

electric properties of the interface. To illustrate this let us consider the case of Langmuir

isotherm; combining expressions from Tables 1.1 and 1.2 we obtain EG � �
�
kTKa1s . Further,

using Eqs. (1.49) and (1.81) we derive

� �
�

��

�� ��� 2211 aKeKkTaE s
G (for Langmuir isotherm) (1.89)
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Equation (1.89) visualizes the effect of salt on EG: when the salt concentration increases, a2�

also increases, but the (dimensionless) surface potential �s decreases; then Eq. (1.89) predicts

an increase of EG with the salt concentration. Note also that the values of EG, calculated from

the fits, like that in Fig. 1.6, depend on the type of the used adsorption isotherm; for example,

the Frumkin isotherm gives values of EG, which are systematically larger than those given by

the van der Waals isotherm. The latter is preferable for fluid interfaces insofar as it corresponds

to the model of non-localized adsorption.

The definition of Gibbs elasticity given by Eq. (1.88) corresponds to an “instantaneous”

(�t << ��) dilatation of the adsorption layer (that contributes to �a) without affecting the diffuse

layer and �d . This will cause an initial change in the subsurface concentrations cis  of the

species, which will further trigger a diffusion transport of components across a changing

electric double layer. Thus we reach again the subject of the adsorption kinetics, which is

considered in the next section.

1.3. KINETICS  OF  SURFACTANT  ADSORPTION

When a colloidal particle approaches an interface from the bulk of solution, or when an

attached  particle is moving throughout the interface, the surfactant adsorption layer is locally

disturbed (expanded, compressed, sheared). The surfactant solution has the property to damp

the disturbances by diffusion of surfactant molecules from the bulk to the interface (or in the

opposite direction). If the particle motion is slow enough (compared with the relaxation time of

surface tension ��) the interface will behave as a two-dimensional fluid and surface elastic

effects will not arise. On the contrary, if the characteristic time of the process of particle motion

is comparable with or smaller than �� , the motion of the particle will be accompanied by

surface elastic effects and adsorption dynamics. The criterion, showing when the latter effects

would appear, is related to the relaxation time of the surface tension �� .

Our attention in the present section will be focused on the theoretical results about �� obtained

for various types of surfactant adsorption, as follows: (i) adsorption under diffusion control,

(ii) adsorption  under  electro-diffusion control,  (iii) adsorption under barrier (kinetic) control,
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(iv) adsorption from micellar solutions, (v) adsorption from protein solutions. Our purpose is to

give a brief review and related references in the context of the subject of this book; detailed

information about the variety of experimental methods and theoretical approaches can be found

elsewhere [58-66].

1.3.1. ADSORPTION UNDER DIFFUSION CONTROL

Insofar as we are interested mainly in the relaxation time �� , we will restrict our considerations

to a physical situation, in which the interface is instantaneously expanded at the initial moment

t = 0 and then (for t > 0) the diffusion transport of surfactant tends to saturate the adsorption

layer, and eventually to restore the equilibrium in the system. In other words, the interfacial

expansion happens only at the initial moment, and after that the interface is quiescent and the

dynamics in the system is due only to the diffusion of surfactant.

The adsorption process is a consequence of two stages: the first one is the diffusion of

surfactant from the bulk to the subsurface and the second stage is the transfer of surfactant

molecules from the subsurface to the surface.  When the first stage (the surfactant diffusion) is

much slower than the second stage, and consequently determines the rate of adsorption, the

process is termed adsorption under diffusion control; it is considered in the present section.

The opposite case, when the second stage is slower than the first one, is called adsorption under

barrier (or kinetic) control and it is presented in Section 1.3.3. If an electric double layer is

present, the electric field to some extent plays the role of a slant barrier; this intermediate case

of adsorption under electro-diffusion  control, is presented in Section 1.3.2.

Here we consider a solution of a nonionic surfactant, whose concentration, c1 � c1(z, t) ,

depends on the position and time because of the diffusion process. As before, z denotes the

distance to the interface, which is situated in the plane z = 0. The surfactant adsorption and the

surface tension vary with time: �1 � �1(t) , � � � (t). The surfactant concentration obeys the

equation of diffusion:
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� (z > 0, t > 0) (1.90)
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where D1 is the diffusion coefficient of the surfactant molecules. The exchange of surfactant

between the solution and its interface is described by the boundary condition

z
c

D
td

d
�

� 1
1

1
�

�
(z = 0, t > 0) (1.91)

which states that the rate of increase of the adsorption �1 is equal to the diffusion influx of

surfactant per unit area of the interface. The three equations necessary to determine the three

unknown functions, c1(z,t), �1(t) and �(t), are in fact Eqs. (1.90), (1.91) and one of the

adsorption isotherms, �1 = �1(c1), given in Table 1.1. Except the Henry isotherm, all other

isotherms in Table 1.1 give a nonlinear connection between �1 and c1. As a consequence, an

analytical solution of the problem can be obtained only if the Henry isotherm can be used, or if

the deviation from equilibrium is small and the adsorption isotherm can be linearized:
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c1s stands for the subsurface concentration; here and hereafter the subscript “e” means that the

respective quantity refers to the equilibrium state. The set of three linear equations, Eqs.

(1.90)�(1.92), have been solved by Sutherland [65]. The result, which describes the relaxation

of a small initial interfacial dilatation, reads:
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is the characteristic relaxation time of surface tension and adsorption, and

�
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(1.95)

is the so called complementary error function [67, 68]. The asymptotics of the latter function

for small and large values of the argument are [67, 68]:
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Combining Eqs. (1.93) and (1.96) one obtains the short-time and long-time asymptotics of the

surface tension relaxation:
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Equation (1.98) is often used as a test to verify whether the adsorption process is under

diffusion control: data for ��(t) =�(t) 
�

 
�e  are plotted vs. 1/ t  and it is checked if the plot

complies with a straight line. We recall that Eqs. (1.97) and (1.98) are valid in the case of a

small initial perturbation; alternative asymptotic expressions for the case of large initial

perturbation have been derived for nonionic surfactants by Hansen [69] and for ionic

surfactants by Danov et al. [70].

Using thermodynamic transformations one can relate the derivative in Eq. (1.94) to the Gibbs

elasticity EG; thus Eq. (1.94) can be expressed in an alternative form:
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Substituting EG from Table 1.2 into Eq. (1.99) one could obtain expressions for ��

corresponding to the various adsorption isotherms. In the special case of Langmuir adsorption

isotherm one can present Eq. (1.99) in the form
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Equation (1.100) visualizes the very strong dependence of the relaxation time on the surfactant

concentration c1; in general, ��  can vary with many orders of magnitude as a function of c1.

Equation (1.100) shows also that high Gibbs elasticity corresponds to short relaxation time, and

vice versa.
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As a quantitative example let us take typical values of the parameters: K1 = 15 m3/mol, 1/�� =

40 Å2, D1 = 5.5 
�

 10�6 cm2/s and T=298 K. Then substituting c1= 6.5 
�

 10�6 M in Eqs. (1.45a)

and (1.100) we calculate EG � 1.0 mN/m and �� � 5 s. In the same way, for c1= 6.5 
�

 10�4 M we

calculate EG � 100 mN/m and �� � 5 
�

 10�4 s.

As already mentioned, to directly measure the Gibbs elasticity EG, or to precisely investigate

the dynamics of surface tension, one needs an experimental method, whose characteristic time

is smaller compared to �� . Equation (1.100) and the above numerical example show that when

the surfactant concentration is higher, the experimental method should be faster. Various

experimental methods are available, whose operational time scales cover different time

intervals. Methods with a shorter characteristic operational time are the oscillating jet method

[71-73], the oscillating bubble method [74-77], the fast-formed drop technique [78, 79], the

surface wave techniques [80-83] and the maximum bubble pressure method [84-88]. Methods

of longer characteristic operational time are the inclined plate method [89, 90] and the drop-

weight techniques [91-93]; see Ref. [64] for a detailed review.

1.3.2. ADSORPTION UNDER ELECTRO-DIFFUSION CONTROL

Let us consider a solution of an ionic surfactant and salt; for simplicity we assume that the

counterions due to the surfactant and salt are the same (an example is SDS and NaCl, both of

them releasing Na+ counterions; the coions are DS� and Cl�). The adsorption of surfactant at

the interface creates surface charge, which is increasing in the course of the adsorption process.

The charged interface repels the new-coming surfactant molecules, but attracts the conversely

charged counterions; some of them bind to the surfactant headgroups thus decreasing the

surface charge density and favoring the adsorption of new surfactant molecules.

The transport of the i-th ionic species, with valency Zi and diffusion coefficient Di , under the

influence of electrical potential �, is described by the set of electro-diffusion equations

[58,59,94]:
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The indices i = 1, 2 and 3 denote the surfactant ion, the counterion and the coion, respectively;

ci is the bulk concentrations of the i-th ion which depends on time t and the distance z to the

interface. The second term in the parentheses in Eq. (1.101), the so called “electromigration”

term, accounts for the effect of the electric field on diffusion. The electric potential � is related

to the bulk charge density through the known Poisson equation,

� �3322112

2 4 cZcZcZe
z

����

�

�

�

��  , (1.102)

Now we have two adsorbing species: the surfactant ions and the counterions; the coions are not

expected to adsorb at the interface: �3 = 0; on the other hand, 0~
33 ���� , see Eq. (1.69).

Then the generalization of Eq. (1.91) is
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(z = 0, t > 0) i = 1,2. (1.103)

Note that the supply of surfactant ions to the interface is promoted by the gradient of

concentration, �c1, but it is opposed by the gradient of electric field, ��. The two effects

compensate each other in such a way, that the effect of �c1 is slightly predominant (otherwise,

there would not be surfactant adsorption). For the conversely charged counterions these

tendencies have the opposite direction with a predominant effect of ��.

It is not an easy task to solve the electro-diffusion problem based on Eqs. (1.101)�(1.103).

Dukhin et al. [95-98] have developed a quasi-equilibrium model assuming that the

characteristic diffusion time is much greater than the time of formation of the electrical double

layer, and consequently, the electro-diffusion problem is reduced to a mixed barrier-diffusion

controlled problem. Bonfillon and Langevin [99] investigated the case of small periodic surface

corrugations. MacLeod and Radke [94] obtained numerical solutions of the electro-diffusion

problem without taking into account the effect of counterion binding, i.e. the formation of a

Stern layer.

Analytical results for the long-time asymptotics of adsorption and surface tension have been

obtained in Refs. [60,70,100] without making simplifications of the physical model. Assuming
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small deviations from equilibrium the adsorption isotherm is linearized and a counterpart of

Eq. (1.92) is obtained:
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where �cis (t) � cis (t) � cis(e) , i =1,2, are the perturbations in the subsurface concentrations of

surfactant ions and counterions. As usual, the subscript “s” denotes subsurface concentration

and the subscript “e” refers to the equilibrium state. We recall that in the case of ionic

surfactant two types of adsorptions can be introduced: �i , which is mostly due to the surfactant

ions and counterions immobilized at the interface, and iii �����
~  which includes also a

contribution from the whole diffuse EDL, see Eq. (1.69). Equation (1.104) expresses a local

equilibrium between surface and subsurface; such an equation cannot be written for i�
~  ,

because the latter quantity has a non-local, integral character. The result for the long-time

asymptotics of the adsorption relaxation, derived on the basis of Eqs. (1.101)�(1.104), is

[60,70]:
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where the adsorption relaxation time �i  is defined as follows [60,70]:
2
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where � is the Debye screening parameter, Eq. (1.64), and the following notation is used:
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~)1(~2)(2 ���  

� = 1  for small initial perturbation: ��i(0) << �i,e

� = (1 + � 
�2,e / �1,e)(1 + �)�1 for large initial perturbation: �i(0) = 0

The above algebraic equations enable one to calculate the relaxation times of surfactant and

counterion adsorption, �1 and �2 , using Eq. (1.106). From Eqs. (1.74), (1.81), (1.82) and the

adsorption isotherms in Table 1.1 (with ais � cis) one can deduce relatively simple expressions

for the coefficients gji [60]:
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Using the expressions for EG for the various isotherms in Table 1.2, one can easily calculate

1�J  and all coefficients  gji from Eqs. (1.107)�(1.108). The result for the long-time asymptotics

of the surface tension relaxation is [60,70]:
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where the characteristic relaxation time is determined by the expression [70]
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where, as usual, �s,e is the equilibrium value of the dimensionless surface potential, cf. Eq.

(1.54) and the relaxation times �1 and �2  are given by Eq. (1.106). It should be noted that

usually � � 1 and, therefore, the values of �1, �2 and ��  are not so sensitive to the magnitude of
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the initial perturbation: small or large. In this respect �1, �2 and ��  can be considered as general

kinetic properties of the adsorption monolayer from an ionic surfactant [70].

Let us now discuss the similarities and dissimilarities of the adsorption relaxation under

diffusion and electro-diffusion control, which correspond to the cases of nonionic and ionic

surfactants, respectively. In both cases ��1(t) and ��(t) tend to zero proportionally to 1/ t , cf.

Eqs. (1.98), (1.105) and (1.109). Hence, from the fact that the plot of ��(t) vs. 1/ t  is linear it

is impossible to determine whether the adsorption is under diffusion or electro-diffusion

control. The difference is that the slope of this plot depends on the concentration of added salt

in the case of electro-diffusion control. Another difference is that for nonionic surfactants the

relaxation time is the same for adsorption and surface tension, see Eq. (1.105), whereas for

ionic surfactants these relaxation times are different: �� � �1 � �2. The latter difference

originates from the presence of diffuse electric double layer, whose relatively slow relaxation

affects stronger ��  than �1 and�2. To visualize the difference between �� , �1 and �2 , and to

examine their dependence on the concentration of the dissolved salt, below we consider an

illustrative example.

The values of the parameters �, ��, K1 and K2 , determined from the fits of the data in Fig. 1.6

(see Section 1.2.5) can be used to calculate the values of all parameters entering Eq. (1.106)

and (1.110). Figure 1.9 shows the relaxation times of surface tension, surfactant adsorption and

counterion adsorption, �
�

, �1 , and � 2 , respectively, calculated in this way in Ref. [70]. They

are plotted as functions of the surfactant concentration, c1� , for a solution, which does not

contain NaCl: c3� = 0. First of all, one notices the wide range of variation of the relaxation

times, which is 3 - 4 orders of magnitude. In particular, the relaxation time of surface tension,

�
�

, drops from 0.1 s down to 1�	
�5 s.  Next, one sees that systematically � 2 <�1 <�
�

; the

difference between these three relaxation times can be greater than one order of magnitude for

the lower surfactant concentrations. Thus one can conclude that the terms with �s,e in Eq.

(1.110), which lead to a difference between �1  and �
�

, play an important role, especially for

the lower surfactant concentrations. Figure 1.9 demonstrates that the approximation � �
�
� 1 ,

which  is  widely  used  in literature,  is applicable only for the higher surfactant concentrations,
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Fig. 1.9. Relaxation times of surface tension, �� , of surfactant adsorption, �1 , and of counterion
adsorption, �2 , calculated in Ref. [70] for surfactant solutions without added salt by means of
Eqs. (1.106) and (1.110) as functions of surfactant (TSDS) concentration, c1�, using
parameters values determined from the best fit of the data in Fig. 1.6; a large initial
perturbation is assumed.

for which � �
�
� 1 . Note also that � 2  keeps always smaller than �1  and �

�
, that is the

adsorption of counterions relaxes always faster than does the adsorption of surfactant ions and

the surface tension. Moreover, � 2  exhibits a non-monotonic behavior (Figure 1.9). The initial

increase in � 2  with the rise of the TSDS concentration can be attributed to the fact that the

strong increase of the occupancy of the Stern layer, � �2 1/ , with the rise of surfactant

concentration (see Fig. 1.8, the curve without salt) leads to a decrease of the surface charge

density and a proportional decrease of the driving force of counterion supply, �� .

To demonstrate the effect of salt on the relaxation time of surface tension, in Fig. 1.10 �
�

 is

plotted vs. c1�  for a wider range of surfactant concentrations (than that in Fig. 1.9) and for 4

different salt concentrations denoted in the figure. Again , one sees that �
�

 varies with many

orders of magnitude: from more than 100 s down to 10�5 s. As seen in Fig. 1.10, the addition of

salt  (NaCl)  accelerates  the  relaxation  of  the  surface  tension  for  the  higher  surfactant
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Fig. 1.10. Relaxation time of surface tension, �� , vs. surfactant (TSDS) concentration, c1�, calculated
in Ref. [70] by means of Eq. (1.110) for four different NaCl concentrations using parameters
values determined from the best fit of the data in Fig. 1.6; a large initial perturbation is
assumed.

concentrations, but decelerates it for the lower surfactant concentrations. This curious inversion

of the tendency can be interpreted in the following way. The accelerating effect of salt at the

higher surfactant concentrations can be attributed to the suppression of the electric double layer

by the added salt. For the lower surfactant concentrations (in the region of Henry) the latter

effect is dominated by another effect of the opposite direction. This is the increase of

� �
�

�
�

21/ cc��  due to the added salt. Physically, the effect of � �
�

�
�

21/ cc��  can be explained

as follows [60]. At low surfactant concentrations the diffusion supply of surfactant is very slow

and it controls the kinetics of adsorption. In the absence of salt the equilibrium surfactant

adsorption monolayer is comparatively diluted, so the diffusion flux from the bulk is able to

quickly equilibrate the adsorption layer. The addition of salt at low surfactant concentrations

strongly increases the equilibrium surfactant adsorption (see Fig. 1.7); consequently, much

longer time is needed for the slow diffusion influx to equilibrate the interface (the left-hand

side branches of the curves in Fig. 1.10). More details can be found in Ref. [60,70].
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1.3.3. ADSORPTION UNDER BARRIER CONTROL

The adsorption is under barrier (kinetic) control when the stage of surfactant transfer from the

subsurface to the surface is much slower than the diffusion stage because of some kinetic

barrier. The latter can be due to steric hindrance, spatial reorientation or conformational

changes accompanying the adsorption of the molecules. The electrostatic (double-layer)

interaction presents a special case, which is considered in the previous Section 1.3.2. First, we

will restrict our considerations to the case of pure barrier control without double layer effects.

In such a case the surfactant concentration is uniform throughout the solution, c1 = const., and

the increase of the adsorption �1(t) is solely determined by the “jumps” of the surfactant

molecules over the adsorption barrier, separating the subsurface from the surface:

)(),( 1des11ads
1

�����
� rcrQ
td

d (1.111)

rads and rdes are the rates of surfactant adsorption and desorption. The concept of barrier-limited

adsorption originate from the works of Bond and Puls [101], and Doss [102]. Further this

theoretical model has been developed in Refs. [103-110]. Table 1.4 summarizes the most

popular expressions for the total rate of adsorption under barrier control, Q, see Refs. [108-

112]. The quantities Kads and Kdes in Table 1.4 are the rate constants of adsorption and

desorption, respectively. Their ratio gives the equilibrium constant of adsorption

KKKK
�

��� desadse /  , (1.112)

The expression Ke = ��K, is valid for the Henry, Langmuir, Frumkin, Volmer and van der

Waals isotherms; likewise, for the Freundlich isotherm Ke = ��KF; the parameters �� , K and

KF are the same as in Table 1.1. Setting Q = 0 (which corresponds to the equilibrium state of

the system) each expression in Table 1.4 reduces to the respective equilibrium adsorption

isotherm given in Table 1.1, as it should be expected. In addition, for � = 0 the Frumkin

expression for Q reduces to the Langmuir expression. For �1 << �� both the Frumkin and

Langmuir expressions in Table 1.4 reduce to the Henry expression.

Substituting the expressions for Q from Table 1.4 into Eq. (1.111) and integrating one can

derive explicit expressions for the relaxation of surfactant adsorption:
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Table 1.4. Expressions for the total rate of reversible surfactant adsorption, Q, corresponding to six
different kinetic models [110].

Type of adsorption
isotherm

Total rate of reversible adsorption
)(),( 1des11ads ���� rcrQ

Henry Q = Kads c1 � Kdes�1

Freundlich Q = Kads Km�1 mc1  � Kdes�1
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Equation (1.113) holds for  ��(t) = �(t) � �e  only in the case of small deviations from

equilibrium, whereas there is not such a restriction concerning  ��1(t) = �1(t) � �1,e
 ; the

relaxation time in Eq. (1.113) is given by the expressions

� � 1
des

�

� K
�

� (Henry and Freundlich) (1.114)

1
1ads

des

�

�

��
�

�
��
�

�

�
�	

cK
K

�
� (Langmuir) (1.115)

Equation (1.113) predicts that the perturbation of surface tension, ��(t) = �(t) � �e
 , relaxes

exponentially. This is an important difference with the cases of adsorption under diffusion and

electro-diffusion control, for which  ��(t) � 1/ t ,cf. Eqs. (1.98), (1.105) and (1.109).  Thus a
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test whether or not the adsorption occurs under purely barrier control is to plot data for

ln[��(t)] vs. t and to check if the plot complies with a straight line.

When the rate of transfer of surfactant molecules from the subsurface to the surface is not-too-

slow compared with the rate of diffusion, one deals with the more general case of mixed

barrier-diffusion control [110]. In such a case, the “kinetic” boundary condition (1.111) is used

in conjunction with the “diffusion” boundary condition (1.91). Numerical analysis of this

process has been performed on the basis of the Henry and Langmuir models [113], and the

Frumkin model [111]. Analytical solution of the mixed (diffusion-barrier) problem has been

published in Ref. [59] for the case of the Henry isotherm:
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where � = Kdest  is dimensionless time, b1,2 = � � (� 2 
� 1)1/2 are dimensionless parameters with

� � 2/1
des1ads 4/ KDK��  being a dimensionless diffusion-kinetic ratio; the complementary error

function erfc(x) is defined by Eq. (1.95). Equation (1.116) is valid not only for � > 1, but also

in the case � < 1 (fast diffusion). Despite the fact that in the latter case b1 and b2 become

complex numbers, Eq. (1.116) gives real values of �1(t). In the limit � 
 0 (complete barrier

control) Eq. (1.116) reduces to Eqs. (1.113)�(1.114). In fact, Eq. (1.116) describes the

transition from diffusion to adsorption control: for � > 2/1  the diffusion control is

predominant and ��(t) � 1/ t  for t
�; on the other hand, for � < 2/1  the barrier control is

predominant and ��(t) decays exponentially for t
�. One can estimate the characteristic time

of relaxation under mixed diffusion-barrier control by using the following combined

expression:

22/12

des

11
�
�
��

�
� ��	 ���

� K
(1.117)

For � << 1 Eq. (1.117) reduces to the result for barrier control, Eq. (1.114), whereas for � >> 1

Eq. (1.117), along with Eq. (1.112), gives the expression for diffusion control, Eq. (1.94), for

the Henry isotherm. Other results for the mixed diffusion-barrier problem can be found in Refs.

[114-118].
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The case of mixed barrier-electrodiffusion control also deserves some attention insofar

as it can be important for the kinetics of adsorption of some ionic surfactants. We will consider

the same system as in Section 1.3.2, that is a solution of an ionic surfactant M+S� with added

non-amphiphilic salt M+C�. Here S� is the surfactant ion, M+ is the counterion and C� is the

coion due to the salt.

First, let us consider Langmuir-type adsorption, i.e. let us consider the interface as a two-

dimensional lattice. Further, we will use the notation �0 for the fraction of the free sites in the

lattice, �1 for the fraction of the sites containing adsorbed surfactant ion S�, and �2 for the

fraction of the sites containing the complex of adsorbed surfactant ion with a bound counterion.

Obviously, one can write

�0 + �1 + �2 = 1 (1.118)

The adsorptions of surfactant ions and counterions can be expressed in the form:

�1/�� = �1 + �2 ; �2/�� = �2 (1.119)

Following Kalinin and Radke [119], let us consider the "reaction" of adsorption of S� ions:

A0 + S� = A0S� (1.120)

where A0 symbolizes an empty adsorption site. In accordance with the rules of the chemical

kinetics one can express the rates of adsorption and desorption in the form:

r1,ads = K1,ads�0 c1s , r1,des = K1,des�1 (1.121)

where, as before, c1s is the subsurface concentration of surfactant; K1,ads and K1,des are constants.

In view of Eqs. (1.118)-(1.119) one can write �0 = (�� � �1)/��  and  �1 = (�1 � �2)/��. Thus,

with the help of Eq. (1.121) we obtain the adsorption flux of surfactant:

Q1 � r1,ads � r1,des = K1,adsc1s(�� � �1)/�� � K1,des(�1 � �2)/�� (1.122)

Next, let us consider the reaction of counterion binding:

A0S� + M+ = A0SM (1.123)

The rates of the direct and the reverse reactions are, respectively,

r2,ads = K2,ads�1 c2s , r2,des = K2,des�2 (1.124)
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where K2,ads and K2,des are the respective rate constants, and c2s is the subsurface concentration

of counterions. Having in mind that �1 = (�1 � �2)/�� and �2 = �2/��, with the help of Eq.

(1.124) we deduce an expression for the adsorption flux of counterions:

Q2 � r2,ads � r2,des = K2,ads c2s(�1 � �2)/�� � K2,des �2/�� (1.125)

Up to here, we have not used simplifying assumptions. If we can assume that the reaction of

counterion binding is much faster than the surfactant adsorption, then we can set Q2 � 0, and

Eq. (1.125) reduces to the Stern isotherm:

s

s

cK
cK

2St

2St

1

2

1�
�

�

�
, KSt � K2,ads/K2,des (1.126)

Note that Eq. (1.126) is equivalent to Eq. (1.82) with KSt � K2 /K1 . Next, a substitution of �2

from Eq. (1.126) into Eq. (1.122) yields

Q1 � r1,ads � r1,des = K1,ads c1s(�� � �1)/�� � K1,des(1 + KSt c2s)�1 
�1/�� (1.127)

Equation (1.127) shows that the adsorption flux of surfactant is influenced by the subsurface

concentration of counterions, c2s.

If there is equilibrium between surface and subsurface, then we have to set Q1 � 0 in Eq.

(1.127), and thus we obtain the Langmuir isotherm for an ionic surfactant:

Kc1s = �1/(�� � �1), K � (K1,ads/K1,des)(1 + KSt c2s) (1.128)

Note that the above expression for the adsorption parameter K is equivalent to Eq. (1.81), with

K1 � K1,ads/K1,des. This result demonstrates that the linear dependence of K on c2s can be

deduced from the reactions of surfactant adsorption and counterion binding, Eqs. (1.120) and

(1.123).

In the case of Frumkin-type adsorption isotherm an additional effect of interaction between the

adsorbed surfactant molecules is taken into account. Then, instead of Eq. (1.122), one can

derive

Q1 � r1,ads � r1,des = K1,ads c1s(�� � �1)/�� � F1,des(�1 � �2)/�� (1.129)

where F1,des depends on �1, because an adsorbed surfactant molecule "feels" the presence of

other adsorbed molecules at the interface. The latter dependence can be expressed as follows
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F1,des = K1,des �



�
�
�
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kT
12

exp
�

(1.130)

see Table 1.4 and Ref. [110].

1.3.4. ADSORPTION FROM MICELLAR SURFACTANT SOLUTIONS

As known, beyond a given critical micellization concentration (CMC) surfactant aggregates

(micelles) appear in the surfactant solutions. In general, the micelles exist in equilibrium with

the surfactants monomers in the solution [50,51]. If the concentration of the monomers in the

solution is suddenly decreased, the micelles release monomers until the equilibrium

concentration, equal to CMC, is restored at the cost of disassembly of a part of the micelles.

The relaxation time of this process is usually in the millisecond range.

The dilatation of the surfactant adsorption layer leads to a transfer of monomers from the

subsurface to the surface, which causes a transient decrease of the subsurface concentration of

monomers.  The  latter  is  compensated  by  disintegration  of  a  part  of  the  micelles  in  the

Fig. 1.11. In the neighborhood of an expanded adsorption monolayer the micelles release monomers to
restore the equilibrium surfactant concentration at the surface and in the bulk. The
concentration gradients give rise to diffusion of micelles and monomers.
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subsurface layer, see Fig. 1.11. This process is accompanied by a diffusion transport of

surfactant monomers and micelles due to the appearance of concentration gradients. In general,

the micelles serve as a powerful source of monomers which is able to quickly damp any

interfacial disturbance. Therefore, the presence of surfactant micelles strongly accelerates the

kinetics of adsorption.

The theoretical model by Aniansson et al. [120-123] describes the micelles as polydisperse

aggregates, whose growth or decay happens by exchange  of single monomers:

11 AAA j

K

K
j

j

j

��
�

�

�

(j = 2,...,M) (1.131)

Here j denotes the aggregation number of the micelle; �

jK  and �

jK  are rate constants of

micelle assembly and disassembly. The general theoretical description of the diffusion in such

a solution of polydisperse aggregates taking part in chemical reactions of the type of Eq.

(1.131) is a heavy task; nevertheless, it has been addressed in several works [124-127].

Approximate models, which however account for the major physical effects in the system, also

have been developed [128-134]. The basis of these models is the experimental fact that the size

distribution of the micelles has a well pronounced peak, so they can be described

approximately as being monodisperse with a mean aggregation number, m, corresponding to

this peak. Other simplification used is to consider small deviations from equilibrium. In this

case any reaction mechanism of micelle disassembly gives a linear dependence of the reaction

rate on the concentration, i.e. one deals with a reaction of “pseudo-first order”. As an example,

we give an expression for the relaxation of surface tension of a micellar solution at small initial

deviation from equilibrium derived in Ref. [125]:
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�m and �d are the characteristic relaxation times of micellization and monomer diffusion, see

Ref. [135]; Kd is rate constant of micelle decay; as earlier, the subscript “e” refers to the

equilibrium state and m is the micelle aggregation number. In the absence of micelles one is to

substitute �d /�m
0; then g1 = 1, g2 = 0, and Eq. (1.132) reduces to Eq. (1.93), as it should be

expected. One can estimate the characteristic time of relaxation in the presence of micelles by

using the following combined expression:

� �2/411

4

md

d

��

�

�
�

��

� (1.134)

According to the latter expression �� � �m  for �d >> �m  and ����d  for �d << �m.

Note, that Eq. (1.134) is applicable only for small perturbations. An approximate analytical

approach, which is applicable for both small and large deviations from equilibrium, is

developed in Ref. [134].

1.3.5. ADSORPTION FROM SOLUTIONS OF PROTEINS

The kinetics of adsorption of proteins and other macromolecules is a complex process, in

which several steps, some of them occurring simultaneously, can be conceptually identified

[136,137]: (i) transport of the native protein to the interface by diffusion; (ii) adsorption-

desorption from the phase boundary, which can happen under barrier control, see section 1.3.3;

(iii) changes in the molecular structure (denaturation) including unfolding and spreading of the

molecules over the interface; (iv) rearrangement of some structural groups of the adsorbed

protein molecules. Many results accumulated in this field can be found in Refs. [63,138-140].

As an example let us consider a process of protein adsorption including stages (i) and (iii). We

denote by �1 and �2 the adsorptions of the native and the denatured protein, respectively. The

changes of �1 and �2 due to the denaturation process are equal by magnitude but have opposite

signs. Then the interfacial mass balances for the two modifications of protein at the interface

take the form [141]:
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where kp is a kinetic rate constant of protein denaturing. The integration of Eq. (1.136) yields

� �� �tk pe ����� exp1,22 (1.137)

To estimate the diffusion flux at the interface one can employ the approximated formula [141]:
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Combining Eqs. (1.135) and (1.138), and integrating one obtains
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where �d is the same as in Eq. (1.133) and, as usual, ��1(t) = �1(t) � �1,e. Further, for the

relaxation of surface tension one obtains [141]:
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The relaxation of surface tension, described by Eq. (1.140), exhibits two characteristic

relaxation times: that of diffusion, �d , and that of denaturation (conformational changes), 1�
pk .

1.4. SUMMARY

From a micromechanical viewpoint the interfacial tension and bending moment can be

interpreted as integral effects of the anisotropy of the pressure tensor in the transition zone

between two fluid phases, see Eqs. (1.8) and (1.12). Usually, the width of this transition zone is

very small, of the order of several nanometers (Figs. 1.2 and 1.3). However, if the interface of

an aqueous solution is electrically charged, the width of the transition zone could rise up to the
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order of micrometers because of the formation of a diffuse electric double layer in a vicinity of

the phase boundary. In the latter case the interfacial tension (and the bending moment as well)

can be expressed as a sum of a double-layer and a non-double-layer contribution, Eq. (1.19).

The thermodynamics of fluid interfaces describes how the composition in the bulk of solution

determines the composition at the phase boundary and the interfacial tension. Various

surfactant adsorption isotherms can be used to process experimental data; the most popular of

them are listed in Table 1.1, where the respective surface tension isotherms are also shown. In

the case of solutions of ionic surfactants two types of adsorptions can be introduced: i�
~ , which

represents a surface excesses of component “i” with respect to the uniform bulk solution, and

�i representing a surface excess with respect to the non-uniform diffuse electric double layer,

see Eq. (1.69). Correspondingly, the Gibbs adsorption equation for a charged interface can be

expressed in two equivalent forms, Eqs. (1.68) and (1.70). Not only surfactant ions, but also

counterions, do adsorb at the interface; the counterionic adsorption can be described by the

Stern isotherm, Eq. (1.82), which is thermodynamically compatible with the surfactant

adsorption isotherms (Table 1.1) if only Eq. (1.81) is satisfied. The occupancy of the Stern

layer by adsorbed counterions could rise up to 70 - 80 % (Fig. 1.8) and should not be neglected.

The double-layer contribution to the interfacial tension depends on the valence of the

electrolyte, see Table 1.3.

The value of the Gibbs elasticity, EG, of an adsorption layer determines whether the interface

behaves as a two-dimensional fluid or as an elastic body. This rheological behavior can

strongly influence the attachment of a particle to an interface, as well as the capillary forces

between attached particles. Definitions for Gibbs elasticity of adsorption layers from non-ionic

and ionic surfactants are presented and discussed, see Eqs. (1.45), (1.88) and Table 1.2.

For soluble surfactants the effect of the Gibbs elasticity can be suppressed by the diffusive

supply of surfactant to an expanding interface; the diffusion tends to render the interface more

fluid. Thus one can estimate whether or not the effect of Gibbs elasticity will show up by a

comparison of the characteristic adsorption relaxation time with the characteristic time of the

specific process. Expressions for the relaxation time of surface tension, �� , are presented for

the cases of adsorption kinetics under diffusion control: Eq. (1.94); electro-diffusion control:
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Eq. (1.110); barrier control: Eqs. (1.114)�(1.115), mixed diffusion-barrier control: Eq. (1.117),

adsorption from micellar solutions, Eq. (1.134), and adsorption from protein solutions, see Eq.

(1.140). The quantities introduced in Chapter 1, and the relationships between them, are

important for the theoretical description of the particle-interface interaction and the particle-

particle capillary forces, as this will be seen in the next chapters.
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