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In this paper, we derive explicit expressions for the van der Waals interaction energy and force between
two truncated spheres covered by a thin layer of uniform thickness. These expressions can be used for
description of the interactions in dispersions of deformable particles (emulsions, vesicle suspensions, and
foams). As an illustration of the applicability of these formulas to real systems, we consider the interaction
between micrometer-sized oil drops, covered by a protein adsorption layer, in oil-in-water emulsions. The
Hamaker constants for the interactions between protein, oil, and water are calculated from literature data.
The equilibrium radius and thickness of the liquid film, which forms upon the collision of two emulsion
drops, are determined as functions of the drop size and electrolyte concentration. From the parameters
of the equilibrium films, we calculate the total interaction energy between the drops. The numerical results
show that both factors, the presence of the protein layer and the drop deformation, have a significant effect
on the pair interaction energy.

We consider the van der Waals interaction energy
between two truncated spheres of radius a, whose surfaces
are covered by uniform layers of thickness δ. The truncated
spheres are placed with their foreheads against each other,
so that a planar film of thickness h is formed (Figure 1).
This configuration is often encountered when two de-
formable colloid particles (emulsion drops, lipid vesicles,
or foam bubbles) are put in contact. The coat on the particle
surface could be an adsorption layer (e.g., of protein, low-
molecular mass surfactant, or solid particles), or it could
be the lipid bilayer, which builds up the vesicle wall.

The description of the true surface forces (those acting
between the surfaces of the particles), such as the
electrostatic or steric repulsion, is practically the same as
in the case of homogeneous truncated spheres, and one
can use formulas obtained in previous studies.1-3 On the
contrary, the van der Waals forces arise as an integral
interaction between the volumes of the bodies, and they
are substantially affected by the internal structure of the
particles. Explicit expressions for the van der Waals
interaction force and energy in the system shown in Figure
1 could be rather useful for solving various problems
related to emulsion stability, vesicle adhesion, and many
other areas. To the best of our knowledge, such expressions
have not been published so far.4

1. Theoretical Background
The problem can be solved by using the general method

for description of the van der Waals interaction between
two bodies of multilayered structure, which was developed
by Vold.5 According to this method, the general formula
for the energy of van der Waals interaction of body L (on
the left-hand side), which consists of NL layers, with
another body R (on the right-hand side), which consists
of NR layers, is (Figure 2)

where the effective Hamaker constant for the interaction
between layers i and j, A(i,j), is given by the expression

Ai,j is the Hamaker constant of interaction between the
macrophases i and j across a vacuum. The indices i ) 1
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Figure 1. Geometry of the system under consideration: h is
the film thickness, r is the film radius, a is the radius of the
droplets, and δ is the thickness of the adsorbed layer.

WVW ) - ∑
i)1

NL

∑
j)1

NR

A(i,j)Hij (1)

A(i,j) ) Ai,j - Ai,j-1 - Ai-1,j + Ai-1,j-1 (2)

2357Langmuir 2001, 17, 2357-2362

10.1021/la001557v CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/22/2001



and j ) 1 correspond to the layers, which are adjacent to
the central film (phase 0, see Figure 2).

The function Hij in eq 1 depends on the particular shape
of the respective layers in the interacting bodies and on
the distance between them. In our case,H22 is a geometrical
function accounting for the interaction between the two
cores of the droplets and H11 accounts for the interaction
between the two adsorbed layers, whereas H12 and H21

account for the interaction between one of the adsorbed
layers and the core of the other droplet. Therefore, if we
know the Hamaker constants for the different phases,
Ai,j, and the functions Hij, we can calculate the interaction
energy by means of eqs 1 and 2. For simplicity, hereafter
we will consider the system of two deformed particles of
identical composition, size, and shape; the generalization
to different particles is straightforward.

The geometrical functions Hij can be derived in our case
by using the expressions for the van der Waals interaction
between two homogeneous truncated spheres, which were
derived in ref 1. To simplify our consideration, we will use
the approximations derived in the case when both the
thickness and the radius of the planar film are smaller
than the drop radius (h/a < 0.3 and r/a < 0.5). This
approximation is justified in most of the practical systems,
because (1) for thicker films, h/a > 0.3, the van der Waals
interaction is almost always negligible and (2) for larger
deformations, r/a > 0.5, one can use the well-known
expressions for flat films, because the interaction across
theplanar filmsurfacesprevails over the interactionacross
the curved meniscus surrounding the film. There is no
problem, however, in applying the same approach to the
general case of arbitrary film thickness and particle
deformation, by using the more general (and substantially
longer) expression, eq 3.12 in ref 1.

In the case of thin films (h/a < 0.3) and small
deformations (r/a < 0.5), one derives the following expres-
sion for H11 (cf. eq 3.17 in ref 1, where we substitute a by
a + δ):

The Hamaker constant A(1,1) can be expressed as

that is, A(1,1) coincides with the Hamaker constant, A101,
of interaction between two half-spaces of phase 1 across
the continuous phase 0. Therefore, the contribution of the
van der Waals interaction energy between the two
adsorbed layers to the total interaction energy is

In a similar way, one can derive equations for the van der
Waals interaction energy between the cores of the droplets
(in this case h is substituted by h + 2δ in eq 3.18 of ref
1):

It is less trivial to obtain an expression for the interaction
energy between the core of one of the droplets and the
adsorbed layer on the other droplet, because we are not
allowed to use the formula for two particles equal in size.
The correct procedure requires starting in this case with
the complete formula, eq 3.12 in ref 1, for the interaction
energy between two truncated spheres of different sizes;
one should substitute there a1 ) a, a2 ) a + δ, and h1 )
h + δ. One can simplify the obtained long expression by
expanding the geometrical function H12 in terms of three
small parameters:

Such an expansion corresponds to a small film radius, a
small film thickness, and a small thickness of the
adsorption layer with respect to the radius of the spheres,
respectively. As discussed above, these conditions are
satisfied in most of the practical systems. After performing
long algebraic calculations and ignoring all terms of order
higher than ε1, ε2, and ε3, one obtains4

Therefore, the final formula for the van der Waals
interaction energy between the bodies shown in Figure 1
is4

The respective van der Waals force, FVW, between the
bodies can be derived by differentiating the interaction
energy with respect to the film thickness:

Figure 2. Notation used for description of the interaction
between two multilayered bodies separated by medium 0,
according to the approach in ref 5 (see eqs 1 and 2).
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The subscript r, for the force calculated by eq 10, denotes
the particular procedure of differentiating at a fixed film
radius. Fr

VW can be used to find the equilibrium config-
uration of a drop pair on the basis of a force balance. For
instance, if two drops are pushed against each other by
an external force, FEX, the equilibrium film thickness, h,
can be found by equilibrating the disjoining pressure in
the film to the capillary pressure of the drop, whereas r
is found by equilibrating FEX to the total interparticle force,
Fr

T, which comprises various components such as van der
Waals, electrostatic, steric, and so forth. On the other
side, both h and r can vary in an actual process of drop
approach or detachment. In such a process, the external
force must do some work for changing the drop area as
well; that is, the actual applied force would be different
from Fr

T. In the absence of external forces, FEX ) FT ) 0,
the force balance is equivalent to the minimization of the
total interaction energy, W(h,r), which is used below for
determination of the equilibrium film thickness and radius
(see also ref 3).

Equations 9 and 10 can be further simplified if the
interaction between lipid vesicles is considered; in this
case, phase 2 is equivalent to phase 0, A212 ) A010 ) A101,
and A102 ) 0. Thus, one obtains

From eqs 9 and 10, one can obtain other particular cases.
For instance, if the Hamaker constant of the layer, A1,1,
is equal to the Hamaker constant of the medium, A0,0, one
obtains

which is equivalent to the interaction between two
truncated spheres of radius a, separated at a distance h
+ δ, that is, the layer does not contribute to the van der
Waals interaction between the drops. Note that the

electrostatic interaction, for example, could be affected in
this system, because the surface charge might be located
on the outer surface of the adsorption layer (or be
distributed within the layer). Another particular case is
derived when the Hamaker constant of the layer is equal
to that of the drop core, A1,1 ) A2,2. In this case, one obtains

which is equivalent to the interaction between two
truncated spheres of radius (a + δ) separated at a distance
h.

In the general case, however, the layer may contribute
significantly to the van der Waals interaction, and the
magnitude and sign of this contribution depend strongly
on the Hamaker constants of the different phases. For a
thin adsorption layer, δ/a , 1, its relative contribution to
the total van der Waals interaction energy depends
primarily on the ratio δ/h. One should expect a significant
contribution of the adsorption layer at δ/h ∼ 1, unless the
layer’s Hamaker constant is very close to that of the
continuous phase.

To illustrate the importance of the ratio δ/h for the
interaction energy, we plot in Figure 3 the geometrical
function for vesicles, HVES ) (H11 - 2H12 + H22) ) -WVW/
A101 (cf. eq 11), as a function of δ/h and δ/a at fixed values
of h/a ) 0.001 and r/a ) 0.03. As seen from Figure 3, HVES
≈ 70 at δ/h ) 1 (the vertical dashed line). Taking into
account9 that A101 is on the order of the thermal energy,
kBT, for lipid bilayers, one estimates WVW ≈ 102 kBT for
δ ∼ h, despite the fact that the actual layer thickness is
much smaller than the drop (vesicle) size, δ/a ∼ 10-3.
Additional numerical checks showed that the magnitude
of HVES,whichcharacterizes thestrengthof the interaction,
significantly increases with the film radius, r/a.

2. Illustrative Example: Interaction between
Emulsion Droplets Covered by Layers of

Adsorbed Globular Protein
This section illustrates how the obtained expressions

can be applied to real systems. We consider the interaction
between two emulsion droplets of micrometer size, whose
surfaces are covered by a compact adsorption layer of
protein. To make our calculations more concrete and closer
to a real system, we consider the interaction between two
xylene droplets, covered by adsorbed layers of the protein
bovine serum albumin (BSA) and immersed in an aqueous
electrolyte solution of concentration varying between 0.1
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Figure 3. Plot of the geometrical function for vesicles, HVES
) (H11 - 2H12 + H22) ) -WVW/A101 (cf. eq 11), as a function of
δ/h and δ/a at fixed values of h/a ) 0.001 and r/a ) 0.03. The
vertical dashed line indicates δ/h ) 1.

WVW ) -A101H11 (14)
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and 0.4 M. The application of the above formulas to another
interesting system (lipid vesicles) has been recently
analyzed by Petsev.6

2.1. Total Interaction Energy. Following the ap-
proach from refs 1-3, we investigate how the interaction
energy between two emulsion droplets depends on the
governing parameters, such as the drop size and electrolyte
concentration. We will take into account three contribu-
tions to the total interaction energy between the emulsion
drops: (i) van der Waals interaction, (ii) electrostatic
repulsion between the charged surfaces of the adsorbed
layers, and (iii) interfacial energy accounting for the
expansion of the drop surface upon deformation. These
three contributions are always present in oil-in-water
emulsions. The introduction of other types of interaction,
such as colloid structural forces (due to the presence of
micelles or protein molecules in the continuous phase),
depletion forces, steric repulsion, and so forth, can be
conducted in a straightforward manner.1,3

The energy of electrostatic interaction, WEL, can be
calculated from the expression1

where CEL is the electrolyte concentration, kB is the
Boltzmann constant, T is the temperature, e is the
elementary charge, Ψ0 is the electrical potential at the
outer surface of the adsorbed layer, and κ-1 is the Debye
screening length defined as

Equation 15 is valid when the electric double layers around
the two drops weakly overlap with each other (κh > 1);
that is, the superposition approximation is valid (the
application of other possible expressions for the electro-
static interaction are discussed in ref 1).

The energy of surface extension, WS, can be expressed
as1

where γ is the interfacial tension. Following the approach
from refs 2 and 3, we minimize the total interaction energy

with respect to the variables h and r, to determine the
equilibrium thickness and radius of the planar film (i.e.,
the equilibrium configuration of the doublet of droplets),
as well as the corresponding interaction energy between
the two droplets.

The formulas for the different contributions into the
total interaction energy do not predict, strictly speaking,
pairwise summation of the interaction energy in a many-
body system (e.g., in a floc of drops). However, if (a) the
range of the interdroplet interactions and the film
thickness are much smaller than the drop radius and (b)
the drop deformation is also small, r/a , 1, the interactions
between each two drops in the floc are concentrated in the
contact zone (viz., in the film and the closest meniscus
region). Then, the different contact zones for a given drop

can be considered as independent of each other, and the
expressions derived for a single pair of drops can be used
for description of the interaction between any two
contacting drops in the floc. Thus, the total interaction
energy of a drop with its neighbors can be found through
multiplication of the interaction energy per one contact
by the number of contacts. In fact, this is quite often the
case, because conditions a and b are satisfied in most
systems, so the above formulas can be used to describe
many-body interactions as well.7

2.2. Choice of the Parameters. There are two types
of input parameters for the calculations: (i) those that
can be varied by the experimentalist within a certain range
(e.g., the drop radius and electrolyte concentration) and
(ii) those that are determined by the used substances
(Hamaker constants, thickness of adsorbed layer, inter-
facial tension, electrical surface potential). In the following
calculations, we consider the first type as free parameters
and vary their values within certain ranges: the drop
radius is varied between 0.5 and 10 µm and the electrolyte
concentration is varied between 0.1 and 0.4 M NaCl. The
values of the remaining parameters were taken from the
literature or calculated by using literature data.

(a) Hamaker Constants. Roth et al.8 calculated the
Hamaker constants protein-water-protein, Apr-w-pr )
1.275 × 10-20 J ) 3.10 kBT, protein-vacuum-protein,
Apr-pr ) 23.42 kBT, and protein-water-polystyrene,
Apr-w-ps ) 1.54 kBT, for BSA. One can assume that the
Hamaker constant of polystyrene is close to that of xylene,
Apr-w-ps ) Apr-w-oil, because both substances are aromatic
hydrocarbons of similar structure. Under this assumption,
one obtains

The Hamaker constant Aoil-pr-oil, which is also needed for
the computations, can be found from the so-called com-
bining relations,9

which relates the Hamaker constant for the interaction
of phase 1 with phase 2 across phase 3 with the respective
constants for the interaction of these phases across a
vacuum. After some algebraic calculations, one derives

Taking the values of Apr-w-pr and Apr-w-oil quoted above
and the value of Aoil-w-oil ) 2.31 kBT from ref 9, we obtain
Aoil-pr-oil ) 0.96 × 10-20 J ) 2.33 kBT.

The above calculations do not account for the effect of
screening of the “zero-frequency” contributions to the
Hamaker constants, Aν)0, by the electrolyte.9,10 Because
we consider systems containing electrolytes of high
concentration, this effect could be rather significant. It
can be properly taken into account by using the formulas10

(6) Petsev, D. N. Langmuir 1999, 15, 1096.

(7) Petsev, D. N.; Linse, P. Phys. Rev. E 1997, 55, 586.
(8) Roth, C. M.; Neal, B. L.; Lenhoff, A. M. Biophys. J. 1996, 70, 977.
(9) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.;

Academic Press: New York, 1992; Chapter 11.
(10) Prieve, D.; Russel, W. B. Adv. Colloid Interface Sci. 1980, 14,

3.

WEL(h,r) ) 64π
κ

CELkBT[tanh( eΨ0

4kBT)]2

e-κh[r2 + a
κ]
(15)

κ
2 ) 2e2

εε0kBT
CEL

WS(r) ) π
2

γr4

a2
(16)

W(h,r) ) WVW(h,r) + WEL(h,r) + WS(r) (17)

Apr-w-oil - Apr-w-pr ) -0.64 × 10-20 J ) -1.56 kBT
(18)

A132 ) A12 - A13 - A23 + A33 (19)

Aoil-pr-oil ) Aoil-oil - 2Aoil-pr + Apr-pr )
Apr-w-pr - 2Apr-oil + Aoil-w-oil (20)

A ) Aν)0 + Aν>0 (21)
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We calculated Aν)0 from eq 11.8 in ref 9:

where εk is the static dielectric permittivity of phase k (k
) 1, 2, 3). In the calculation, we used εW ) 80, εpr ) 3, and
εoil ) 2.55.8,9 From eqs 21-23, we obtained the following
values for the two counterparts of the respective Hamaker
constants:

which are used below in the calculations.
(b) Thickness of the Protein Layer. The thickness of the

adsorbed protein layer was chosen as δ ) 2.8 nm. Such
a value was determined by atomic force microscopy for
the adsorption layer of BSA on a hexadecane/water
interface.11

(c) Interfacial Tension. The interfacial tension of the
protein solutions was directly measured by de Nouy ring
method using a platinized ring (Kruss tensiometer K10T,
Germany). A value of γ ) 12.6 mN/m was determined,4
which slightly depended on the electrolyte concentration.

(d) Electrical Surface Potential of the Drops. Bowen and
Williams12 obtained Ψ0 ) -29.5 mV for the surface
potential of BSA molecules at pH ) 7.4. The ionic strength
in their experiments was 0.15 M NaCl, and the concen-
tration of BSA was 0.4 wt %. In the following calculations,
we use this value.

2.3. Numerical Results. Figure 4 shows the calculated
dimensionless equilibrium film radius, r/a, as a function
of the drop radius, a, at several electrolyte concentrations
(0.1-0.4 M NaCl). The film radius is virtually zero for
very small drops. However, at fixed other parameters,
the film radius sharply increases around a certain
threshold value of the drop radius (which depends on the
electrolyte concentration) and reaches a plateau for large
drops. The height of the plateau is related to the contact
angle of film-meniscus, which can be measured in
experiments with model emulsion films (e.g., in the
capillary cell13,14):

One should note that except in the case of the lowest
concentration (0.1 M), where the deformation starts at a
≈ 4 µm, in all other cases the micrometer-sized drops are
deformed.

The calculated equilibrium film thickness, h, gradually
decreases from 6 to 2.3 nm with the increase of the
electrolyte concentration from 0.1 to 0.4 M (h depends
very slightly on the drop radius3,4). In all cases, the
equilibrium of the film was ensured by electrostatic
repulsion between the charged surfaces of the drops; that

is, a common black type of film is formed between the
droplets. For comparison, by using the microinterfero-
metric method13,14 we have measured4 REXP ) 0.65 ( 0.1°
(RTHEOR ) 0.74, see Figure 4) and hEXP ) 6 ( 2 nm (hTHEOR
) 6 nm) with millimeter-sized emulsion films xylene-
water-xylene, formed from 0.02 wt % BSA solution
containing 0.1 M NaCl (T ) 298 K). A three-layer optical
model was used to determine h, which accounts for the
influence of the adsorbed protein layers on the intensity
of the light reflected from the emulsion films. Very similar
experimental results were obtained by Marinova et al.15

at slightly different conditions (CEL ) 0.15 M, 0.015 wt %
BSA). The agreement between the calculated and the
measured values of R and h evidences that the parameters
used in the calculations are reasonably chosen.

The calculated pair interaction energy between de-
formable drops, W, is plotted in Figure 5A as a function
of the droplet radius at several electrolyte concentrations.
The interaction energy is negative in sign, which corre-
sponds to attraction between the drops. As expected, the
magnitude of the attractive energy increases with the
increase of the drop size and the ionic strength. The
numerical results indicate a rather strong attraction for
drops of micrometer size, which would result in a
pronounced tendency for flocculation under such condi-
tions.

The effect of droplet deformation on the interaction
energy is illustrated in Figure 5B, where the difference
between the energy for two deformable drops, W, and that
for two nondeformed spheres, W0, is plotted as a function
of the drop radius and the electrolyte concentration. The
parameters of the spheres (Hamaker constants and
thickness of the protein layer) used for the calculation of
W0 are taken to be exactly the same as those of the
deformable droplets. Therefore, the difference between W
and W0 is due entirely to the drop deformation. As seen
from the figure, the attraction between deformable
droplets is much stronger as compared to the interaction
between solid spheres.

To illustrate the importance of the protein layer for the
interaction energy, we show in Figure 5A,B the results
for two other related systems (see curves 1 and 2). The
electrolyte concentration in these calculations is 0.2 M
NaCl, and the remaining parameters are the same as for
all other curves (δ ) 2.8 nm, Ψ0 ) -29.5 mV, and γ ) 12.6
mN/m). In the first system (curve 1), we assume that the
adsorption layer has the same Hamaker constant as the
aqueous phase. Not surprisingly, the magnitude of the

(11) Gunning, A. P.; Wilde, P. J.; Clark, D. C.; Morris, V. J.; Parker,
M. L.; Gunning, P. A. J. Colloid Interface Sci. 1996, 183, 600.

(12) Bowen, W. R.; Williams, P. M. J. Colloid Interface Sci. 1996,
184, 241.

(13) Scheludko, A. Adv. Colloid Interface Sci. 1967, 1, 391.
(14) Scheludko, A.; Exerowa, D. Kolloid-Z. 1957, 155, 39.

(15) Marinova, K. G.; Gurkov, T. D.; Velev, O. D.; Ivanov, I. B.;
Borwankar, R. P. Colloids Surf., A 1997, 123-124, 155-167.

Ascreened(κh) ) Aν)0(1 + 2κh) exp(-2κh) + Aν>0 (22)

A132,ν)0 ) 3
4

kBT(ε1 - ε3

ε1 + ε3
)(ε2 - ε3

ε2 + ε3
) (23)

Aν)0
pr-w-pr ) 0.645 kBT Aν>0

pr-w-pr ) 2.455 kBT

Aν)0
oil-pr-oil ) 0.005 kBT Aν>0

oil-pr-oil ) 2.325 kBT (24)

Aν)0
pr-w-oil - Aν)0

pr-w-pr ) 0.01 kBT

Aν>0
pr-w-oil - Aν>0

pr-w-pr ) -1.57 kBT

R ) arcsin(r/a) (25)

Figure 4. Variation of the dimensionless film radius as a
function of the drop radius at four different electrolyte
concentrations. Other parameters used in the calculations are
δ ) 2.8 nm, Ψ0 ) -29.5 mV, γ ) 12.6 mN/m, and T ) 298 K.
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total interaction energy in this system is strongly reduced;
in fact, this assumption corresponds to a complete
elimination of the layer contribution to the van der Waals
interaction energy. In the second system (curve 2), we
assume that the adsorption layer has the same Hamaker
constant as the drop core (the oil phase). In this case, the
total interaction energy is reduced by only 10%, as
compared to the curve for protein-covered drops. However,
further numerical checks showed that the contribution of
the layer can be much more significant for other Hamaker
constants of the phases. Thus, if we take A101 ) 1.65 kBT,

A212 ) 1.685 kBT, and A102 ) 0.89 kBT (these Hamaker
constants are calculated if one fictitiously replaces the oil
and protein phases in our emulsion system), a total
interaction energy, W ) -347 kBT, is calculated for a )
10 µm and CEL ) 0.2 M. For this system, the assumption
that the layer has the same Hamaker constant as the
drop core leads to almost a 3-fold increase of the magnitude
of the interaction energy, W ) -950 kBT; that is, the layer
has a very significant contribution. In conclusion, the
relative contribution of the layer to the total interaction
energy depends strongly not only on geometrical factors
but on the values of the various Hamaker constants as
well.

3. Conclusions
The main results of this study are the derived explicit

expressions for the van der Waals interaction energy and
force between two truncated spheres covered by a thin
layer of uniform thickness (eqs 9 and 10). These expres-
sions can be used for description of the interactions in
emulsions, vesicular suspensions, or foams of fine bubbles.

As an illustration of the applicability of the formulas to
real systems, we consider the interaction between mi-
crometer-sized drops of an oil-in-water emulsion, covered
by a protein layer. The relevant Hamaker constants for
the interactions between the protein, oil, and water are
calculated from literature data (eq 24). The equilibrium
radius and thickness of the liquid film, which forms upon
the collision of the emulsion drops, are determined as
functions of the drop size and electrolyte concentration.
From the parameters of the equilibrium films, we calculate
the total energy of interaction between the drops. The
numerical results show that the drops of micrometer size
are deformed if the electrolyte concentration is above 0.1
M (Figure 4). The higher electrolyte concentration leads
to more pronounced deformation. The latter has a notice-
able effect on the pair interaction energy between the
emulsion droplets; the attraction between deformable
droplets is stronger in comparison with the interaction
between two nondeformable spheres with the remaining
parameters being the same (Figure 5). The relative
contribution of the adsorption layer to the total interaction
energy depends strongly not only on geometrical factors,
such as the layer thickness, but on the values of the various
Hamaker constants as well.
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Figure 5. (A) Calculated pair interaction energy between two
deformable drops as a function of the drop radius at three
different electrolyte concentrations. (B) The difference between
the calculated pair interaction energy for two deformable drops,
W, and the interaction energy between two nondeformable
spheres, W0, as a function of the drop radius. The solid curves
in (A) and (B) present the results for oil drops covered by a
protein layer (δ ) 2.8 nm, Ψ0 ) -29.5 mV, γ ) 12.6 mN/m, and
T ) 298 K). For comparison, the interaction energy between oil
drops covered by a layer having a Hamaker constant equivalent
either to that of the aqueous phase (curve 1) or to that of the
oil phase (curve 2) is shown for a 0.2 M electrolyte (the remaining
parameters being the same).
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