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On the Viscosity of Dilute Emulsions
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The slow motion of a liquid droplet in a shear flow in the pres-
ence of surfactants is studied. The effects of the interfacial viscosity,
Gibbs elasticity, surface diffusion and bulk diffusion of surfactants
in both phases are taken into account. The analytical solution of
the problem for small Reynolds and Peclet numbers gives a simple
criterion for estimation of the tangential mobility of the droplet in-
terface. By applying the standard procedure for averaging of the
stress tensor flux at an arbitrary surface of the dilute emulsion, an
analytical formula for the viscosity of emulsions in the presence of
surfactants is derived. The result is a natural generalization of the
well-known formula of Einstein for the viscosity of monodisperse
dilute suspensions and of the expressions derived by Taylor and
Oldroyd for the viscosity of monodisperse dilute emulsions taking
into account the Marangoni effect. C© 2001 Academic Press

Key Words: viscosity of dilute emulsion; influence of surfactant;
interfacial mobility; Gibbs elasticity; surface and bulk diffusivity;
interfacial viscosity.
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1. INTRODUCTION

One of the basic problems of physicochemical hydrodyna
ics is the theoretical interpretation of experimental results
the viscosity of suspensions, emulsions, and foams. In 1
Einstein (1, 2) showed that a dilute suspension of spherical
ticles can be considered a continuous phase whose viscositηsus

depends on the particle volume fraction8:

ηsus

η
= 1+ 2.58+O(82). [1]

Here η is the viscosity of the continuos liquid phase. La
Taylor (3) generalized Eq. [1] for emulsion systems taking i
account the viscous dissipation of energy due to the flow ins
the droplets. The formula of Taylor for the viscosity of emulsio
ηem, is similar to Eq. [1],

ηem

η
= 1+ η + 2.5ηd

η + ηd
8+O(82), [2]

whereηd is the viscosity of the disperse phase (the liquid ins
the drops).
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Boussinesq (4) postulated the existence of a surface visco
conceived as a two-dimensional equivalent of the conventio
three-dimensional viscosity possessed by bulk phases. For m
years, Boussinesq’s solution was accepted as the basis for
plaining the anomalous droplet settling velocity measured
the experiments by Lebedev (5) and Silvey (6). The latter a
thors found that small fluid droplets settle as solid spheres a
therefore contradict the theory of Rybczynski (7) and Hadam
(8). Oldroyd (9) combined the theory of Taylor and the idea
Boussinesq and derived a formula for the viscosity of a dilut
monodisperse emulsion whose droplets have viscous interfa

ηem

η
= 1+ η + 2.5ηd+ (2ηsh+ 3ηdil )/a

η + ηd+ 0.4(2ηsh+ 3ηdil )/a
8+O(82). [3]

In Eq. [3], a denotes the droplet radius andηsh andηdil are the
interfacial shear and dilatational viscosities, respectively.

The theoretical works of Einstein (1, 2), Taylor (3), an
Oldroyd (9) have found development and applications in the rh
ology of disperse systems. In particular, Taylor (10), Fr¨ohlich
and Sack (11), and Oldroyd (12) applied asymptotic analy
to derive the next term in Eq. [2] with respect to the capilla
number. Thus the effect of the droplet interfacial tension was
cluded. This generalization may be important for very high she
rates. A second important generalization is to find appropri
expressions for the viscosity of suspensions containing pa
cles with different shapes (13, 14). A third way of generalizin
Eq. [1] is to calculate the next term in the series with respect
the volume fraction8. Batchelor (15) took into account the long
range hydrodynamic interaction between the particles to der
ηsus/η = 1+ 2.58+ 6.282+ · · ·. From a mathematical view-
point it is an exact result; however, from a physical viewpoint
is not entirely adequate for the real dispersions. The experim
tal results showed deviation from the Batchelor result, and
that reason a number of empirical expressions (16) have b
proposed in which the coefficient multiplying82 varies between
5 and 15.

The development of new powerful numerical methods duri
the past 5 years has helped us achieve a better understandi
the rheology of emulsions (17–25). The simple shear and Bro
nian flow of dispersions of elastic capsules, rough spheres,
44
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liquid droplets were studied in Refs. (18, 22, 24, 25). The effe
of insoluble surfactants and the drop deformation on the hy
dynamic interactions and on the rheology of dilute emulsions
the subjects of investigation in Refs. (19, 21, 23). Loewenb
and Hinch (17, 20) discussed the basic ideas of the nume
simulations of concentrated emulsion flows. These works
aimed at giving a theoretical interpretation of various exp
mental results for dilute and concentrated dispersions.

The main goal of the present work is to find a relatively sim
expression for the viscosity of diluted emulsions taking i
account all effects due to the presence of surfactants. In Sec
the velocity and pressure distributions corresponding to the s
motion of an emulsion droplet subjected to a simple shear
are studied. The Reynolds and Peclet numbers are assumed
small enough to neglect the convective terms in the momen
balance and diffusion equations. The surfactants are solub
both bulk phases, and the interface obeys a linear rheolo
law. In Section 3, using the standard procedure for averagin
the stress tensor flux, the exact formula for the viscosity of di
emulsions is calculated. Finally, in Section 4, we summarize
conclusions. The results of this study can be used to qua
the effect of surfactant on the viscosity of diluted emulsions

2. SLOW MOTION OF AN EMULSION DROPLET IN A
SIMPLE SHEAR FLOW IN THE PRESENCE

OF SURFACTANTS

We consider a simple shear viscous flow of continuous ph
with viscosityη. The velocity at a large distance from the drop
is v∞. The center O of the Cartesian coordinate system, Oxyz,
and of the spherical coordinate system, Or θφ, is located in the
center of the droplet (see Fig. 1). In the Cartesian coordi
FIG. 1. Schematic picture of a viscous emulsion droplet in a simple sh
flow.
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system the velocity of the shear flow can be represented
v∞ = (0, sx, 0), wheres is the shear rate. For the bulk continu
ous phase we have to calculate the pressure,p, and the velocity,
v. The parameters characterizing the liquid in the droplets are
noted with subscript “d”, viz. ηd, pd, andvd. For small Reynolds
numbers the mass and momentum balance equations are
plified to the well-known Stokes problem (13). In addition, w
consider small emulsion droplets, which are spherical owing
the high capillary pressure. Therefore, the solution of the Sto
problem for the droplet phase is (13, 26)

pd = p∞ + 2σe

a
− 7sηdA1r̃

2 sin2 θ sin(2φ), [4a]

νd,r = sa A1(r̃ − r̃ 3) sin2 θ sin(2φ), [4b]

νd,θ = sa A1

(
r̃ − 5r̃ 3

3

)
sinθ cosθ sin(2φ), [4c]

νd,φ = sa A1

(
r̃ − 5r̃ 3

3

)
sinθ cos(2φ)+ sa A2r̃ sinθ, [4d]

where p∞ is the pressure of the unperturbed flow at infin
distance from the droplet andσe is the unperturbed value of th
interfacial tension (see the assumption for small Peclet num
below). Likewise, for the continuous phase one derives

p = p∞ − sη
4A1+ 5

2r̃ 3
sin2 θ sin(2φ), [5a]

νr = sa

[
r̃

2
− 5

4r̃ 2
+ 3

4r̃ 4
− A1

(
1

r̃ 2
− 1

r̃ 4

)]
× sin2 θ sin(2φ), [5b]

νθ = sa

(
r̃

2
− 1

2r̃ 4
− 2A1

3r̃ 4

)
sinθ cosθ sin(2φ), [5c]

νφ = sa

(
r̃

2
− 1

2r̃ 4
− 2A1

3r̃ 4

)
sinθ cos(2φ)

+ sa

(
r̃

2
− 1

2r̃ 2
+ A2

r̃ 2

)
sinθ. [5d]

In Eqs. [4] and [5] the radial coordinate,r , is scaled with the
droplet radius,̃r ≡ r/a, θ andφ are the polar and azimutha
angles, respectively (Fig. 1). For calculation of the solution
following boundary conditions are fulfilled. The velocity at in
finity is v∞. It is assumed that there is no mass transfer acr
the droplet interface—the radial component of the velocity at
interface is zero. The tangential components of the velocity
the interface are continuous and equal to the interfacial veloc
u. Only the tangential stress boundary conditions can be use
determination of the unknown constantsA1 andA2. The normal
stress balance (equivalent to the Laplace equation of capilla
simply states that the emulsion drops are spherical.
ear If the interface between two fluid phases, one of them being a
surfactant solution, is disturbed, the equilibrium will be restored
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either by exchange of surfactant between bulk and interfac
by surface convection, driven by the gradient of interfacial t
sion, in interplay with the interfacial viscous friction. A linea
rheological model of the interfacial dynamics is provided by
Boussinesq–Scriven constitutive law (26). The surfactant di
bution affects the tangential stress boundary condition thro
the gradient of the interfacial tension. When the Peclet num
is not small, the convective term in the bulk diffusion equat
cannot be neglected and the respective problem has no an
cal solution. Thus a complex numerical investigation has to
applied (27, 28).

We consider the general case of surfactant which is solu
in both liquid phases. We will assume that the relative mot
of the emulsion droplets is so small that the Peclet numbe
a small parameter. The Peclet number is defined as follo
Pe≡ sa2/Deff, whereDeff is the effective diffusion coefficien
given below in Eq. [10]. Therefore the assumption Pe¿ 1 takes
place when the droplet radius is small (in the order of sev
micrometers) or the shear rate,s, is small. Then, due to the flow
the surfactant concentrations,c andcd, and the adsorption,0,
slightly deviate from their equilibrium values,ce, cd,e, and0e:

c ≡ ce+ cp, cd ≡ cd,e+ cd,p, 0 ≡ 0e+ 0p. [6]

The subscript “p” denotes small perturbations. For station
flows the adsorption process happens under diffusion con
The adsorption isotherm can be linearized by expansion in se
around the equilibrium values of adsorption and concentrati
Thus from Eq. [6] one deduces

0p = hacp = hd,acd,p at r̃ = 1,
[7]

ha ≡
(
∂0

∂c

)
e

, hd,a ≡
(
∂0

∂cd

)
e

,

whereha andhd,a denote the slopes of the adsorption isotherm
At small Peclet numbers the diffusion equation for the per
bation of the concentration in the bulk phase reduces to
Laplace equation (26). One can prove that only one mode o
spherical functions appears in the series, and the solution
the perturbations is

0p = 0eA3 sin2 θ sin(2φ), [8a]

cp = 0e

ha

A3

r̃ 3
sin2 θ sin(2φ),

cd,p = 0e

hd,a
A3r̃

2 sin2 θ sin(2φ). [8b]

The solution [8] obeys the following boundary conditions:
the linearized adsorption isotherm [7] and (ii) vanishing of t
perturbation in the bulk concentration at a large distance f

the surface of each droplet. The arbitrary constant,A3, can be
obtained from the surfactant mass balance at the interface.
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In the case of stationary flows the surface convective and d
fusion fluxes of adsorbed surfactant are compensated by the
diffusion fluxes of surfactant from the two adjacent phases. F
small perturbations the surface convective flux can be lineariz
and the surface diffusion equation acquires the simpler form

0e∇s · u− Ds∇2
s0p = D

∂cp

∂r
− Dd

∂cd,p

∂r
at r̃ = 1. [9]

Here∇s is the surface gradient operator,Ds is the surface diffu-
sion coefficient, andD andDd are the bulk diffusion coefficients
of surfactants in the continuous and droplet phases, respectiv
Substituting Eqs. [4], [5], and [8] into the boundary conditio
[9] one derives

∇s0p = 0e

Deff
u, Deff ≡ Ds+ aD

2ha
+ aDd

3hd,a
. [10]

It is seen that the effects of surface and bulk diffusion appear
a combined effective diffusion coefficient,Deff. Equation [10]
implies that for small perturbations the gradient of the interfac
tension becomes proportional to the surface velocity,

∇sσ =
(
∂σ

∂0

)
e

∇s0p = − EG

Deff
u, EG ≡ −

(
∂σ

∂ ln0

)
e

, [11]

whereEG is the surface (Gibbs) elasticity of the interface.
The form of the tangential stress boundary condition in sph

ical coordinates can be found in Ref. (26). Combining the lat
equation with Eq. [11] we obtain

ηd

η
r̃
∂

∂ r̃

(
νd,θ

r̃

)
− r̃

∂

∂ r̃

(
νd,θ

r̃

)
= ηsh

aη

{
2uθ + 1

sin2 θ

∂

∂φ

[
∂uθ
∂φ
− ∂

∂θ
(uφ sinθ )

]}
+ ηsh+ ηdil

aη

∂

∂θ

{
1

sinθ

[
∂uφ
∂φ
+ ∂

∂θ
(uθ sinθ )

]}
− aEG

ηDeff
uθ , [12a]

ηd

η
r̃
∂

∂ r̃

(
νd,φ

r̃

)
− r̃

∂

∂ r̃

(
νd,φ

r̃

)
= ηsh+ ηdil

aη

1

sin2 θ

∂

∂φ

[
∂uφ
∂φ
+ ∂

∂θ
(uθ sinθ )

]
+ ηsh

aη

{
2uφ − ∂

∂θ

[
1

sinθ

∂uθ
∂φ
− 1

sinθ

∂

∂θ
(uφ sinθ )

]}
− aEG

ηDeff
uφ. [12b]

It should be noted that among all dependent variables Eqs. [1

12b] contain only the components of the velocity. As before,ηsh

andηdil denote the interfacial shear and dilatational viscosities.
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Next, if the solutions for the velocity, Eqs. [4] and [5], are subs
tuted into the boundary conditions, Eqs. [12a, 12b], the obtai
linear system for the coefficients before each spherical func
is solved and the following expressions forA1 and A2 are de-
rived:

A1 = −3

4

[
1+ ηd

η
+ 2

5

(
aEG

2ηDeff
+ 3ηdil + 2ηsh

aη

)]−1

,

A2 = 1

2

(
1+ aEG

3ηDeff

)−1

. [13]

From the final form of the solution it is evident that there a
only three independent dimensionless parameters related t
mobility of the interface. First, the ratioηd/η is a measure of
the magnitude of the dissipation of energy in the droplet ph
Second, the ratio (3ηdil + 2ηsh)/(aη) accounts for the influence
of the surface viscosity. Third, the ratioaEG/(ηDeff) compares
the effects of surface elasticity, bulk viscosity, and the combi
diffusivity. In particular, largerEG corresponds to a more rigi
interface. The increase of one of the diffusion coefficients le
to an increase of the surface velocity. A more detailed discus
is given in Section 3. In the limiting caseEG→ 0 Eqs. [4], [5],
and [13] lead to the Oldroyd result (9).

3. INFLUENCE OF SURFACTANTS ON THE VISCOSITY
OF DILUTE EMULSIONS

To derive the formula for the viscosity of emulsions in t
dilute limit we will follow the way of calculation given in Ref
(29). The first step is the transformation of Eqs. [4], [5], a
[13] into an invariant form, applicable to an arbitrary shear flo
The general form of the shear flow is defined by the shear-
tensors, which has the following properties: it is symmetric, i. e
sik = ski , and the velocity of the shear flow,ν∞,i = sik xk, obeys
the equation of continuity, i.e.,skk = 0. Here and hereafter, w
use the Einstein convention for summation over the repea
indices.

If the unit normal vector at the droplet surface is denoted
n (Fig. 2), then after transformation of the spherical coordin
system to any Cartesian coordinate system, Ox1x2x3, we obtain
the invariant form of Eqs. [4], [5], and [13]:

pd = p∞ + 2σe

a
+ 21

2
ηd(1− εm)

(
r

a

)2

nj sjknk, [14a]

νd,i = −a(1− εm)

(
r

a

)3

(nj sjknk)ni

− 3

2
a(1− εm)

[
r

a
− 5

3

(
r

a

)3]
siknk. [14b]

( )3
p = p∞ − η(3εm+ 2)
a

r
n j sjknk, [14c]
F DILUTE EMULSIONS 147
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FIG. 2. Sketch of two identical control volumes from the real emulsio
phase and from the model continuous phase.

νi = sik xk + a

2

[
5εm

(
a

r

)4

− (3εm+ 2)

(
a

r

)2]
(nj sjknk)ni

−aεm

(
a

r

)4

siknk. [14d]

All effects related to the drop viscosity and surfactant (bu
diffusion, surface elasticity, viscosity, and diffusivity) appea
through the parameterεm, which is defined as follows:

εm ≡
(
ηd

η
+ 2

5

(
aEG

2ηDeff
+ 3ηdil + 2ηsh

aη

))/(
1+ ηd

η

+ 2

5

(
aEG

2ηDeff
+ 3ηdil + 2ηsh

aη

))
[15]

This parameter accounts for the tangential mobility of the drop
interface; note that 0≤ εm ≤ 1. In the limiting caseEG→∞,
Eq. [15] yieldsεm = 1 (immobile interface). The other spe
cial caseηd→ 0 (gas bubble) and the surfactant free inte
pletely mobile interface).
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The second step is to calculate the total (integral) stress ac
on the surfaceA of a control volumeV (Fig. 2). The surface of
V is chosen to be away from any emulsion droplet. In dil
emulsions the distances between the droplets are sufficie
large. For that reason, the droplets do not interact with e
other—they disturb only the flow of the continuous phase. T
stress tensor of the continuous phase of the real emulsion i

Pik = η
(
∂ν∞i

∂xk
+ ∂ν∞k

∂xi

)
− p∞δik

+
∑[

η

(
∂νpi

∂xk
+ ∂νpk

∂xi

)
− ppδik

]
. [16a]

The summation in Eq. [16a] is over all droplets in the cont
volume, andvp ≡ v− v∞ and pp ≡ p− p∞ are the perturba-
tions of the shear flow parameters from each individual dro
calculated in Section 2. The model continuous fluid occup
the same control volume and performs the same shear flow
it has different viscosity,ηem. Therefore, the stress tensor of th
model phase is

Pmod,ik = ηem

(
∂ν∞i

∂xk
+ ∂ν∞k

∂xi

)
− p∞δik . [16b]

To make the model system mechanically equivalent to the
emulsion, we require the work per unit of time produced by
exerted stresses to be the same (see Refs. (13, 29)):

W ≡
∫
©
∫
A

ν∞i Piknkd A=
∫
©
∫
A

ν∞i Pmod,iknkd A≡ Wmod. [17]

Heren is the running unit normal to the surface of the cont
volume (Fig. 2).

From Eqs. [16b] and [17] we deduce

Wmod= 2ηemsikski V. [18a]

On the other hand, an expression forW can be derived afte
longer mathematical transformations: Eq. [16a] is substitu
into the definition [17]; the surface integral overA is transformed
to a sum of an integral over the volume of the continuous ph
and over the surfaces of the droplets (Fig. 2) using the Ga
Ostrogradsky theorem. The final result reads

W = 2ηsikski V + η
∑

(7εm− 2)a3si j sik

×
∫ 2π

0

∫ π

0
nj nk sinθ dθ dφ

− η
∑

(10εm− 1)a3si j skl

∫ 2π

0

∫ π

0
ni n j nknl sinθ dθ dφ.

[18b]
The first double integral in Eq. [18b] gives 4πδ jk/3, and the
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second double integral has the simple form 4π (δi j δkl + δikδ j l +
δi l δ jk)/15. Combining Eqs. [17], [18a], and [18b] we obtain

ηemsikski V = ηsikski V + ηsikski

∑ 4πa3

3

(
1+ 3εm

2

)
. [19]

Equation [19] has to be fulfilled for each control volume an
shear rate; thus one obtains the following expression for
effective viscosity of the emulsion,ηm,

ηem

η
= 1+

(
1+ 3

2
〈εm〉

)
8+O(82), 〈εm〉 ≡

∑
a3εm∑
a3

,

[20]

where〈εm〉 is the average value of the interfacial mobility param
eter for all droplets in the control volume (as before,adenotes the
droplet radius). If the droplet size distribution in the emulsio
and the interfacial rheological parameters are known then
average value〈εm〉 can be estimated. For monodisperse em
sions the average value,〈εm〉, and the interfacial mobility para-
meter,εm, are equal. In the special case of completely mobile
terfaces, that is,aEG/(ηDeff)→ 0 and (3ηdil + 2ηsh)/(aη)→ 0,
the mobility parameter,εm, does not depend on the droplet siz
and from Eqs. [15] and [20] the Taylor formula, Eq. [2], is ob
tained. It is important to note that the Taylor formula takes in
account only the bulk properties of the phases (character
by ηd/η); in such a caseεm is independent ofa and therefore
Eq. [2] is applicable also to polydisperse emulsions. If only t
Marangoni effect is neglected (EG→ 0), then Eqs. [15] and [20]
become equivalent to the Oldroyd formula. The original res
of Oldroyd is valid only for monodisperse emulsions (15).
general, due to the combination of bulk and interfacial flux
the mobility parameter,εm, depends on the droplet radiusa; see
Eq. [15].

It is interesting to estimate the contributions of the differe
terms in Eq. [15]. The ratio between the interfacial viscous a
elastic stresses is characterized by

surface viscous term

surface elastic term
= 2Deff

3ηdil + 2ηsh

a2EG
. [21]

If typical values of the interfacial rheological parameters (30)
nonionic and ionic surfactants, or protein isolates, are substitu
in Eq. [21], one can conclude that the ratio in Eq. [21] is alwa
smaller than 1 or of the order of 1. Therefore, the surface ela
effects in [20] cannot be neglected.

The ratio of the contributions from the surface elastic stres
and the bulk viscous stresses is given by

surface elastic term

bulk friction term
= EG

5η

(
Ds

a
+ D

2ha
+ Dd

3hd,a

)−1

. [22a]
This ratio depends on the type of surfactant and on the diffusion
coefficients. For insoluble monolayers the bulk diffusion terms
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have to be omitted and Eq. [22a] reduces to

surface elastic term

bulk friction term
= aEG

5ηDs
(insoluble monolayers).

[22b]

Practically for all insoluble monolayers this ratio has very lar
values, and therefore, the interfaces are tangentially immo
owing to the surface elasticity (rather than to the surface visc
ity), cf. Eq. [21]. For conventional surfactants the slope of
isotherm (in the order of several nm) is much smaller than
droplet size in the emulsion (in order of severalµm). Therefore,
the ratio [22a] can be estimated as

the Marangoni term

the bulk friction term
≈ 2haEG

5ηD
(conventional surfactants).

[22c]

Because of the not so big difference between the surface
bulk diffusion coefficients, if we compare Eqs. [22b] and [22
we can conclude that the droplet interfaces can be mobile in
case of low molecular weight surfactants or microemulsio
Then the viscosity of such emulsions is lower than the Eins
formula [1] predicts and higher than that calculated from
Taylor formula [2].

4. CONCLUSIONS

The exact analytical solution of the problem for the slow m
tion of a liquid droplet in a shear flow is derived; see Section
The surfactant is assumed to be soluble in both phases, an
interface obeys the linear Boussinesq–Scriven constitutive
The assumption of small Reynolds and Peclet numbers for
flow allows us to use the linear form of the surfactant adsorp
isotherm for small deviations of the concentration and adso
tion from the equilibrium state. The influence of the interfac
viscosity, Gibbs elasticity, and surface and bulk diffusion
surfactant on the tangential mobility of the droplet interface
discussed.

Imposing the condition for equivalence of the real and mo
systems (Fig. 2) with respect to the mechanical work per u
of time, an expression for the viscosity of dilute emulsions
the presence of surfactants is derived. If the size distribu
of the droplets and the interfacial properties of the system
known, the effective viscosity of the emulsion can be calcula
see Eqs. [15] and [20]. The relative importance of the surf

elasticity and viscosity is discussed in Section 3. It is shown t
(depending on the type of surfactant) either the two effects h
F DILUTE EMULSIONS 149
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the same order of magnitude or the surface elasticity is mo
important than the surface viscosity for the tangential mobili
of interfaces and for its impact on the viscosity of the emulsio
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