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On the Viscosity of Dilute Emulsions
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The slow motion of a liquid droplet in a shear flow in the pres-
ence of surfactants is studied. The effects of the interfacial viscosity,
Gibbs elasticity, surface diffusion and bulk diffusion of surfactants
in both phases are taken into account. The analytical solution of
the problem for small Reynolds and Peclet numbers gives a simple
criterion for estimation of the tangential mobility of the droplet in-
terface. By applying the standard procedure for averaging of the
stress tensor flux at an arbitrary surface of the dilute emulsion, an
analytical formula for the viscosity of emulsions in the presence of
surfactants is derived. The result is a natural generalization of the
well-known formula of Einstein for the viscosity of monodisperse
dilute suspensions and of the expressions derived by Taylor and
Oldroyd for the viscosity of monodisperse dilute emulsions taking
into account the Marangoni effect.  © 2001 Academic Press
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1. INTRODUCTION

Boussinesq (4) postulated the existence of a surface viscosi
conceived as a two-dimensional equivalent of the convention
three-dimensional viscosity possessed by bulk phases. For me
years, Boussinesq’s solution was accepted as the basis for
plaining the anomalous droplet settling velocity measured i
the experiments by Lebedev (5) and Silvey (6). The latter at
thors found that small fluid droplets settle as solid spheres at
therefore contradict the theory of Rybczynski (7) and Hadam:e
(8). Oldroyd (9) combined the theory of Taylor and the idea o
Boussinesq and derived a formula for the viscosity of a dilute
monodisperse emulsion whose droplets have viscous interfac

Nem 1N+ 2.5n4 + (2nsh + 3nail)/a >
=14 O 4+ O(d9). 3
n n =+ nd + 0.4(29sh + 3ndi)/a @9 Bl

In Eq. [3], a denotes the droplet radius ang, andng; are the
interfacial shear and dilatational viscosities, respectively.

The theoretical works of Einstein (1, 2), Taylor (3), and
Oldroyd (9) have found development and applications in the rhe
ology of disperse systems. In particular, Taylor (10pH#ch

One of the basic problems of physicochemical hydrodynarand Sack (11), and Oldroyd (12) applied asymptotic analys

ics is the theoretical interpretation of experimental results foo derive the next term in Eq. [2] with respect to the capillary
the viscosity of suspensions, emulsions, and foams. In 19@&mber. Thus the effect of the droplet interfacial tension was ir
Einstein (1, 2) showed that a dilute suspension of spherical paluded. This generalization may be important for very high she:
ticles can be considered a continuous phase whose visgagity rates. A second important generalization is to find appropria
depends on the particle volume fractidn expressions for the viscosity of suspensions containing par
cles with different shapes (13, 14). A third way of generalizing
Eq. [1] is to calculate the next term in the series with respect
the volume fractiord. Batchelor (15) took into account the long-
range hydrodynamic interaction between the particles to deriy
Here n is the viscosity of the continuos liquid phase. Latesg/n = 1+ 2.5® + 6.2d2 + - - .. From a mathematical view-
Taylor (3) generalized Eq. [1] for emulsion systems taking infeoint it is an exact result; however, from a physical viewpoint i
account the viscous dissipation of energy due to the flow insiggnot entirely adequate for the real dispersions. The experime
the droplets. The formula of Taylor for the viscosity of emulsional results showed deviation from the Batchelor result, and fc
nem, is similar to Eq. [1], that reason a number of empirical expressions (16) have be
proposed in which the coefficient multiplyiriy varies between
5and 15.

The development of new powerful numerical methods durin
the past 5 years has helped us achieve a better understandin
whereryq is the viscosity of the disperse phase (the liquid insidée rheology of emulsions (17-25). The simple shear and Brov
the drops). nian flow of dispersions of elastic capsules, rough spheres, a

lIsus _ 1 1 250 + O(@?). [1]
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liquid droplets were studied in Refs. (18, 22, 24, 25). The effecdgstem the velocity of the shear flow can be represented
of insoluble surfactants and the drop deformation on the hydmy, = (0, sx, 0), wheres is the shear rate. For the bulk continu-
dynamicinteractions and on the rheology of dilute emulsions avas phase we have to calculate the presgurand the velocity,
the subjects of investigation in Refs. (19, 21, 23). LoewenbevgThe parameters characterizing the liquid in the droplets are ¢
and Hinch (17, 20) discussed the basic ideas of the numerinated with subscriptd”, viz. 4, pg, andvg. For small Reynolds
simulations of concentrated emulsion flows. These works amambers the mass and momentum balance equations are s
aimed at giving a theoretical interpretation of various expenplified to the well-known Stokes problem (13). In addition, we
mental results for dilute and concentrated dispersions. consider small emulsion droplets, which are spherical owing
The main goal of the present work is to find a relatively simpline high capillary pressure. Therefore, the solution of the Stok
expression for the viscosity of diluted emulsions taking intproblem for the droplet phase is (13, 26)
account all effects due to the presence of surfactants. In Section 2
the velocity and pressure distributions corresponding to the slow
motion of an emulsion droplet subjected to a simple shear flow
are studied. The Reynolds and Pecle_t numbers_ are assumedto be . = saA(f — F3)sir? o sin(2p), [4b]
small enough to neglect the convective terms in the momentum
balance and diffusion equations. The surfactants are soluble i |n
both bulk phases, and the interface obeys a linear rheologlcal
law. In Section 3, using the standard procedure for averaging of 573
the stress tensor flux, the exact formula for the viscosity of dilute vy 4 = saﬁl(F - _> sinf cos(2p) + saAf sing,  [4d]
emulsions is calculated. Finally, in Section 4, we summarize the 3
conclusions. The results of this study can be used to quanti
the effect of surfactant on the viscosity of diluted emulsions.

2
Pd = Poc + % — TsngAsf? sir? 6 sin(2p), [4a]

573\ . .
= saﬁl( 3 ) sing coso sin(2p), [4c]

ere po, is the pressure of the unperturbed flow at infinite
distance from the droplet and is the unperturbed value of the

2. SLOW MOTION OF AN EMULSION DROPLET IN A interfacial tension (see the assumption for small Peclet numb
SIMPLE SHEAR FLOW IN THE PRESENCE below). Likewise, for the continuous phase one derives
OF SURFACTANTS
4A;1 +5 . .
P = Poc — SN——=2— SIMF 0 sin(2p), [5a]

We consider a simple shear viscous flow of continuous phase 2rs
with viscosityn. The velocity at a large distance from the droplet P 5 3 1 1
is Voo. The center O of the Cartesian coordinate systery 2D V= sa[— -+t ( )]

; . ! : 2 424t T2
and of the spherical coordinate systemp@, is located in the

center of the droplet (see Fig. 1). In the Cartesian coordinate x sin? 6 sin(2p), [5b]
F 1 2A;
z Vg = sa(E ~ i 3 ) sind cosd sin(2p),  [5c]

simple shear flow

4 1 2A;
vy = sa(— ~ i 3 ) sind cos(2)

+sa<r§ 212 + f‘;) siné. [5d]
In Egs. [4] and [5] the radial coordinate, is scaled with the
droplet radiusf =r/a, 0 and¢ are the polar and azimuthal
angles, respectively (Fig. 1). For calculation of the solution th
following boundary conditions are fulfilled. The velocity at in-
finity is v. It is assumed that there is no mass transfer acro
the droplet interface—the radial component of the velocity at th
interface is zero. The tangential components of the velocity .
the interface are continuous and equal to the interfacial veloci
u. Only the tangential stress boundary conditions can be used:
determination of the unknown constatsandA,. The normal
stress balance (equivalent to the Laplace equation of capillarit
simply states that the emulsion drops are spherical.

FIG.1. Schematic picture of a viscous emulsion droplet in a simple shear If the interface between two fluid phases, one of them being
flow. surfactant solution, is disturbed, the equilibrium will be restore
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either by exchange of surfactant between bulk and interface oin the case of stationary flows the surface convective and di
by surface convection, driven by the gradient of interfacial tefusion fluxes of adsorbed surfactant are compensated by the b
sion, in interplay with the interfacial viscous friction. A lineardiffusion fluxes of surfactant from the two adjacent phases. F¢
rheological model of the interfacial dynamics is provided by themall perturbations the surface convective flux can be lineariz¢
Boussinesqg—Scriven constitutive law (26). The surfactant distand the surface diffusion equation acquires the simpler form

bution affects the tangential stress boundary condition through
the gradient of the interfacial tension. When the Peclet number
is not small, the convective term in the bulk diffusion equation

cannot be neglected and the respective problem has no analyti- ) ) ) )
cal solution. Thus a complex numerical investigation has to bi¢reVs is the surface gradient operatdx is the surface diffu-

applied (27, 28). sion coefficien.t, an® andpd are the bulk diffusion coefficient;
We consider the general case of surfactant which is solujfsurfactants in the continuous and droplet phases, respective
in both liquid phases. We will assume that the relative motiopUPstituting Egs. [4], [5], and [8] into the boundary condition
of the emulsion droplets is so small that the Peclet numberl® one derives
a small parameter. The Peclet number is defined as follows: . aD  aD
Pe= s&/Des, WhereDgy is the effective diffusion coefficient Vslp = —° U, Deff = Ds+ — + d.
given below in Eq. [10]. Therefore the assumption®el takes Deft 2ha  3h4a
place when the droplet radius is small (in the order of severa
micrometers) or the shear ragejs small. Then, due to the flow,
the surfactant concentratiorsandcy, and the adsorptiord;,
slightly deviate from their equilibrium valuess, Cye, andTe:

atf =1.  [9]

ac 9
Vs - U— DV2T, = Da_rp - Dd% F

[10]

%s seen that the effects of surface and bulk diffusion appear :
a combined effective diffusion coefficierDes. Equation [10]
implies that for small perturbations the gradient of the interfacie
tension becomes proportional to the surface velocity,

C=Ce+Cy Cy=Cde+Cyp, ['=Te+ T [6] 5 E P
Voo = [ Z) Vel = ——2u, Eo=—(-—2_), [11
ar), = ° Det .

The subscript “p” denotes small perturbations. For stationary

flows the adsorption process happens under diffusion contighereEg is the surface (Gibbs) elasticity of the interface.
The adsorption isotherm can be linearized by eXpanSion in Serieq’he form of the tangentia] stress boundary conditionin Sphe
around the equilibrium values of adsorption and concentratioia| coordinates can be found in Ref. (26). Combining the latte

Thus from Eq. [6] one deduces equation with Eq. [11] we obtain
[p=haCp = hgaCap ati =1, @Fi Ydo) _ Fi vdo
[7] n ofF\ F aF \
h <BF) h (ar)
a=\77)> Nda=|\7—"]> 1 9 fduy
dc 9Cq = 1Mo+ —— 2|2 Ly sing
° ° an{ T S 90| 9e o SnY)
whereh, andhg 5 denote the slopes of the adsorption isotherms. nsnna @ [ 1 [du, 0 _
At small Peclet numbers the diffusion equation for the pertur- + an PY:) { sing [g + @(Ue Sln@)“
bation of the concentration in the bulk phase reduces to the
Laplace equation (26). One can prove that only one mode of the _ aEs Uy [12a]
spherical functions appears in the series, and the solution for nDett
the perturbations is
@&(M) _ &(&)
I = FeAg i 6 sin(2p), ga] 7 \T or\ T
i 1 9 [du 0
oAy _ _ Nsh+ Mdi 1% 9 sing
Cp = h—ef—s sir? 0 sin(2p), an  sinfo dg | ¢ + ae( o Sin)
a
Te \ o o, . mnlo, [ L O 1 9
Cap = ngrzsm%sm(%). [8b] tan {2% 36| 5ind 3 sind ag | SiN)
,.a
a
The solution [8] obeys the following bound ditions: (i -2, [12D]
e solution [8] obeys the following boundary conditions: (i) 1 Deft

the linearized adsorption isotherm [7] and (ii) vanishing of the

perturbation in the bulk concentration at a large distance fratrshould be noted that among all dependent variables Egs. [1-
the surface of each droplet. The arbitrary constégt,can be 12b] contain only the components of the velocity. As befgtg,
obtained from the surfactant mass balance at the interface. andrng denote the interfacial shear and dilatational viscosities
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Next, if the solutions for the velocity, Egs. [4] and [5], are substi- real emulsion
tuted into the boundary conditions, Egs. [12a, 12b], the obtaine
linear system for the coefficients before each spherical functiol
is solved and the following expressions faf and A, are de-
rived:

3 2/ a 3ngi + 2 -1 |
Al =—- 1+@+_ Es + Ndil + 27sh ’ |
4 n 5\ 21 Def an
1 aEs \ !
Ao = 5|1 : 13
? 2( * 377Deff) [13]

From the final form of the solution it is evident that there are
only three independent dimensionless parameters related to tl
mobility of the interface. First, the ratigy/n is a measure of
the magnitude of the dissipation of energy in the droplet phase
Second, the ratio g + 2nsn)/(an) accounts for the influence
of the surface viscosity. Third, the ratidEg /(7 Der) cOmpares
the effects of surface elasticity, bulk viscosity, and the combinec
diffusivity. In particular, largelEg corresponds to a more rigid
interface. The increase of one of the diffusion coefficients lead: A
to anincrease of the surface velocity. A more detailed discussio
is given in Section 3. In the limiting cades; — 0 Egs. [4], [5],
and [13] lead to the Oldroyd result (9).

model viscous continuous phase
n

3. INFLUENCE OF SURFACTANTS ON THE VISCOSITY
OF DILUTE EMULSIONS

To derive the formula for the viscosity of emulsions in the FIG. 2. Sketch of two identical control volumes from the real emulsion
dilute limit we will follow the way of calculation given in Ref. Phase and from the model continuous phase.
(29). The first step is the transformation of Eqgs. [4], [5], and
[13]into an invariant form, applicable to an arbitrary shear flow.
The general form of the shear flow is defined by the shear-rate a a\* a\?
tensors, which has the following properties: itis symmetric, i.e., " = SkX%+ 3 [5‘9”“(?) — (Bem + 2)<F> }(nisiknk)n‘
Sk = i, and the velocity of the shear flow,, j = SkX«, obeys

4
the equation of continuity, i.es = 0. Here and hereafter, we _ aem<§> SNk [14d]
use the Einstein convention for summation over the repeating
indices.

If the unit normal vector at the droplet surface is denoted #yll effects related to the drop viscosity and surfactant (bull
n (Fig. 2), then after transformation of the spherical coordina€tiffusion, surface elasticity, viscosity, and diffusivity) appea
system to any Cartesian coordinate system@Xs, we obtain through the parameter,, which is defined as follows:

the invariant form of Egs. [4], [5], and [13]:
2 3n4il + 2
8m2<@+_< aBs | Snai + Tlsh>>/<1+@
n 5\ 2nDef an U

— +206+21 (1 ) r 2n-s~ n [14a]
Pa = Poo + — > ém)\ 5 ) MiSikNk. 2< akg 3ndn+2nsh>>
+_
21 Degr an

5 [15]

3
v = —a(l— 8m)<£) (njsjkniON; . . .
a This parameter accounts for the tangential mobility of the dropl

3 F5/r\3 interface; note that & e, < 1. In the limiting caseEg — oo,
—Za(l- Sm)[_ — _<_) :|Sknk- [14b] Eg. [15] yieldsen = 1 (immobile interface). The other spe-
2 a 3\a cial caseny — 0 (gas bubble) and the surfactant free inter

a\3 face Ec — O, ngii — 0, nsh — 0) correspond te,, = 0 (com-
P = Poo — n(3em + 2)<r_> N; Sjk Nk, [14c] pletely mobile interface).
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The second step is to calculate the total (integral) stress actsegond double integral has the simple fora(&}; 811 + 8ikd; +
on the surface\ of a control volumeV (Fig. 2). The surface of §;8;k)/15. Combining Egs. [17], [18a], and [18b] we obtain
V is chosen to be away from any emulsion droplet. In dilute
emulsions the distances between the droplets are sufficiently 4ra 3em
large. For that reason, the droplets do not interact with eacemSkSiV = nSkSiV + nSkSq ) T<1+ 5 ) [19]
other—they disturb only the flow of the continuous phase. The
stress tensor of the continuous phase of the real emulsion isEquation [19] has to be fulfilled for each control volume anc

shear rate; thus one obtains the following expression for tf
P, _ (3Vooi M) N effective viscosity of the emulsionm,
1k = poo(slk
0 Xk X

em 3 3 .
+ Z|: <3vp| %) - ppc?ik] [164] '77 =1+ <1+ E(gm)>¢ +O@?), (em) = Z;ai ,

(20]

The summation in Eq. [16a] is over all droplets in the control

volume, andvp, =V — vV, and p, = p — P are the perturba- where(e,) is the average value of the interfacial mobility param-

tions of the shear flow parameters from each individual dropleter for all droplets in the control volume (as befardenotes the
calculated in Section 2. The model continuous fluid occupi@goplet radius). If the droplet size distribution in the emulsior
the same control volume and performs the same shear flow, Bdt the interfacial rheological parameters are known then tt
it has different viscosityyem. Therefore, the stress tensor of th%verage valude,) can be estimated. For monodisperse emul

model phase is sions the average valug;), and the interfacial mobility para-
meterem, are equal. In the special case of completely mobile in

Prodik = nem(a‘)w 3”ook>  pusi.  [16b] terfaces,thati®Eq/(nDer) — 0and (3ai + 2nen)/(@n) — 0,

X X the mobility parametek,, does not depend on the droplet size
and from Egs. [15] and [20] the Taylor formula, Eq. [2], is ob-
To make the model system mechanically equivalent to the regined. It is important to note that the Taylor formula takes int
emulsion, we require the work per unit of time produced by thg:count only the bulk properties of the phases (characteriz:

exerted stresses to be the same (see Refs. (13, 29)): by n4/n); in such a casey, is independent o& and therefore
Eq. [2] is applicable also to polydisperse emulsions. If only th

W= ﬁ( Vooi PkNkd A = # Vooi Pmodiknkd A= Wiog.  [17]  Marangoni effectis neglecte@g — 0), then Egs. [15]and [20]
become equivalent to the Oldroyd formula. The original resul
of Oldroyd is valid only for monodisperse emulsions (15). In

Heren is the running unit normal to the surface of the contrdleneral, due to the combination of bulk and interfacial fluxes

volume (Fig. 2). the mobility parameteg;,,, depends on the droplet radiaissee
From Egs. [16b] and [17] we deduce Eq. [15].
It is interesting to estimate the contributions of the differen
Winod = 2NemSk S V. [18a] termsin Eq. [15]. The ratio between the interfacial viscous an

elastic stresses is characterized by

On the other hand, an expression T can be derived after )
longer mathematical transformations: Eq. [16a] is substituted surface viscous term o 3ndil + 21sh
into the definition [17]; the surface integral ow&rs transformed surface elastic term a?Eg

to a sum of an integral over the volume of the continuous phase

and over the surfaces of the droplets (Fig. 2) using the Gauétst_yplcal values of the interfacial rheological parameters (30) fo
Ostrogradsky theorem. The final result reads nonionic and ionic surfactants, or protein isolates, are substitutt

in Eq. [21], one can conclude that the ratio in Eqg. [21] is alway:

[21]

W = 2nsesaV + 7o — 2)ads:s smaller than 1 or of the order of 1. Therefore, the surface elas!
15Kk " Z( m — 2)a°S; S« effects in [20] cannot be neglected.
e ino do d The ratio of the contributions from the surface elastic stress
Nj Nk SN d6 d¢ and the bulk viscous stresses is given by

2 b4
-7 Z(logm _ 1)a3sj S ninjnen; sind do de. surface elastic term Eg ( Ds D Dy -1
o Jo - =—|—+—+-—] . [229]
bulk friction term 5n 2hy,  3hga
[18Db]
This ratio depends on the type of surfactant and on the diffusic
The first double integral in Eq. [18b] givesrd;c/3, and the coefficients. For insoluble monolayers the bulk diffusion term:
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have to be omitted and Eq. [22a] reduces to the same order of magnitude or the surface elasticity is mo
. important than the surface viscosity for the tangential mobilit
surface elastic term  aEg of interfaces and for its impact on the viscosity of the emulsior

bulk friction term  51Ds

(insoluble monolayers)
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