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Abstract

The stability of partially mobile drainage thin liquid film formed between two slightly deformed approaching
bubbles or drops is studied. The intervening film is assumed to be thermodynamically unstable. The material
properties of the interfaces (surface viscosity, Gibbs elasticity, surface and bulk diffusion) are taken into account. To
examine the stability of the thin film we consider the coupling between the drainage and the disturbance flows. The
velocity and pressure distributions due to the drainage flow are obtained by using the lubrication approximation. The
disturbance flow is examined by imposing small perturbations on the film interfaces and liquid flow. The long wave
approximation is applied. We solved the linear problem for the evolution of the fluctuations in the local film
thickness, interfacial velocity and pressure. The linear stability analysis of the gap region allows us to calculate the
critical thickness, at which the system becomes unstable. Quantitative explanation of the following effects is proposed,
(i) the increase of critical thickness with the increase of the interfacial mobility; (ii) the role of surface viscosity,
compared with that of the Gibbs elasticity; (iii) the significant destabilization of the gap region with the decreasing
droplet radius in the case of buoyancy driven motion. The analytical expressions for critical thickness in the case of
negligible surface viscosity and tangentially immobile interfaces are presented. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction cally. In foam systems the bubbles are large

enough and when they approach each other at a

The stability of thin films is an important prob-
lem in understanding the stability of foams and
emulsions. Due to the great industrial and scien-
tific interest many authors have studied the stabil-
ity problem, both experimentally and theoreti-
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given distance they may change their shapes. The
plane-parallel films are formed, which keep their
radii almost constant during the process of thin-
ning. On the contrary, in most of the emulsion
systems the drops are very small (the radii are of
the order of several microns) and due to the high
capillary pressure they approach one to the other
without significant change of their spherical
shapes. In both the cases due to the thermal or
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mechanical fluctuations, which lead to the corru-
gations of the film surfaces, the films rupture or
black spot may form. The corrugations at the film
interfaces give rise to two forces: the first one,
caused by capillary pressure, tends to resist any
deformation of the surfaces, while the second one,
due to the increase in negative disjoining pressure,
tends to increase the amplitude of the
corrugations.

Because of the existence of a lot of experimental
methods for investigation of almost plane-parallel
films (Scheludko cell, etc.), there are many theo-
retical and experimental studies which examine
their stability. Numerous experiments have shown
[1,2] that even when the liquid films are plane-par-
allel, they never thin to zero thickness but rup-
ture, or black (thinner) spots form at a finite
thickness of the order of 50 nm, called critical
thickness [2]. De Vries [3,4] pointed out that the
local fluctuations of the film thickness (which are
always present because of either mechanical per-
turbations or thermal fluctuations) led to two
opposite effects. The first one is the positive con-
tribution to the free energy due to the increase of
the film area and the second one is the negative
contribution resulting from the increased negative
van der Waals energy of interaction in the thinner
parts. Vrij [5] and Vrij and Overbeek [6] predicted
the critical thickness for non-thinning films of
infinite extend. Their results show that the critical
thickness is independent of the viscosity of the
film and is proportional to 2/7 power of the film
radius. Lucassen et al. [7] extended Vrij’s analysis
to illustrate the effects of interfacial tension, inter-
facial elasticity, adjoining phases and gravity.
Ivanov et al. [8] analyzed the stability of thinning
films containing high and low surfactant concen-
tration. Later Ivanov and Dimitrov [9] included
the effects of surface diffusion and surface viscos-
ity and showed that the decrease in critical thick-
ness with increasing surfactant concentration is
due to surface viscosity. Malhotra and Wasan [10]
examined the stability of radial bounded film with
tangentially immobile interfaces and indicated the
significant effect of the drainage flow. The alter-
native approach was studied by Chen and Slattery
[11] and Yiantsios and Davis [12]. These authors
studied numerically the deformation of two ap-

proaching small droplets in pure liquid phases (no
surfactant present) under the action of an external
driving force and van der Waals attraction force.
They found two different regimes: without dimple
formation and with dimple formation. They also
showed that at a given gap width, £, the van der
Waals attraction can prevail over the hydrody-
namic resistance and observed at even small thick-
ness increase of the curvature in the gap region (a
pimple appears). Therefore, Chen and Slattery
[11] and Yiantsios and Davis [12] consider the
rupture to be a natural evolution of the drop
shapes rather than instability.

The problem for stability of the gap between
two slightly deformed drops has been weekly
studied up to now. The main reason is the great
difficulty in preparing and performing the experi-
mental investigations because of the small drop
radii. Recent years Lean-Calderon et al. [13] and
Mondain-Monval et al. [14] reported a direct
measurement of the short distance profiles be-
tween small emulsion droplets in surfactant solu-
tion of various aspects.

This study investigates the stability of the gap
between two slightly deformed bubbles (drops),
which approach each other under the action of an
external force. The intervening film is assumed to
be thermodynamically unstable. The lubrication
approximation is used to describe the drainage
and disturbance flows. The material properties of
the interfaces are taken into account (see the
tangential and normal stress boundary conditions
in Section 2). The linear stability analysis of the
gap region is applied. The analytical expressions
for critical thickness (Section 3) provide informa-
tion about the influence of surfactants on the
bubbles stability. Numerical results, based on
nonionic and ionic surfactants and protein iso-
lates, show a significant dependence of the critical
thickness on the mobility of the interfaces (see
Section 4).

2. Mathematical model of the problem
We consider a thin viscous liquid layer, formed

between two bubbles, which flows out due to their
approach under the action of the external force, F
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(see Fig. 1(a)). For the sake of simplicity we
assume that the two bubbles have the same radii,
R.. The problem is described in a cylindrical
coordinate system, Orz, and the local thickness of
the layer is denoted by H(r, t). Since the bubbles
are close to each other, the hydrodynamic resis-
tance is concentrated in the gap region. In the gap
region the radii of the curvature are larger com-
pared with the local film thickness, therefore, the
lubrication approximation can be applied (see the
main requirement for this approximation (i), (iii)

and (iv) [15]).
2.1. Basic equations in lubrication approximation

In lubrication approximation the pressure, P, in
the continuos phase depends only on the radial
coordinate, r, and time, ¢, P = P(r, t). After inte-
gration of the equations of fluid motion and
continuity, with account for the corresponding
kinetimatic boundary conditions, the integrated
bulk continuity equation is obtained:

7 N\
) / \
Fig. 1. Sketch of two approaching bubbles of radii R, sepa-
rated at a distance H, (a) basic state; (b) small fluctuations on
the surfaces.

0H 120 H? 0P

In Eq. (1) # is the dynamic viscosity and U is
the radial component of the surface velocity.

We assume that the surfactant, present in the
film, is soluble only in the continuos phase. Then
in the case of emulsion systems (two approaching
drops), the viscous friction due to the disperse
phase is negligible compared with the viscous
friction due to the continuos phase. Therefore, the
emulsion system behaves as foam — so called
‘foam film approach’ (see Egs. (25a) and (25b)
and the discussion below [16]). Hence our results
are applicable for both foam and emulsion
systems.

The surfactant distribution can be calculated by
solving the diffusion equation along with the sur-
factant balance at the film surfaces and the as-
sumption for small Peclet number in the gap
region. We also assume small deviation from
equilibrium of the subsurface concentration and
adsorption that the surface material parameters
remain constant during the drainage. In the litera-
ture this is a usual simplification for solving the
drainage and stability problems. Usually in thin
liquid films the surfactant exchange between the
bulk fluid and the interfaces is diffusion-con-
trolled [16,17].

The boundary condition for the balance of
surface excess linear momentum takes into ac-
count the influence of the surface viscosity
(Boussinesq effect) and the surface tension gradi-
ent (Marangoni effect). Using the above assump-
tions the dependence of the adsorption, I", on the
surface velocity, U, and the local film thickness,
H, can be obtained from the solution of the
diffusion problem. Then the Marangoni term in
the tangential stress balance boundary condition
has an explicit form and the tangential stress
balance boundary condition simplifies to [15,17]

H 0P U AR

=~ 4 N, —|-—(U
1gR. or R+ bH) é‘r|:r pRY )}

(2)

The parameters, b, h,, and N, in Eq. (2) take

into account the effects of the bulk and surface

diffusions and the surface viscosity. They are
defined by the relationships
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In Eq. 3) Eqc=—0dg/dIn I is the equilibrium
value of the Gibbs elasticity and h,=0I"/0c is the
equilibrium value of the adsorption length, which
characterizes the slope of the adsorption isotherm.
The surface tension is o, the bulk and surface
diffusion coefficients are D and D,, and the sum
of the interfacial shear, 7,; and dilatational, 74;;
viscosities is the total surface viscosity, n=n,, +
ngi- The parameters defined by Eq. (3) do not
depend on the film thickness. They can vary in a
wide range depending only on the type of surfac-
tants and the surfactant concentration (see Sec-
tion 4).

In lubrication approximation the normal stress
boundary condition reduces to balance of
pressures:

20 g 0 OH
Po+—=P+M+_——|r— 4
m—’_RC T +2r6r<r 6r> @
where, P, is the pressure in the meniscus at

infinity, and IT is the disjoining pressure.

Finally, the force balance equation, which in
quasi-steady state approach expresses the balance
between the external force and hydrodynamic
drag and intermolecular forces, reduces to

F=2n Jm(P + 11— P )rdr (5)

Egs. (1)—(5) entirely describe the drainage flow,
the shape of the bubbles and the long wave stabil-
ity of the gap between the bubbles.

2.2. Drainage flow

In the case of small bubbles the thickness at
which the instability due to the fluctuations ap-
pears is higher than the thickness of plane-parallel
film formation. Therefore, the drainage flow is
described by the leading order solution of the
problem, when the drops still have spherical form
[15,18]. In lubrication approximation the spherical
shape of the bubbles is approximated by
parabola, H,, Hence, the leading order of the
film thickness is

2

Ho(r. 1) = h(r) + }% 6)

where, /(¢) is the minimal distance between the
bubbles (see Fig. 1(a)).

As it was shown [15], because of the boundary
conditions at » = 0 and infinity, it is convenient to
present the leading order solution for the unper-

turbed surface velocity, U,,, as a Fourier series:

U, = z a, sin(k0) (7
h k=1

In Eq. (7) the constants ¢, (k=1, 2, ...) depend
implicitly on the physical parameters and the dis-
tance between the bubbles, /4. The leading order of
the approaching velocity is V=—dh/dt and the
new variable, 0, is defined as tan(0/2) =r//hR..
Then the relationship for the approaching velocity
takes the form:

V= 2 <F ZHJ Hrdr)@v,
3nnR2 o

1

(DV B 1— Aodd + ey (8)

The mobility function, @,, takes into account
the influence of the rheological parameters and is
calculated for several asymptotic cases [18]. @, is
a complex function of the thickness, %, and the
material properties of the interfaces through the
parameters b, i, and Ngy. In Eq. (8) a,44 and a.,
are the respective sums of the odd and even parts
of the coefficients a,:

o0

kay,

Ao 41
oy Gk 9
Goaa= 2. 20k + 1) =l @

k=0

The above equations (Egs. (6)—(9)) completely
define the leading order of the basic state of
approach of two spherical bubbles. The next or-
der approximation for the shape with respect to
the capillary number function has been calculated
[18]. Therein the expressions for the inversion
thickness, at which the film appear, and for the
pimple thickness, at which due to the attractive
van der Waals force the gap thickness sponta-
neously decreases, have been derived. It is impor-
tant to note that when the disjoining pressure has
a large positive value (repulsion between the drop
interfaces) the velocity of approach, V, in Eq. (8)
can be 0. Therefore, at this gap width the ap-
proach of drops stops and the film between them
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is thermodynamically stable. It is the case of a
strong electrostatic repulsion due to an ionic sur-
factant adsorption or of a strong steric interaction
between the interfaces when the film is stabilized
with protein isolates. We will consider only the
thermodynamically unstable films. In such a case
the time scale of the fluctuations arising from the
thermal or mechanical corrugations of the inter-
faces can be rather different than the time scales
for the inversion and pimple thickness. For that
reason the fluctuation analysis of the problem is
developed below.

2.3. Linear stability analysis

Due to thermal fluctuations or other distur-
bances at a given thickness the film surfaces start
to corrugate (Fig. 1(b)). For the linear stability
analysis of the system (Egs. (1)—(5)) we introduce
small perturbations of the pressure, Py interfacial
velocity, U; and shape, Hy with respect to the
leading order of the drainage flow. We assume
that H, is much smaller than the wavelength, i.e.
we apply the long wave limit. We replace the
physical parameters of the system, P, U, and H,
by P,,+ P, Uy, + U, and H,, + H;. The result-
ing system of equations is linearized with respect
to the perturbations. Then the final form of the
continuity equation (Eq. (1)) for the fluctuation
reads

0H, 10 H2, 0P,
e SR - H
ot +3 0r|:r<Uup 4n or )"

1o H} 0P
——|rH | U;——2—L]}|=0 10
e 6r|:r "p< Y12y or >:| (19

From the tangential stress boundary condition
(Eq. (2)) for the linear term in the perturbed
quantities one obtains:

H,, 0P, U; N 1 “U)
B —— — ——(r
124R, or R(h,+bH,)  Norlror "
bU,, 1 oP,
— H,
+[Rc(hs+bHup)2 124R, or } f

(11)

Similarly, the normal stress boundary condition
(Eq. (4)) gives the form:

Py+ TU(H, ) H, + 2% (,fr[r (Zﬂ -0 (12)
The derivatives of the disjoining pressure de-
pend on the unperturbed local thickness, H,,,, and
they are the functions of radial coordinate, r, and
time, 1: TI)(H,,)=0"T1/0H, (n=1, 2, ...); it fol-
lows that the fluctuation in the film profile must
disappear at infinity: 0Hy/0ln r —0 at r — co.
From mathematical viewpoint the linear stabil-
ity problem (Egs. (10)—(12)) is a system of differ-
ential equations with coefficients depending on
the radial coordinate, r, and time, f. For the
solution of such problems the fluctuation parame-
ters can be represented as the superposition of
Fourier—Hankel components with different wave
numbers and amplitudes. Then the fluctuation in
the surface shape can be presented by the follow-

ing integral transformation:
H[:J A1, )k edke (13)
0

where, Hy(1, k) is the image of the film profile
fluctuation, k is the radial wave number, and J;, is
the zero order Bessel function.

According to the DLVO theory, if the slope of
the disjoining pressure isotherm is positive, 0TI/
0H,, >0, the system is unstable and the ampli-
tude of the corrugations in the zone of contact
increases. For every Fourier—Hankel component
there is a film thickness at which the respective
surface fluctuation becomes unstable and this sur-
face corrugation begins to grow spontaneously.
The maximum of these thicknesses (called the
transitional thickness [9,16]) corresponds to the
moment at which the instability appears for the
first time. Short time after the transitional thick-
ness is reached the film reaches the critical thick-
ness and breaks. For gap distances larger than the
transitional thickness all fluctuations are stable.
We will assume that there are no forces, which are
strong enough to hold the two surfaces apart;
consequently, the film breaks and the bubbles
coalesce. It is shown below (see Section 4) that
most often the hydrodynamic resistance in the
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case of slightly deformed bubbles is much lower
than that in the case of plane-parallel film, and
the fluctuations grow very fast after the transi-
tional thickness. For that reason we will disregard
the difference between the transitional and the
critical thickness and will call all parameters per-
taining to the transitional thickness ‘critical’.

3. Calculation of the critical thickness
3.1. General case

The main difficulty with the solution of the
system (Egs. (10)—(13)) is the different types of
equations. In fact, the fluctuation in the dynamic
pressure, P, can be easily found from the integral
representation (Eq. (13)) and the normal stress
boundary condition (Eq. (12)) to be

“(gk? ~
P= f (2—11')11{ To(er Yk (14)
0

But the order of Egs. (10) and (11) for the
fluctuation in the surface velocity, U,, is different.
In order to eliminate U; the integrated bulk conti-
nuity equation (Eq. (10)) and the tangential stress
boundary condition (Eq. (11)) are rewritten in the
equivalent forms:

U (1 2
- Ui+ L[H,, P]=0 15
(g Jure Lt Py (15)
2uU,  1oU, [N, 1
No g TN 2 T R+ by |
+ M[H, P]=0 (16)

where, L and M are linear differential operators
depending on the fluctuations H; and P, The
definitions of L and M are given by Egs. (A.1)
and (A.2) in Appendix A. Then, from Egs. (15)
and (16) the function U; is calculated (see Eq.
(A.4) in Appendix A). After substitution of Eq.
(A.4) into Eq. (15) the following operator equa-
tion is derived:

_ 1 i RgHﬁpr(hs + bHup) rN @7L
rHup or RcHﬁp — 8NSV7'2(}ZS + bHup)L s\ or
o L>_M}}=O a”
RcHup

Eq. (17) contains only the fluctuations in the
film profile, H,, and the dynamic pressure, P If
we replace the fluctuations H; and P; with their
integral forms Egs. (13) and (14) the final form of
the dispersion equation for the image, H,, is ob-
tained. The dispersion relation is a complex func-
tion of the time and the radial coordinate and it is
impossible to derive the original Fourier—Hankel
image. Nevertheless the most probable region for
the film rupture is the gap between the interfaces.
For that purpose we investigate the stability of
the system at small radial distances, i.e. the limit
r—0.

The basic state (without any perturbations) de-
pends on time (the gap thickness, /4, decreases),
that is why the ratio between the perturbed and
unperturbed states is the relevant characteristic of
the stability. In fact, H; can decrease with the
decreasing of &, but the ratio H/h can still in-
crease. Therefore, we represent the perturbation
in the form H.=hH, If the amplitude H; de-
creases with time the film is stable, and if it
increases the respective fluctuations are unstable.

After the asymptotic limit of Eq. (17) for r— 0,
the stability problem for the amplitude, H,, re-
duces to

go(h) + go()k> O,
-~ L= Y k) (18)
where, Y(h, k)=go(h) + g2k + gi(h)k* +

gs(Mk®. The final forms of the coefficients appear-
ing in Eq. (18) are given in Appendix B. The
functions ¢y, ¢», g0, &2, &4, &6 depend on A(z) and
also on the parameters b, i, and Ngy, which take
into account the influence of the surfactant. When
the derivative dH,/0t is positive the fluctuations of
the shape spontaneously grow. In the opposite
case (0H/0t <0) the amplitudes of the fluctua-
tions decrease with time. The stability limit is
defined as the gap thickness at which the first
solution of the equation 0H,/0t <0 appears. The
typical behavior of the function Y for different
film thickness versus wave number is illustrated in
Fig. 2. In the case of van der Waals attractive
forces (see Fig. 2) for all gap distances, &, the
function Y is minimum. The instability takes
place when Y(k, h) =0. If for given gap distance
the function Y is positive for all wave numbers, k,
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Fig. 2. Typical behavior of the function, Y(h, k), vs. wave
number, k, for different values of the nondimensional film
thickness, 2noh/F = 1; 2noh /F = 0.418; and 2noh/F = 0.35.

then at this thickness the film is stable for any k.
On the contrary, if the function Y, at a given
thickness, has negative value then the correspond-
ing fluctuation grows with time. Therefore, the
transitional (critical) thickness is the maximal
thickness at which the instability first appears (see
Fig. 2). The corresponding wave number at this
point is the critical wave number, k.. In the
general case the critical wave number, k_, and the
corresponding critical thickness, /., can be found
only numerically. The results from the computa-
tions are given in Section 4. In the case of tangen-
tial immobile interfaces or negligible surface
viscosity the asymptotic expressions for the criti-
cal thickness are derived in Section 3.2 below.

3.2. Negligible surface viscosity

In the case of low molecular weight surfactants
at small surfactant concentration the effect of
surface viscosity is usually negligible compared
with that of Gibbs elasticity. As it was shown [18]
the surface viscosity affects the film behavior only
in combination with surface mobility. The
parameter Ng, does not appear in equations inde-
pendently but as parameters: Ngyh/h=nD,/
(hEgR,) and Ngyb=nD/(h,EGR.) (see [18]).
Generally, the Gibbs elasticity, Eg, is very high
and the latest two parameters become negligible
at small Ngy. Therefore, the terms accounting for
the surface viscosity effects can be neglected and

analytical solution of the problem can be ob-
tained. For Ngw—0 from Egs. (A.5) and
(A.6)(B.1)—(B.4) the dispersion relation (Eq. (18))
reduces to

| dA, K[ ok?
A 2 N+ b+ Dy
hiT. dr 12;7< 2>[S+( + Dl
V o+ 2(b+ D
h* hy+ (b + Dh

—W[hs—i-(b—i— 1)h] (19)

The right-hand side of Eq. (19) can be positive
only when the first derivative of the disjoining
pressure is positive and larger than the capillary
term ok?/2. This result is in agreement with the
prediction of the classical DLVO theory (see
[9,16]). Also, it is important to note that the
maximum of the right-hand side of Eq. (19) is
achieved at wave number k,, which is determined
by the relationship

k=L ey (20)
ag

Eq. (20) represents the well-known result from
the literature [9,10,16] that the critical wave num-
ber depends only on the disjoining pressure and
surface tension.

If we substitute the solution Eq. (20) and the
relationship for the velocity of approach, Eq. (8),
calculated for Ng, =0, into Eq. (19), the final
form of the transcendental equation for the criti-
cal thickness becomes

nR2h3

8
& [F — R.nE(h.)] = 8; ‘[(H/)z—;(n”)] (21)

where, E is the interaction energy. The mobility
function, @&,, in the case of negligible surface
viscosity effect is defined by the expression [16—
18]

2 [d+to

@; _J(b+1)[ci In(d+ 1) 1],

- h,

=+ )

In the case of large interfacial elasticity the
mobility parameter ¢ is much smaller than 1 and
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@ (d) ~ 1. In the opposite case of small surfactant
concentration, or when the film thickness is very
small, i,> h(b+ 1) and @ (d) ~ 1/(dIn d). Hence,
the smaller the surfactant concentration the lower
the dynamic pressure in the gap, and the instabil-
ity occurs at higher distances.

If we specify the disjoining pressure isotherm
we can calculate the critical thickness from Egs.
(21) and (22). The influence of the surfactant
concentration on the critical thickness can be
estimated only by numerical solution of the prob-
lem for a given isotherm and equation of state.
Some analytical predictions for the influence of
the van der Waals attractive disjoining pressure
upon the critical thickness are possible for tangen-
tially immobile interfaces. For small thickness the
van der Waals interaction energy, the disjoining
pressure and the corresponding derivatives can be

54
©

0'8 = . T T e e
0.7 |
0.6

0.5 2nchs/F=0.5

0.4

0.3

Dimensionless critical thickness, 2nohc/F

_
&

£
F
2

09 S

—— A=0
0.8 ‘ A=1
A=2

0.7

0-6 e

0.5
0.4 -

0.3

Dimensionless critical thickness, 2nohc/F

,\
G

g
&
2

Fig. 3. Dimensionless critical thickness, 2ngh /F, as a function
of the surface viscosity parameter, Ngy, for different values of
the dimensionless Hamaker constant A4, (a) the dimensionless
surface diffusivity is 2noh/F=0.5; and (b) 2noh/F = 1.

obtained from the following relationships:

_ AH _ AH r_ AH
T 127k7 T 6mh? T 2mh®
24,
nm = — 23
h’ (23)

where, Ay is the Hamaker constant. After substi-
tution of Eq. (23) into Eq. (21) written for tangen-
tially immobile interfaces, ie. @,=1, the
particular problem for the critical thickness re-
duces to

R4} 5RAy
12870k 12h2

If the driving force does not depend on the film
thickness, then Eq. (24) predicts:

24)

R24% ..
h? ZIZSCm*“ for large driving forces F> F,
(25a)
SR.A
h?= 15FH for small driving forces F<« F,
(25b)

where, the limiting force is derived to be
F,=12.66(c>R_A;;)" . It is important to note that
the similarity between Eq. (25b) and the analytical
results for the pimple thickness, /17, = AR /(12F)
(see Eq. (19)) [18] shows that the instability ap-
pears before the pimple formation [12,18]. Next
interesting conclusion is that the critical thickness
is proportional to different powers of the bubble
radius depending on the driving force. For exam-
ple, in the case of buoyancy driven droplet ap-
proach the force is proportional to the third
power of the drop radius. Therefore, for large
driving forces the critical thickness depends
slightly on the radius (4, oc R '), while for small
driving forces it is inversely proportional to the
drop radius (4, oc 1/R,).

4. Numerical results and discussion

To show the typical influence of surfactant on
the stability of the film we solved the equation
(18) numerically for different dimensionless
parameters. The results are presented in Fig. 3.
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Fig. 4. Variation of the critical thickness, /., with the mobility
length parameter, d, for R, =5, 10, 20, 30 pm.

The dependence of the dimensionless critical
thickness, 2noh/F, on the surface viscosity
parameter, Ngy, for different values of the dimen-
sionless Hamaker constant 4 = 8R2Ay (7o )?/F? is
illustrated in Fig. 3(a). The bulk and surface
diffusion parameters were kept constant, b = 0.01
and 2noh/F = 0.5. For calculation of the disjoin-
ing pressure only the van der Waals attraction
was taken into account and the driving force, F,
was assumed to be independent on the gap thick-
ness. It is seen that with the increasing of
Hamaker constant A4,; (parameter A increases) the
critical thickness increases. Hence, when the at-
tractive force between the drops is higher the
instabilities appear earlier. For larger attractive
forces h, decreases with increasing of the surface
viscosity. It is interesting to note that in the case
of high values of the Gibbs elasticity 2noh,/F =
0.5) the critical thickness depends only slightly on
the surface viscosity for the whole range of Ngy
(see Fig. 3(a)). The suppressing effect of the Gibbs
elasticity is so high that the interfaces are barely
mobile and the dissipation of the energy due to
the surface viscosity is small enough. On the
contrary, with the increasing surface diffusivity (A,
increases), the influence of the surface viscosity
becomes more considerable. In Fig. 3(b) the nu-
merical results for the critical thickness (with sur-
face diffusion parameter 2nch/F=1) are
presented as a function of Ng,. From Fig. 3(a)
and (b), for a given surface viscosity number, Ngy,

and dimensionless parameter, 4, it follows that
the higher surface diffusivity leads to the higher
critical thickness. When the surface diffusivity is
greater the gradient of adsorption is smaller and
therefore the Marangoni effect is less pronounced.
This makes the interfaces more tangentially mo-
bile, and leads to increase the influence of the
surface viscosity on the critical thickness (com-
pare with corresponding curves in Fig. 3(a) and
(b) for 4 =0.5).

The influence of the mobility length parameter,
d=hy(b+1), and the droplet radius, R., on the
film stability for the case of negligible surface
viscosity is shown in Fig. 4. The numerical solu-
tion of Egs. (21) and (22) was made for a real
system of soybean oil droplets stabilized by
bovine serum albumin (BSA). To suppress the
electrostatic interaction, 0.15 M sodium chloride
was used (see [19,20]). The density difference, Ap,
was measured to be 0.072 g cm ~ 3. The higher the
interfacial mobility the earlier the film rupture. It
is also seen that the increase of the drop radius
leads to the enhancement of the stable system and
the drops coalesce later (at lower critical thick-
ness). This effect is due to the faster increase of
the buoyancy force and it is analytically demon-
strated in Section 3.2 for tangentially immobile
interfaces.

The pimple thickness can be also interpreted as
an instability of the system (see [18]), because of
the very fast growth of the pimple amplitude
when the van der Waals attraction is operative.
Therefore, it is important to compare the the
pimple thickness, /,,, with the fluctuation critical
thickness, h.. The critical thickness for tangen-
tially immobile interfaces as a function of the
drop radius is plotted in Fig. 5. Therein the
interfacial tension takes values ¢ =0.01, 15 and
30 mN m~! and all other parameters are the
same as in Fig. 4. It is seen that the fluctuation
critical thickness is greater than the pimple thick-
ness in all the cases, which does not depend on the
interfacial tension [18]. Therefore the instability
regime starts before the pimple formation. If the
drop radius changes from 40 to 100 pm the
critical thickness changes slightly (see the analyti-
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Fig. 7. Critical thickness, /. as a function of surfactant
concentration, ¢, for three types of surfactants: BSA, Triton
X100 and SDS+0.1 M NaCl. The droplet radius is R, =5
pm.

cal result for tangentially immobile interfaces and
large driving force in Section 3.2). The critical
thickness diminishes fast for drop size from 5 to 40
um. The interfacial tension does not influence the
critical thickness significantly. Only for very low
values of the interfacial tension the critical thick-
ness increases considerably. However, ¢ = 0.01 mN
m~! is close to the spontaneous emulsification
value of the interfacial tension and then other
processes influence the final behavior of such sys-
tems (see [19]).

It is interesting to calculate the value of the
critical thickness as a function of the surfactant
concentration for typical real systems (in the pres-
ence of nonionic, ionic surfactants and protein
isolates in the continuous phase). We will use the
experimental data for dodecane-water interfaces in
the presence of sodium dodecyl sulfate (SDS) in the
bulk phase (see [21]). To suppress the electrostatic
forces 0.1 M NaCl was added. The surfactant
adsorption, I', and the interfacial tension, o, are
related with the surfactant concentration, ¢, by
Langmuir—Szyszkowski adsorption isotherm:

rooec i
Tsz—i—c’ Jzap"‘kBTFxln(l_]ﬂm)
(26)

where, T is the temperature, kg is the Boltzmann
constant, o, is the interfacial tension of the pure
solvent, I’ is the saturation adsorption, and B is
a constant parameter, which is related with the
specific energy of adsorption. The corresponding
expressions for b and A are given in [18] (Eq. (27)).
We took the following values from [19]: ' =
375x 107 mol m~2% B=14x10"3 kg m 3
and D =6.0 x 10719 m? s~ !, The results for three
different drop radii R.=35, 10, and 20 pum are
plotted in Fig. 6. The increase of the surfactant
concentration leads to a decrease of the critical
thickness and the effect is more pronounced for
small drops. Really, for R.=5 pum the critical
thickness changes considerably in the whole range
of the surfactant concentration. At bigger drop
radius the increase of the critical thickness starts at
lower surfactant concentration (see Fig. 6).

The dependence of the critical thickness on the
surfactant concentration for different kind of sur-
factants is presented in Fig. 7. In our computations
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we also used experimental data for the nonionic
surfactant Triton X100 at the dodecane-water in-
terface, with I' ., =1.75x 107 mol m~2, B=
49x10"%kgm—3 and D=2.6 x 107" m? s !
[21]. In Fig. 7 the numerical results for BSA at the
air—water interface are calculated with I' =
038 x 10 °*molm~2 B=0.124 x 10" ¢ kg m 3,
and D=1.0x10"1 m? s—! [21]. The computa-
tions in all cases were for the buoyancy driving
force, and for droplets with radius R, =5 pm. The
influence of surfactant concentration on the critical
thickness for Triton X100 becomes significant at
100 times below CMC, comparable with the corre-
sponding behavior of the SDS. The stabilizing
effect of the nonionic surfactant is more pro-
nounced because /4, is greater. In the case of the
BSA solution the critical thickness is smaller due to
the greater driving force in the case of bubbles. The
change of the stability is carried into effect at very
low concentration. In practice such low values of
surfactant concentration are not used. Therefore, it
can be assumed that for proteins the critical thick-
ness does not depend on the concentration in the
region of practical importance. For protein con-
taining systems the steric component of the disjoin-
ing pressure has to be taken into account for small
gap width where the film is thermodynamically
stable [22].

The experimental results [19,20,23,24] for the
lifetime of oil droplets toward an oil/water interface
show that the smaller the drop radius the larger the

lifetime. In our numerical results (see Fig. 5) the
critical thickness decreases for larger drops, i.e. the
larger drops are more stable. In order to clarify this
point, we calculated the life time, 7, for the hydro-
dynamic approach of a droplet from the given
initial thickness, 4, to the critical thickness, /_:

init»

Ninit dh
= J a 27)
h V

The numerical results for different concentra-
tions of SDS and different radii are plotted in Fig.
8. The initial thickness for all curves was kept
constant, /;,,;, =5 pm, and the oil phase was soy-
bean oil. It is seen that the general trend found in
the experiments from [19,20,23,24] is verified. We
also observe that with the decrease of surfactant
concentration the lifetime diminishes slightly. This
effect is more pronounced for smaller droplets (see
the inset in Fig. 8). Therefore, the mutual approach
of the droplets prior to the film disrupture is the rate
determining stage. The experimental results corre-
late with the regularities of the mutual hydrody-
namic approach of droplets and there is no
significant surfactant effect on the lifetime. The
emulsions do not comprise single emulsion films
prepared in laboratory conditions.

In order to check the differences between the
transitional thickness, which we called ‘critical’,
and the real thickness of film rupture, we performed
the following calculation. We chose the critical
wave number for tangentially immobile interfaces,
k., from Eq. (20). From the dispersion relationship
(Eq. (19)) we calculated the thickness, /,, at which
the relative velocity of the fluctuation growth was
equal to the corresponding relative velocity of
droplet approach: — (dIn H,/dr)/(d In h/dt) = 1.
This means that the velocity of fluctuation growth
is two times higher than the generalized Taylor
velocity. They both appear in an exponential factor
that is why after /4, the fluctuations increase very
fast. The ratio i, /h. in percents is plotted in Fig. 9
for three typical density differences, Ap = 0.072, 25,
and 1.0 g cm ~3. We see that for a wide range of
droplet radii from 5 to 100 um the ratio is greater
than 80%. Therefore the thickness at which the
instability appears for the first time is close to the
real critical one. It is easy to show that for partially
mobile interfaces this difference is smaller.
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5. Conclusion

A theoretical model for the calculation of the
influence of surfactants on the critical distance
between two colliding small bubbles is developed.
It takes into account the influence of Gibbs elas-
ticity, bulk and surface diffusion and surface vis-
cosity. The governing dispersion equations (Egs.
(17) and (18)), derived from lubrication approxi-
mation in long wavelength approach, are used for
numerical calculations to find the critical thick-
ness. Analytical expressions, valid for tangentially
immobile interfaces are derived (see Egs. (25a)
and (25b)). They can serve for simple estimation
of the effect of bubbles radius and various driving
forces.

The quantitative calculations (see Sections 3
and 4) show that with increasing surface mobility
and the attractive disjoining pressure (e.g. van der
Waals attraction) and with decreasing surface ten-
sion the critical thickness increases. In contrast,
smaller driving force, larger Gibbs elasticity and
surface viscosity stabilize the intervening film. All
factors, which increase the hydrodynamic resis-
tance in the gap region, lead to stabilization of the
fluctuations. In the case of buoyancy driven
droplet for large driving forces the critical thick-
ness depends slightly on the radius (b, oc R '),
while for small driving forces it is inversely pro-
portional to the drop radius (4, oc 1/R,). The pim-
ple thickness is always smaller than the critical
thickness and therefore the fluctuation instability

100
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80

Criterion, h/he, %

| —— Ap=1.00 g/cm?3
| ——— Ap=0.25 g/cm3
- Ap=0.072 g/cm3

60 . I . . L
0 10 20 30 40 50 60 70 80 90 100

Drop radius, R, pm

Fig. 9. The ratio /,/h. in percents vs. droplet radii for three
typical density differences, Ap =0.072, 0.25, and 1.0 g cm ~3.

appears before the pimple formation. The calcula-
tion shows that in the case of slightly deform
bubbles the difference between the transitional
and critical thickness is not so significant as for
plane-parallel films [16,25] and our results can be
applied for calculation of the lifetime of small
bubbles and droplets.

In the case of emulsion droplets the lifetime
does not influence significantly on the surfactant
concentration. The regular hydrodynamic mutual
approach of the droplets prior to the film disrup-
ture is the rate determining stage. The effect of
surfactants (with exception for the thermodynami-
cally stable state and strong electrostatic repul-
sion) on the film stability plays no substantial role
in the stability of emulsions.
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Appendix A. Operator equation for the dispersion
relation

The definitions of operators L and M in Egs.
(15) and (16) are given by the following
relationships:

o L OH L o[ (3 o\,
=—— —|r — .
H,, ot ' Hyror| \2H,, up )

3
L 0(rHy, 0P (A1)
H,ror\ 12n or

e [ Ve Uy Uy, ]H
= - f
ZRCH?JP RC(hS + bHup)2 RClelp

H,, 0P,

up

" 124R, or

(A.2)

In order to find final equations for the fluctua-
tions in the film profile, H; and the dynamic
pressure, P, we eliminate the fluctuation of the
velocity, U, from the integrated bulk continuity
equation (Eq. (15)) and from the tangential stress
boundary condition (Eq. (16)). We multiply Eq.
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(15) by Ngy, after that we differentiate the result
by r and subtract from Eq. (16). The obtained

result is
U, [ Ngy H 2Ngyr
Ney — | =¥ W _ U,
SV J{ - T 2rnt bHy) RHy "
R.H oL
gty ) =0 (A.3)
2r or

In a similar way after multiplying Eq. (15) by
Ngy and subtracting from Eq. (A.3) the final
result for the velocity fluctuation, U,, reads

RZH? (h,+ bH,,)

| o

Ur= R.H?, — 8Ngyr*(hy + bH,)|
oL 2r
_ L A4
NSV( or  R.H,, ﬂ (A4)

After the substitution of Eq. (A.4) into Eq. (15)
the final form of Eq. (17) can be obtained.

If the Fourier—Hankel integral representations
Eqgs. (13) and (14) are substituted in the defini-
tions Egs. (A.1) and (A.2) the integral form of the
operator L becomes

* 1 0H, H;
L= — Jo(kr)kdk
Jo Hup ot o(kr)

n <) 1 ad 3Vvr
0 Hrc?r”ZHup

2 2
+ Ay k2<0k— I )

— 2Uup>:|
121 2
H H + 37}’2 H// + H i H///
3y R R, w R

x Hy Jo(krykdk

=\ 3Vr 20U,
_|_ _
o 2H2, H,

up

;’Hup ok?
2H,J1" =3 ——1II

(')Jo(kr)
or

kdk (A.5)

and of the operator M it is calculated to be

Ve r[ Vr bU,, Uup
o 2R, R(h,+ bH,y  RH,

rH,
+IT 677RP }Hr Jo(kr)kdk

C

[*'s} 2
+ J Hup <n/ — "k>Hf oK) 1 i
0

2
(A.6)

The exact form Egs. (A.5) and (A.6) give us
possibility in Appendix B to calculate the limit of
the image at small radial distances, i.e. at r —0.

Appendix B. Asymptotic analysis of Eq. (17) at
r—0

After the long but common asymptotic analysis
of Eq. (17) and taking into account the integral
definitions Egs. (A.5) and (A.6), and the solution
for the unperturbed state Egs. (6) and (7) the final
form of the coefficients appearing in Eq. (18)

reads i
qo(h) == 1 + 8Nsv<hs + b),

h
o) = hRCNSV<hS + b) (B.1)
go(h)
v h, bh NS
:h{z_b_h+2<l o T )Z 7

+Nsv<hs+b>[40—32 Y ja,-:|}
h j=0
h? hq
1 =
+3'7Rc[ < o h>

— NSV<};; + b>(16H” +8h n"')J (B.2)

ga(h)
h* (b
D) <h+b+ )
hg
o)

e 4 3
x [VRC<5 -8y ja,) + L(H’ + hl‘[”)}
j=0 3n

(B.3)
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W (h, 4 ,

ah’q,
24n

go(h) = (B.4)

The functions (B.1)-(B.4) are used in the nu-
merical calculations of the critical thickness in the
general case (see Section 4).

References

[11 A.D. Scheludko, Adv. Colloid Interf. Sci. 1 (1967) 391.

[2] A.D. Scheludko, Proc. Konkl. Ned. Akad. Wet. 65 (1962)
87.

[3] A. de Vries, Rec. Trav. Chim. 77 (1958) 441.

[4] A. de Vries, Third Congress of Detergency Cologne, 2
(1960) 566.

[5] A. Vrij, Disc. Faraday Soc. 42 (1966) 23.

[6] A. Vrij, J. Overbeek, Am. Chem. Soc. 90 (1968) 3074.

[7] J. Lucassen, M. van den Temple, A. Vrij, F.T. Hesselink,
Proc. Konkl. Ned. Acad. Wet. B73 (1970) 109.

[8] L.B. Ivanov, B. Radoev, E. Manev, A. Scheludko, Trans.
Faraday Soc. 66 (1970) 1262.

[9] L.B. Ivanov, D.S. Dimitrov, Colloid Polym. Sci. 252
(1974) 982.

[10] A.K. Malhotra, D.T. Wasan, Chem. Eng. Commun. 48
(1986) 35.

[11] J.D. Chen, J.C. Slattery, AIChE J. 28 (1982) 955.

[12] S. Yiantsios, R.H. Davis, J. Colloid Interf. Sci. 144 (1991)
412.

[13] F. Leal-Calderon, T. Stora, O. Mondain-Monval, P.
Poulin, J. Bibette, J. Phys. Rev. Lett. 74 (1994) 2959.

[14] O. Mondain-Monval, F. Leal-Calderon, J. Bibette, J.
Phys. II France 6 (1996) 1313.

[15] K.D. Danov, D.S. Valkovska, 1.B. Ivanov, J. Colloid
Interf. Sci. 211 (1999) 291.

[16] 1.B. Ivanov, Pure Appl. Chem. 52 (1980) 1241.

[17] L.B. Ivanov, D.S. Dimitrov, in: I.B. Ivanov (Ed.), Thin
Liquid Films, Marcel Dekker, New York, 1988, p. 379.

[18] D.S Valkovska, K.D. Danov, 1.B. Ivanov, Colloid Surf.
A 156 (1999) 547.

[19] K.D. Danov, 1.B. Ivanov, Proceedings of the 2nd World
Congress on Emulsion, Bordeaux, 1997, Paper No. 2-3-
154.

[20] I.B. Ivanov, K.D. Danov, P.A. Kralchevsky, Colloid
Surf. A 152 (1999) 161.

[21] A. Bonfillon, D. Langevin, Langmuir 9 (1993) 2172.

[22] L.B. Ivanov, P.A. Kralchevsky, Colloid Surf. 128 (1997)
155.

[23] E. Dickinson, B.S. Murray, G. Stainsby, J. Chem. Soc.
Faraday Trans. 84 (1988) 871.

[24] E.S. Basheva, T.D. Gurkov, I.B. Ivanov, G.B. Bantchev,
B. Campbell, R.P. Borwankar, Langmuir 15 (1999) 6764.

[25] C. Maldarelli, R.K. Jain, in: 1.B. Ivanov (Ed.), Thin
Liquid Films, Marcel Dekker, New York, 1988, p. 497.



