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Instability driven by diffusion flux across an asymmetric liquid film is theoretically investigated. To
specify the system, we consider an oil-water-air film; the transported species are oil molecules. The latter
are dissolved (solubilized) at the oil-water interface, then they are transferred by diffusion across the
aqueous film to the water-air interface, where they penetrate between the tails of adsorbed surfactant
molecules. Fluctuational capillary waves at the two film surfaces are considered. The set of theoretical
equations is solved to derive a dispersion relation between the wavenumber and the exponent of wave
growth. The results reveal that if a local decrease in the film thickness appears, the water-air interface
enters a zone enriched in dissolved oil. The newly adsorbed oil creates a surface tension gradient, which
carries water away and causes a further decrease of the local film thickness in the concave zone, until
eventually the film ruptures. The numerical results show that the film becomes less stable when its
thickness decreases, its radius increases, and the diffusion flux across it is more intensive. Even very small
decrements of the water-air surface tension, caused by the adsorbed oil, are sufficient to trigger the
instability. Its appearance is not so sensitive to the degree of mobility of the oil-water interface. If the
water-air surface is preequilibrated with the transported component (there is prespread oil), then the
surface tension decrement and the instability disappear. The rupture of an asymmetric oil-water-air film
is a precondition for entry of an oil drop at the water-air interface and effectuation of its foam-destructive
action. Our results about a specific source of film instability could be helpful for a deeper understanding
of the mechanisms of antifoaming.

1. Introduction
In some cases the formation of foams is desirable (under

a certain control); such are the applications in personal-
care and house-hold detergency, in fire-fighting, ore
flotation, etc. On the other hand, in many cases the
spontaneous formation of foams is not wanted insofar as
it hampers the efficient operation of industrial processes.1-3

It has been established that microscopic oil droplets, solid
particles, and their combination, may exhibit a foam-
destructive effect.1-13 For example, small oil droplets

dispersed in shampoos provide hair conditioning; special
surfactant compositions have been invented to protect the
foams from the destructive action of the droplets.14 In
other cases, very active antifoams are intentionally added
to suppress the development of unwanted foamability
during industrial processes.11,13 In both cases one could
achieve the desired effect utilizing the knowledge about
the foam-breaking action of microscopic oil drops and
particulates.

Three different mechanisms of antifoaming action have
been established: oil-spreading mechanism,2,3,15-18 bridg-
ing-dewetting mechanism,19-23 and bridging-stretching
mechanism.11-13 All of them involve as a necessary step
the entering of an antifoam droplet (or particle) at the
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air-water interface, which is equivalent to rupture of the
asymmetric droplet-water-air film.

To study the entering of oil drops at the water-air
interface, the film-trapping technique24,25 was recently
applied.26 In these experiments oil drops were trapped in
an aqueous film, which was formed between a solid
substrate and an air bubble blown out of a capillary, see
Figure 1. The aqueous phase always contained dissolved
surfactant of concentrations around or beyond the cmc
(critical micellization concentration). The pressure dif-
ference

could be controlled and directly measured. It was estab-
lished that, upon a gradual increasing of ∆P, the asym-
metric oil-water-air film did break at a certain critical
pressure difference, ∆Pcr, whose value is rather reproduc-
ible.14,26 Moreover, the measured values of ∆Pcr turned
out to be systematically lower for oils that exhibit some
solubility in water, in comparison with oils that are
completely water-insoluble. For example, for hexane ∆Pcr
)42 Pa, whereas for triolein (water-insoluble triglyceride)
∆Pcr ) 350 Pa.26 In addition, if a drop of a given oil is
placed on the water-air interface, it produces a quick
decrease in the surface tension, which could be attributed
to a molecular spreading of oil molecules among the tails
of the adsorbed surfactant molecules.27

Our purpose here is to investigate theoretically whether
the diffusion transport of oil (from the oil drop, across the
water film, to the water-air interface) could produce
instability and film rupture.

The mass and/or heat transfer across a liquid interface,
coupled with gradients of surface tension (the Marangoni
effect), is known to produce hydrodynamic instability even
for a single phase boundary; this phenomenon has been
studied by Sternling and Scriven28 in relation to the
spontaneous emulsification. Lin and Brenner,29 and

Castilo and Velarde30 investigated the instabilities in
wetting films with one deformable open surface, such as
the tear films in human eyes. The mechanism of rupture
of a liquid film formed between two fluid phases was
examined experimentally and theoretically by Ivanov et
al.31-33 for emulsion systems: transfer of alcohols, acetic
acid, and acetone across liquid films. The diffusion
transport of some solute across the film has been found
to lead to the development of Marangoni instability
(unstable vortices), which manifests itself as a forced
growthof capillarywavesat the filmsurfaces,andeventual
film rupture. Destabilizing mass transfer is present also
in evaporating (mono- or two-layered) liquid films; the
resulting instability has been investigated by Danov et
al.34-37 by means of linear and nonlinear stability analysis.

The subject of the present theoretical study is closer to
that of ref 33, where film of infinite area and stationary
vortices have been considered. In contrast, here we
consider films of finite area (like the one at the top of the
oil drop in Figure 1), as well as growing and decaying
perturbations (positive and negative values of the wave-
growth exponent). In this aspect we will apply the
formalism developed in the theory of the critical thickness
of liquid films.38-43

The paper is organized as follows. In section 2 we
consider the diffusion of oil molecules across the film and
their adsorption at the water-air interface. In section 3
we describe theoretically the fluctuational capillary waves
on the film surfaces and in section 4, the resulting
perturbations in the concentration and adsorption of oil.
The dispersion relation between the wavenumber and
frequency is derived and discussed, and the source of
instability is identified. Finally, in section 6 we present
numerical data, which demonstrate the effects of the film
thickness, area, and the diffusion intensity on the film
stability.

2. Diffusion of Oil Molecules across the Film
Let us consider a thin aqueous film formed between an

oil drop and the water-air interface (Figure 2). The
aqueous phase is a surfactant solution. The surfactant is
assumed to be insoluble in oil, and its concentration in
the water phase is presumably high enough (around or
beyond the cmc) to have dense surfactant monolayers
formed at the oil-water and water-air interfaces. The
magnitude of the film radius R depends (i) on the size of
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Figure 1. Sketch of a µm-sized oil drop pressed against a solid
substrate by an air bubble blown out of a capillary. When the
pressure difference between the air and water phases, ∆P ) P2
- P1, is increased, the asymmetric oil-water-air film breaks
at a certain critical value, ∆Pcr.

∆P ) P2 - P1 (1.1)
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the oil drop, (ii) on the force pressing the drop against the
water-air interface, and (iii) on the specific configuration
of interfaces; say, if a drop is captured in a Plateau border
within a foam, three asymmetric oil-water-air films will
be formed. Below R is treated as a parameter of the model,
whose influence on the stability of the film is investigated.
For a specific system R can be determined from the
conditions for mechanical equilibrium.

Further, we assume that (i) the oil has some solubility
(molecular or micellar) in the aqueous phase and (ii) the
oil is able to spread over the surfactant adsorption
monolayer and thus to decrease the surface tension of the
water-air interface, σWA. Moreover, in this article we
consider the case of nonpreequilibrated aqueous and oil
phases. In such a case, oil molecules will be dissolved at
the oil-water interface (Figure 2), then they will cross
the water film by diffusion, and finally they will adsorb
at the water-air interface causing a progressive decrease
in σWA, which is due to the penetration of oil among the
hydrocarbon tails of the surfactant molecules.

The concentration of dissolved oil molecules in water is
assumed to be much smaller than the surfactant con-
centration, which is a typical situation for a foam-making
system. Consequently, we can accept that the system is
(almost instantaneously) equilibrated with respect to the
distribution of the surfactant and then we can examine
only the slow transport of oil molecules. This considerably
simplifies the diffusion problem considered in the present
section, as well as the hydrodynamic problem (see sections
3 and 4).

Since in reality the thickness of the asymmetric oil-
water-air film is much smaller than its curvature radius,
we can neglect the curvature of the film. Therefore, we
will consider a plane-parallel film of constant thickness
h. Our first task is to determine the concentration of the
dissolved oil c0(z,t); t is time, the z-axis is perpendicular
to the film, and the plane xy coincides with the oil-water
interface. The function c0(z,t) obeys the equation of
diffusion:

where D is the diffusivity of the oil molecules in water.
To specify the initial condition, we assume that there is
no dissolved oil at the initial moment t ) 0:

The boundary condition at the oil-water interface could
be imposed in various ways. Here we will assume that the
subsurface layer of the water phase is equilibrated with
the oil phase, that is

where ceq is the equilibrium concentration of dissolved oil
in the water. Equation 2.3 implies that the transport of
oil across the water film is limited by the diffusion. The
boundary condition at the water-air interface z ) h is

i.e. the adsorption of oil at the water-air interface Γ0
increases due to the supply of oil molecules by diffusion.
To complete the set of equations we need an adsorption
isotherm. For the sake of simplicity we will use the Henry
isotherm (see, e.g., Table 1 in ref 44):

Here c0s is the subsurface concentration of dissolved oil
molecules and Ha is the slope of the Henry adsorption
isotherm; σWA

(0) is the surface tension of the water-air
interface in the absence of any adsorbed oil molecules
(surfactant molecules are presumed to be present).

The linear boundary problem, based on eqs 2.1-2.5,
can be solved by means of Laplace transformation.
Unfortunately, the inverse Laplace transform of the
solution cannot be obtained in analytical form. However,
the asymptotic form of the solution for long times can be
expressed analytically (see Appendix A):

Setting z ) h in eq 2.7 we obtain an expression for the
subsurface concentration of oil molecules:

(44) Kralchevsky, P. A.; Danov, K. D.; Broze, G.; Mehreteab, A.
Langmuir 1999, 15, 2351.

Figure 2. Scheme of the diffusion transport of oil molecules from an oil drop (below) toward the water-air interface; ceq and cs
are the subsurface concentrations of dissolved oil at the oil-water and water-air interfaces, respectively; Jbd and Jsd symbolize
the fluxes of bulk and surface diffusion of oil; h and R are the film thickness and radius.

c0(0,t) ) ceq (t > 0) (2.3)

dΓ0
dt ) -D

∂c0
∂z |z)h (2.4)

Γ0(t) ) Hac0s(t), c0s(t) ≡ c0(z ) h, t) (2.5)

σWA(t) ) σWA
(0)

- kTΓ0(t) (2.6)

c0(z,t) ) ceq[1 -
z
h exp(- Dt

Hah)] (t . h2/D) (2.7)

c0s(t) ) ceq[1 - exp(- Dt
Hah)] (t . h2/D) (2.8)

∂c0
∂t ) D

∂
2c0

∂z2 (0 < z < h) (2.1)

c0(z,0) ) 0 (0 < z e h) (2.2)
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Finally, eliminating the exponential function between eqs
2.7 and 2.8 one obtains

If the time derivative in eq 2.1 is neglected, the linear
dependence of c0 on z in eq 2.9 can be directly deduced.
For typical parameter values, D ) 5 × 10-6 cm2/s and h
) 100 nm, one obtains h2/D ) 2 × 10-5 s, which means
that eqs 2.7-2.9 are valid for all values of t, except for a
very short nonstationary initial stage of diffusion.

As already mentioned, the boundary conditions, eqs 2.3
and 2.5, correspond to the assumption that the subsurface
layer of the aqueous phase and the adsorption layer are
equilibrated with respect to the exchange of oil molecules.
Such an equilibration exists if the following criterion is
satisfied:

where l is a characteristic thickness of the diffusion layer
and kdes is the rate constant of desorption of oil in the
water; Γeq is the saturation adsorption of oil. From the
Henry isotherm (see eq 2.5), we obtain ∂Γ0/∂c0 ) Ha; in
addition, for our system l can be identified with the film
thickness h; then the criterion 2.10 acquires the form

For an estimate one can take D ) 5 × 10-6 cm2/s, Ha )
2.4 × 10-2 cm, and 1/Γeq ) 68 Å2 per molecule (see section
6.1 below); because of the lack of data for kdes for oil, we
took the value kdes ) 6.7 × 10-8 mol cm-2 s-1 ) 4.0 × 1016

cm-2 s-1 for pentanol from Table 9.1 in ref 45. With these
parameter values the criterion 2.11 gives h . 7.6 nm as
a necessary condition for equilibration of surface and
subsurface.

In some cases the surfactant micelles serve as carriers
of oil in the aqueous phase.46-49 If such is the case, in the
above equations D should have the meaning of micelle
diffusivity.

In other cases, the oil can be completely insoluble in
water (like the triglycerides), but it can contain some
admixture (say alcohol), which has some solubility in water
and can adsorb at the water-air interface. In such a case
this admixture can play the same role as the soluble oil
considered in this paper.

3. Fluctuational Capillary Waves on the Film
Surfaces

As already mentioned, the transport of oil molecules to
the water-air interface decreases the interfacial tension
σWA and perturbs the film surfaces. Thus, the inevitable
fluctuation capillary waves could be enhanced and the
film could rupture.33 To investigate this problem theoreti-
cally, below we apply a linear instability analysis.

Let us consider fluctuations of the film thickness h, of
the pressure inside the film p, and of the concentration
of oil molecules in water c. Each of these variables can be

presented as a sum of its equilibrium value, denoted with
a subscript “0”, and of a small perturbation, denoted with
tilde, "∼′′:

It has been established38-43 that the short capillary waves
decay much faster than the long ones due to a higher
dissipation of kinetic energy. For that reason, in the
present analysis we consider only the long waves, whose
length is of the order of the film radius R (Figure 2), insofar
as they are expected to be responsible for the film rupture.
The film radius is much greater than the film thickness;
that is, h/R , 1. Therefore, to solve the hydrodynamic
problem, we can use the Navier-Stokes equation in
lubrication approximation,50 viz.,

We use cylindrical coordinates (r,æ,z), the z-axis is the
axis of rotational symmetry of the system (Figure 2), and
η is viscosity of the aqueous phase. The fluid flow is due
to the fluctuations; the velocity of the flow is expressed
in the form v ) vrer + vz ez, where er and ez are unit
vectors of the local basis; the two velocity components vr
and vz are related by the continuity equation50

Integrating eq 3.2 twice with respect to z, one obtains51

where we have introduced the notation

The functions, describing the shape of the perturbed lower
and upper film surfaces, will be denoted by

Then the perturbation of the film thickness is

Gumerman and Homsy52 have found that the results of
the instability analysis are not so sensitive to the type of
the boundary condition imposed at the periphery of a liquid
film. To specify this boundary condition, in our case we
will require the perturbations to vanish at the film
periphery; that is, h̃1 ) h̃2 ) 0 for r ) R. The physical
motivation of the latter boundary condition, which is
currently used to solve film-instability problems, is that
the factors promoting the growth of the capillary waves
are expected to be operative only inside the liquid film.53

(45) Joos, P. Dynamic Surface Phenomena; VSP BV, AH Zeist: The
Netherlands, 1999; p 271.
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1990, 94, 3776.
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(48) McClements, D. J.; Dungan, S. R.; German, J. B.; Kinsela, J. E.

Food Hydrocolloids 1992, 6, 415.
(49) Kabalnov, A.; Weers, J. Langmuir 1996, 12, 3442.

(50) Landau, L. D.; Lifshitz, E. M. Fluid Mechanics: Pergamon
Press: Oxford, 1984.

(51) Ivanov, I. B.; Dimitrov, D. S.; Somasundaran, P.; Jain, R. K.
Chem. Eng. Sci. 1985, 40, 173.

(52) Gumerman, R. J.; Homsy, G. M. Chem. Eng. Commun. 1975, 2,
27.

(53) Ivanov, I. B.; Dimitrov, D. S. In Thin Liquid Films; Ivanov, I.
B., Ed.; Marcel Dekker: New York, 1988; p 379.

c0(z,t) ) ceq - [ceq - c0s(t)] z/h (t . h2/D) (2.9)

lkdes
ΓeqD

∂Γ0
∂c0

. 1 (2.10)

h. ΓeqD/(kdesHa) (2.11)

h ) h0 + h̃, p ) p0 + p̃, c ) c0 + c̃ (3.1)

∂
2vr

∂z2 )
1
η

∂p̃
∂r, p̃ ) p̃(r,t) (3.2)

1
r

∂

∂r(rvr) +
∂vz
∂z ) 0 (3.3)

vr )
z(z - h)

2η

∂p̃
∂r +

z
h
∂u2
∂r +

h - z
h

∂u1
∂r (3.4)

∂u1
∂r ≡ vr|z)0,

∂u2
∂r ≡ vr|z)h (3.5)

z ) h̃1(r,t) and z ) h + h̃2(r,t) (3.6)

h̃(r,t) ) h̃2(r,t) - h̃1(r,t) (3.7)
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Because of the cylindrical symmetry, setting the pertur-
bations zero at the film periphery implies that the
fluctuations in the film thickness, velocity, pressure, and
oil concentration can be presented as superpositions of
terms proportional to the Bessel function J0(R r/R),

where R can be any of the zeros of the equation J0(R) )
0; Γ̃ is the fluctuation of the adsorption of oil at the water-
air interface. In addition, the boundary conditions for vz
at the film surfaces are

Having in mind eqs 3.8 and 3.9 we integrate the continuity
eq 3.3 and use eq 3.4 to derive

We have used the fact that ∇2J0(R r/R))- (R/R)2J0(R r/R),
where ∇2 is Laplacian. The substitution z ) h in eq 3.10,
along with eqs 3.7 and 3.9, yields

The Laplace equation of capillarity for the two perturbed
film surfaces has the form50,54

where σOW is the oil-water interfacial tension; poil and pair
denote the pressure in the respective phase, and Π(h) is
the disjoining pressure, which accounts for the molecular

interactions across the film.55,56 In view of eq 3.1, for the
nonperturbed film surfaces, one can write

where Rf is the radius of curvature of the film. For small
perturbations the disjoining pressure can be expanded in
series for small perturbations h̃:

Having in mind eqs 3.1, 3.8, 3.13a,b, 3.14, and the
relationship ∇2hi )-2/Rf +∇ 2h̃i, i) 1,2, from eqs 3.12a,b
one can deduce

In view of eq 3.7, by summation and subtraction of eqs
3.15 and 3.16, one derives the following useful relation-
ships:

4. Fluctuations in the Concentration and
Adsorption of Oil

To calculate the fluctuations in the concentration of oil
dissolved in water, we have to solve the respective
linearized diffusion problem. The starting point is the
standard equation of convective diffusion:50

(54) Ivanov, I. B.; Kralchevsky, P. A. In: Thin Liquid Films, I. B.
Ivanov, Ed.; M. Dekker: New York, 1988; p 49.

(55) Derjaguin, B. V. Theory of Stability of Colloids and Thin Liquid
Films; Plenum Press, Consultants Bureau: New York, 1989.

(56) Israelachvili, J. N. Intermolecular and Surface Forces; Academic
Press: London, 1992.

Figure 3. The mechanism of wave growth: (1) In the region of smaller thickness the water-air interface enters a zone enriched
in dissolved oil, which leads to enhanced adsorption of oil. (2) The latter gives rise to gradients of surface tension, directed from
the zone of smaller thickness outward, which (3) drag away water and thus (4) produce a further growth of the concavity.

(h̃,h̃1,h̃2,u1,u2,p̃,c̃,Γ̃) ∝ J0(R r/R) (3.8)

vz|z)0 )
∂h̃1
∂t , vz|z)h )

∂h̃2
∂t (3.9)

vz )
∂h̃1
∂t +

R
2

R2[(z3

3 -
hz2

2 ) p̃
2η

+
z2

2h u2 +
z(2h - z)

2h u1]
(3.10)

∂h̃
∂t )

R
2

R2[h2(u1 + u2) -
h3p̃
12η] (3.11)

σOW∇
2h1 ) p + Π(h) - poil (3.12a)

σWA∇
2h2 ) pair - p - Π(h) (3.12b)

2σOW/Rf ) poil - p0 - Π(h0) (3.13a)

2σWA/Rf ) p0 + Π(h0) - pair (3.13b)

Π(h) ) Π(h0) + Π′h̃ + ...; Π′ ≡
dΠ

dh |h̃ ) 0 (3.14)

σOW(R/R)2h̃1 + p̃ + Π′ h̃ ) 0 (3.15)

σWA(R/R)2h̃2 - p̃ - Π′ h̃ ) 0 (3.16)

h̃1 ) -
σWA

σOW + σWA
h̃ (3.17)

p̃ ) (R2

R2

σOWσWA
σOW + σWA

- Π′) h̃ (3.18)
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As discussed at the end of section 2, for times longer than
τ ≡ h2/D ≈ 2 × 10-5 s, the derivative ∂c/∂t in eq 4.1 can
be omitted. The latter approximation is valid also for the
perturbations considered by us, insofar as the charac-
teristic time of growth of the capillary waves (see the values
of ω-1 in Figures 4-7 below) is much greater than the
above value of τ. Having in mind that c ) c0 + c̃, we
calculate∇c0 from eq 2.9 and bring eq 4.1 into the following
linearized form:

The boundary conditions at the two perturbed film surfaces
are

where ∇s and Ds are the surface gradient operator and the
coefficient of surface diffusion and Γ is the adsorption of
oil at the water-air interface. The three terms in the right-
hand side of eq 4.4 account, respectively, for the effects
of interfacial expansion/compression, surface diffusion of
oil molecules and their bulk diffusion. Expanding in series
in eq 4.3, and using eqs 2.3 and 2.9, one obtains

Likewise, in eq 4.4 we substitute Γ ) Γ0 + Γ̃ and obtain
the following relationship between the perturbations of
the involved variables:

To derive eq 4.6 we have used eqs 3.5 and 3.8. The
subsurface concentration of oil at the water-air interface
can be expressed in the form cs ) c0(h̃2, t) + c̃s. With the
help of eqs 2.5, 2.9, 4.2, and the Henry isotherm, Γ )Hacs,
we obtain the following relationship between the pertur-
bations:

where c̃s ≡ c̃|z)h. Next, we integrate eq 4.2 twice with
respect to z, substituting vz from eq 3.10. The two constants
of integration are determined from eqs 4.5 and 4.7. The
resulting expression for c̃ is differentiated to derive

Substituting eq 4.8 into eq 4.6 we obtain

One additional relationship follows from the tangential
stress balance at the water-air interface (in lubrication
approximation)

Since we consider relatively slow surface corrugations (the
surfaces are presumed to be equilibrated with the bulk
with respect to the surfactant), the variation of σWA in eq
4.10 is completely due to the variation of the adsorption
of oil at the water-air interface. With the help of eq 3.4
and the Henry isotherm, σWA ) σWA

(0)
- kT Γ, eq 4.10 can

be represented in the form

In summary, we have to determine six unknown vari-
ables: h̃, h̃1, p̃, u1, u2, and Γ̃. Up to here, we have a set of
five equations relating these variables, viz., eqs 3.11, 3.17,
3.18, 4.9, and 4.11. The necessary sixth equation stems
from the tangential stress balance at the oil-water
interface; this balance equation, and its consequences,
are considered below.

5. Tangential Stress Balance at the Oil-Water
Interface and Dispersion Relation

Since we consider fluctuational capillary waves, we can
seek the perturbation of the film thickness h̃ in the form39,50

where H(r) ∝ J0(Rr/R) is amplitude and ω is the exponent
of growth of the capillary waves. Indeed, for ω > 0 the
capillary waves grow until break the liquid film, whereas
for ω < 0 the capillary waves decay with time. Therefore,
the condition ω) 0 corresponds to transition from regime
of stability to regime of instability. Our aim below is to
investigate how this transition depends on the physical
parameters of the system.

As mentioned in section 2, in the present study we
assume that the surfactant concentration is sufficiently
high, viz., around or beyond the cmc; in fact, this is the
concentration range in which stable foam films and foams
do exist. For such concentrations the surfactant adsorption
monolayer on the water-air interface certainly behaves
as tangentially immobile.53 (In this study, any motion at
the water-air interface is entirely due to molecular
spreading of oil, see eq 4.10.) On the other hand, for the
same bulk concentrations, the adsorption of surfactant
(and the surface elasticity) at the oil-water interface could
be essentially lower than that at the water-air interface.57

So, one might expect that the oil-water interface is more
fluid than the water-air one.

Below we consider the two limiting cases (i) tangentially
mobile and (ii) tangentially immobile oil-water interface.
We will mention in advance, that these two cases give
numerically close results about the transition from stable
to unstable films. In other words, it turns out that the
stability of the asymmetric film is not so sensitive to the
degree of tangential mobility of the oil-water interface.

5.1. Tangentially Mobile Oil-Water Interface. In
this limiting case we neglect the effects of surface elasticity
and viscosity. Then the tangential stresses in the water
and oil phases directly counterbalance each other at the
interface:

(57) van Hunsel, J.; Joos, P. Colloids Surf. 1987, 24, 139.

∂c
∂t + v‚∇c ) D∇

2c (4.1)

-vz δc/h ) D∂
2c̃

∂z2, δc ≡ ceq - c0s(t) (4.2)

c ) c0(h̃1, t) + c̃ ) ceq at z ) 0 (4.3)

∂Γ

∂t ) -∇s‚(Γv) + Ds∇s
2
Γ - D∂c

∂z at z ) h (4.4)

-(δc/h)h̃1 + c̃|z)0 ) 0 (4.5)

∂Γ̃

∂t )
R

2

R2(Γ0u2 - DsΓ̃) - D∂c̃
∂z|z)h (4.6)

Γ̃ ) Ha[c̃s - (δc/h)h̃2] (4.7)

D∂c̃
∂z|z)h )

D
h( Γ̃

Ha
+

δc
h h̃) -

δc
2 [∂h̃1

∂t +
R

2h
4R2(u2 +

5
3 u1 -

7h2

30η
p̃)] (4.8)

∂Γ̃

∂t -
δc
2

∂h̃1
∂t +

Dδc
h2 h̃ + ( D

Hah
+

R
2Ds

R2 )Γ̃ )

R
2

8R2[(hδc + 8Γ0)u2 +
5
3 hδcu1 -

7h3δc
30η

p̃] (4.9)

η
∂vr
∂z |z)h )

∂σWA
∂r (4.10)

1
2hp̃ + η(u2 - u1)/h ) - kT Γ̃ (4.11)

h̃ ) H(r)exp(ωt) (5.1)
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The superscript “d” denotes quantities which refer to the
oil drop; in particular, ηd is the viscosity of the oil. The
lubrication approximation is not applicable to describe
the hydrodynamic flow inside the drop. For that reason
we used the complete Navier-Stokes equation in con-
junction with eq 3.3; the solution was sought in the form
of capillary waves, which decay exponentially in the depth
of the oil phase. As a result we obtained a modified form
of eq 5.2:

For real thin films h/R, 1. Consequently, if η and ηd have
the same order of magnitude, then the right-hand side of
eq 5.2a is much smaller than the left-hand side and it can
be neglected. Thus, the tangential stress balance at the
oil-water interface reduces to

The substitution of eq 3.4 into eq 5.3 yields

The linear set of five equations, 3.11, 3.17, 3.18, 4.11, and
5.4, allows one to express the five variables, h̃1, p̃, u1, u2,
and Γ̃ in terms of h̃ and ∂h̃/∂t. The resulting expressions
are then substituted in eq 4.9 to derive a connection
between h̃ and ∂h̃/∂t (see Appendix B for details):

where

The quantities

take into account, respectively, the effects of bulk diffusion,
surface diffusion, and surface (Gibbs) elasticity; to obtain
the expressions for b and EG we have used the Henry
isotherm, see eqs 2.5 and 2.6. The substitution of eq 5.1
into eq 5.5 gives the sought after expression for ω:

where A and B are given by eqs 5.6 and 5.7. In fact, eq
5.10 represents a dispersion relation between the wave-

growth exponent ω and the wavenumber q ≡ R/R. A
substitution of experimental values of the physical
parameters shows that usually A> 0. Then, the sufficient
condition for instability, ω > 0, is transformed to B > 0.
Positive values of B are possible when the first term in
eq 5.7

is large enough. It turns out that for the considered type
of systems this term, proportional to Q, is the major source
of instability. For that reason, the physical meaning of Q
deserves a special discussion.

The term with Q originates from the mass balance
equation at the water-air interface, eq 4.9; the latter can
be presented in the form

Equation 5.12 shows that for a local fluctuational decrease
in the film thickness, h̃ < 0, the term with Q contributes
to a local increase in the adsorption Γ̃. The latter increase
is due to the fact that in the region of smaller thickness
the water-air interface enters a zone enriched in dissolved
oil, which is being transferred by diffusion from the lower
film surface toward the upper one (Figure 3). The newly
adsorbed oil (the local increase of Γ̃) creates a surface
tension gradient, which in its own turn gives rise to a
two-dimensional flow (molecular spreading of oil) in the
water-air interface, see eqs 4.10 and 4.11. This surface
flow, directed from the zone of smaller thickness outward,
carries water away, which causes a further decrease of the
local film thickness in the concave zone (Figure 3). In
other words, there is a positive feedback, which promotes
a growth of the fluctuation (deepening of the concavity)
until eventually the two film surfaces touch each other
and the film ruptures. A feature of this mechanism of film
breakage is that the oil diffusion across the film precedes
and feeds the molecular spreading of oil.

The formal substitution δc ) 0 (no diffusion across the
film) and EGf ∞ (tangentially immobile surfaces) brings
eq 5.10 in the simpler form

In this limiting case instability (ω > 0) can appear only
if Π′ > 0, which may happen in the case of predominant
van der Waals attraction between the film surfaces.38-42

Setting ω ) 0 in eq 5.13 we arrive at a known expression
for the transitional wavenumber (corresponding to a
transition from stability to instability):33

For symmetric films, σOW ) σWA ) σ, eq 5.14 has been
derived long ago;38,39,41 it corresponds to instability driven
only by the disjoining pressure Π. In contrast, eq 5.10
predicts instability even in the case of Π′< 0; as discussed
above, the latter instability is driven by the diffusion
transport of a surface-active solute (the oil) across the
film (Figure 3). In this aspect eq 5.10 involves a new source
of instability, as compared to eq 5.13.

5.2. Tangentially Immobile Oil-Water Interface.
In this case, the immobilizationcouldbeduetohighsurface

η
∂vr
∂z ) ηd(∂vr

d

∂z +
∂vz

d

∂r ) at z ) 0 (5.2)

η
∂vr

∂(z/h) ) -2Rηdvr
h
R at z ) 0 (5.2a)

η
∂vr
∂z |z ) 0 (5.3)

u2 ) u1 + (h2/2η)p̃ (5.4)

A(∂h̃/∂t) ) Bh̃ (5.5)

A ) 1 +
hδc
6Γ0

2σOW - σWA
σOW + σWA

+
h2f
EG

(5.6)

B )
Dδc
hΓ0

- (δc
2 -

R
2

R2

σOWh
kT ) kTDσOW

(σOW + σWA)2
δc
Γ0

-

R
2

R2
h3f
3η(1 -

hδc
15Γ0

+
R2

R
2

b
h2 +

hs
h ) (5.7)

f ≡
R

2

R2

σOWσWA
σOW + σWA

- Π′ (5.8)

b )
3ηD
EGha

, hs )
3ηDs
EG

, EG ) -Γ0
∂σWA
∂Γ0

) kTΓ0 (5.9)

ω )
B
A (5.10)

Dδc
hΓ0

)
h
Γ0

Q, Q ≡
Dδc
h2 (5.11)

∂Γ̃

∂t ) -Qh̃ + (other terms) (5.12)

ω )
h3q2

3η (Π′ - q2 σOWσWA
σOW + σWA), q ≡

R

R (5.13)

q2
)

σOW + σWA
σOWσWA

Π′ (5.14)
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viscosity or high surface elasticity. In such a case the
tangential component of surface velocity is equal to zero:
vr|z)0 ) 0. Combining the latter equation with eq 3.5, we
obtain

where we have taken into account the fact that u1 is a
perturbation. In view of eq 5.15, the linear set of four
equations, 3.11, 3.17, 3.18, and 4.11, allows one to express
the 4 variables, h̃1, p̃, u2, and Γ̃ in terms of h̃ and ∂h̃/∂t.
The resulting expressions are then substituted in eq 4.9
to derive a connection between h̃ and its time derivatives
(see Appendix C for details):

where

The substitution of eq 5.1 into eq 5.16 yields a quadratic
equation for ω:

Equation 5.21 represents the sought for dispersion relation
between the frequency ω and the wavenumber q ≡ R/R.
The roots of eq 5.21 are

The exponent of wave growth is to be identified with the
greater of the real parts of the roots ω1 and ω2. Substituting
typical experimental values of the parameters in eqs 5.17-
5.20 (see section 6.1), we obtain that always A1 > 0;
excluding some unrealistically large values of δc we also
have B1 > 0. Then the necessary and sufficient condition
for appearance of instability is C1 > 0; in such a case the
exponent of wave growth coincides with the larger root,
that with sign "+" in eq 5.22. Positive C1 is ensured when
the term Dδc/(2hΓ0) in eq 5.19 is large enough. Hence the
physical origin of the instability is the same as in section
5.1, i.e. diffusion transport of a surface-active solute (the
oil) across the film; see the discussion after eq 5.11 and
Figure 3.

Performing the limiting transition δcf 0 (no diffusion
across the film) and EG f ∞ (tangentially immobile
surfaces) in eq 5.21, one arrives at a known result, eq
5.14.

6. Numerical Results and Discussion
6.1. Parameter Values. Our purpose here is to obtain

numerical results about the influence of various physical
factors (concentration of dissolved oil, film thickness h,
film radius R, etc.) on the wave-growth exponent ω, and
especially, on the existence of stability-instability transi-
tion at ω ) 0. To obtain realistic results, we take the
following experimental values from ref 26 for aqueous
solution of 0.09 wt % (about 10 cmc) of the surfactant
dodecyl-benzene-sulfonate with added 12 mM NaCl, viz.,
oil-water interfacial tension, σOW ) 2.2 mN/m; tension of
the oil-free water-air interface, σWA

(0)
) 32.4 mN/m;

tension of water-air interface equilibrated with a floating
oil lens, σWA

(eq)
) 26.4 mN/m. The equilibrium concentration

of oil dissolved in water is taken ceq ) 10-5 M, see ref 58.
Then from eqs 2.5 and 2.6 we determine Ha ) (σWA

(0)
-

σWA
(eq))/(kT ceq))2.43 × 10-2 cm. The calculated equilibrium

adsorption of oil, Γeq ) Haceq, corresponds to 68 Å2 per oil
molecule in the spread oil layer, which means that we
deal with molecular spreading (incorporation of separate
oil molecules among the tails of the surfactant molecules),
rather than with spreading of thick (bulk) layer of oil. For
the coefficients of bulk and surface diffusion of oil we use
the values D ) Ds ) 10-10 m2/s; in addition, the viscosity
of the aqueous phase is η ) 0.89 × 10-3 Pa/s.

To simplify the calculations we assume that the elec-
trostatic component of disjoining pressure is suppressed
by the added salt and that the van der Waals interaction
is predominant; then we can use the expression55,56

where AH is the compound constant of Hamaker. Since
the magnitude of the Hamaker constant of water is
intermediate between those of the oil and air, we obtain
a negative value of the compound constant: AH ) - 2 ×

10-21 J. The latter fact implies that the van der Waals
interaction is repulsive, and consequently, it can ensure
the formation of equilibrium oil-water-air films.

When calculating the exponent of wave growth ω, we
have substituted R equal to the first zero of the Bessel
function J0; that is R ) 2.4048. This means that we
calculate ω for the longest possible wave, which does
usually first become unstable.59

The parameter values given in section 6.1 are used for
the calculation of all theoretical curves reported in sections
6.2 and 6.3.

6.2. Numerical Results for the Wave-Growth Ex-
ponent. In Figure 4 we present plots of ω versus the
subsurface concentration of dissolved oil c0s. The theoreti-
cal curves are calculated by means of eq 5.10 for three
different values of the film thickness h; the film radius is
the same for the three curves, R ) 5 µm. One sees that
ω < 0 for c0s ) ceq () 0.01 mM); see the right end-points
of the curves in Figure 4. This means that the film is
stable with respect to capillary waves, if there is no
diffusion of oil across it (as it should be expected). The
thicker film, the one with h ) 100 nm, is stable (ω < 0)
in the whole range of variation of c0s shown in the figure;
this film could become unstable (ω > 0) for c0s < 0.001
mM, but such low values of c0s seem to be unrealistic.
Indeed, the real oil-water-air films can reach a given
thickness, say h)100 nm, in a process of thinning; during
the thinning not only the diffusion, but also the convection
could transport oil molecules to the water-air interface.53

(58) McAuliffe, C. J. Phys. Chem. 1966, 70, 1267.
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With the decrease of the film thickness the region of
instability (the part of the curve with ω > 0, Figure 4)
increases, and for h ) 20 nm almost the whole curve
belongs to the region of unstable films. Qualitatively, this
transition from stable to unstable films with the decrease
of the film thickness h could be identified with the
experimentally observed breakage of the film at a certain
∆Pcr, when the pressure difference ∆P ) P2 - P1 is
increased, see Figure 1. (Larger ∆P leads to smaller h
because of the squeezing of water from the film.)

Figure 5 demonstrates the strong influence of the film
radius, R, on the film stability at fixed thickness h. The
increase of R with few µm leads to a considerable shift of
the ω(c0s)-curve upward, i.e., toward positive ω and
unstable films. The physical implication of this fact is
that the films at the top of larger oil drops (with larger
R) should be less stable, see Figures 1 and 2. The major
conclusion from Figures 4 and 5 is that the transition
from stability to instability, at ω ) 0, does really exist for
reasonable values of the system parameters; ω increases
(the films become less stable) when the thickness h
decreases, the radius R increases, and δc ) ceq - c0s is
greater; that is, the diffusion flux of oil across the film is
more intensive.

As already mentioned, if a drop (lens) of oil is put at the
water-air interface, covered by surfactant adsorption

monolayer, the interfacial tension σWA decreases. The
equilibrium (maximum) value of the decrement is ∆σ(0) ≡

σWA
(0)

- σWA
(eq). The fact that ∆σ(0) > 0 means that the oil

exhibits a surface activity (oil molecules spontaneously
penetrate among the tails of the adsorbed surfactant
molecules), which is a necessary condition for the ap-
pearance of surface tension gradients and film instability,
as sketched in Figure 3. Under dynamic conditions, the
surface tension decrement is ∆σ ≡ σWA(c0s) - σWA

(eq). In
general ∆σ e ∆σ(0) because of the preliminary partial
saturation of the water-air interface with oil; if equilib-
rium is attained (c0s ) ceq), then ∆σ ) 0. Figure 6
demonstrates that the wave-growth exponent ω increases
with the rise of ∆σ. It is interesting to note that even a
very small ∆σ can provoke a stability-instability transi-
tion: for R ) 50 µm the point ω ) 0 corresponds to ∆σ ≈

4 × 10-3 mN/m, which is a vanishingly small value
compared to the experimental accuracy of the surface
tension measurements. For smaller R the stability of the
film increases, and then a larger ∆σ is necessary to induce
instability: for R ) 10 µm the point ω ) 0 corresponds to
∆σ ≈ 0.3 mN/m, see Figure 6. In conclusion, small values
of ∆σ are sufficient to trigger the instability.

In Figure 7 we compare the dependencies of ω on c0s for
the cases of tangentially mobile and immobile interface

Figure 4. Plot of the wave-growth exponent ω vs the subsurface
concentration of oil at the water-air interface, c0s; the equi-
librium concentration of dissolved oil is ceq ) 0.01 mM and the
film radius is R ) 5 µm. The three curves, calculated from eq
5.10, correspond to three different values of the film thickness:
h ) 20, 50, and 100 nm.

Figure 5. Plot of the wave-growth exponent ω vs the subsurface
concentration of oil at the water-air interface, c0s; the equi-
librium concentration of dissolved oil is ceq ) 0.01 mM and film
thickness is h ) 100 nm. The three curves, calculated from eq
5.10, correspond to three different values of the film radius:
R ) 5, 7, and 10 µm.

Figure 6. Plot of the wave-growth exponent ω vs the decrease
of the water-air surface tension, ∆σ(c0s), due to the adsorption
of oil; the equilibrium concentration of dissolved oil is ceq ) 0.01
mM and film thickness is h)50 nm. The three curves, calculated
from eq 5.10, correspond to three different values of the film
radius: R ) 10, 20, and 50 µm.

Figure 7. Plot of the wave-growth exponent ω vs the subsurface
concentration of oil at the water-air interface, c0s; the equi-
librium concentration of dissolved oil is ceq ) 0.01 mM; the film
thickness and radius are h ) 100 nm and R ) 10 µm. Curve
(i) is calculated from eq 5.10, and curve (ii) from eq 5.22, for
tangentially mobile and immobile oil-water interface, respec-
tively.
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oil-water. The respective curves are calculated from eqs
5.10 and 5.22, the latter with “+” before the square root.
One sees that the wave-growth exponent ω is almost
everywhere greater by magnitude for the mobile oil-water
interface as compared to the immobile one. On the other
hand, the points with ω ) 0 are close for the two curves.
Hence, the transition from stability to instability is not
so sensitive to the degree of mobility of the oil-water
interface.

6.3. Limits of Action of the Proposed Mechanism
and Alternative Sources of Instability. Finally, let us
make a brief recapitulation of the possible sources of
instability, which could cause film rupture, and subse-
quent drop “entry” at the water-air interface (Figure 1).

A. Instability Driven by Diffusion Flux across the Film.
This is the mechanism investigated in the present paper.
The necessary conditions this instability to occur are, first,
some component to be transported by diffusion from the
oil-water to the water-air interface, and second, this
component to be surface-active, i.e., to give rise to a
decrement ∆σ of the water-air surface tension, see Figure
6 and the related text. If the water-air interface is
preequilibrated with the transported component, say the
interface is covered with prespread oil, then ∆σ ) 0 and
this type of instability disappears.

B. Instability Driven by Disjoining Pressure. This is the
classical type of instability in liquid films,38,39 which
appears only for Π′ > 0, see eq 5.14. The latter condition
can be satisfied if there is negligible double layer
(electrostatic) repulsion between the two film surfaces;
such is the case of nonaqueous films,41 or aqueous films
with much electrolyte.60 However, the condition Π′ > 0 is
not satisfied for typical foam systems in the presence of
ionic surfactants at not too high salt concentrations (<0.1
M); in the latter type of systems there could be another
source of instability:

C. Instability Driven by Surface Electric Current. This
mechanism could be operative if the kinetic constant of
surfactant desorption is much smaller than the constant
of adsorption, Kdes , Kads. In this case the adsorbed
surfactant ions are closed in a two-dimensional world,
i.e., they could migrate only tangentially to the interface.
A local fluctuational decrease in the film thickness induces
a local increase in the magnitude of the surface potential,
which gives rise to a surface electric current. The latter
carries the adsorbed surfactant ions away from the concave
zone and drags water outward. Thus, the system promotes
the growth of the concavity, i.e., a positive feedback takes
place, just as it is in Figure 3. A detailed theoretical
description of this mechanism is now under way.61

D. Instability Due to the Piercing Effect of Solid Edge.
This effect is achieved by addition of hydrophobic solid
particles (crystallites) to the oil. They usually occupy the
oil-water interface and are able to break the oil-water-
air film if the protrusion of their sharp edges is comparable
or greater than the film thickness. This effect is often
used in the formulations of fast antifoams.3-7,10-13

It may happen that two (or even more) of the above
mechanisms are simultaneously operative. For example,
the increasing concentration of oil, spread over the water-
air interface, suppresses the action of mechanism “A” due

toadecrease in thechemical-potentialgradientof oil across
the water film; on the other hand, the spread oil facilitates
the effectuation of mechanism “C” owing to a decrease in
the surface elasticity. For intermediate surface concen-
trations of oil both mechanisms could simultaneously
operate. In such a case, a careful analysis of the experi-
mental data is needed to reveal the real driving factor(s)
of instability.

7. Concluding Remarks

In the present article we investigate theoretically an
instability, which is driven by diffusion flux across an
asymmetric liquid film. For example, such a flux can
appear across an asymmetric oil-water-air film, formed
between an oil drop pressed against the water-air
interface (Figure 1), if the oil is slightly soluble in water.

In our model we assume that the oil molecules, dissolved
(solubilized) at the oil-water interface, are transported
by diffusion across the aqueous film to the water-air
interface, where they penetrate between the tails of the
adsorbed surfactant molecules and thus cause a decrease
of the water-air surface tension. The concentration profile
of the dissolved oil across the film is given by eqs 2.8 and
2.9. Next, we consider fluctuational capillary waves at
the two film surfaces. The set of hydrodynamic equations
and boundary conditions has been solved to obtain
relationships between the fluctuations of film thickness,
pressure, velocity potential at the interfaces, and adsorp-
tion of oil at the water-air surface, see eqs 3.11, 3.17,
3.18, 4.9, and 5.4. As a result, we derive a dispersion
relation between the exponent of wave growth, ω, and the
wavenumber, see eqs 5.10 and 5.21. For ω > 0 the
amplitude of a perturbation grows until the film ruptures,
see eq 5.1. The physical meaning of the term, which leads
to ω > 0 (see eq 5.11), suggests that the instability is
engendered in the following way.

If a local fluctuational decrease in the film thickness
appears, the water-air interface enters a zone enriched
in dissolved oil. The newly adsorbed oil creates a surface
tension gradient, which gives rise to a two-dimensional
flow (molecular spreading of oil) in the water-air interface.
The surface flow carries water away, which causes a
further decrease of the local film thickness in the concave
zone (Figure 3). So, there is a positive feedback, which
promotes a deepening of the concavity until eventually
the film ruptures.

The numerical results show that the transition from
stability to instability at ω ) 0 does really exist for
reasonable values of the parameters of the system; the
film becomes less stable when its thickness decreases, its
radius increases, and the diffusion of oil across it is more
intensive (Figures 4, 5, and 7). Even very small decrements
of the water-air surface tension, caused by the adsorbed
oil, are sufficient to trigger the instability (Figure 6). It
turns out that the transition from stability to instability
is not so sensitive to the degree of mobility of the oil-
water interface (tangentially mobile or immobile), see
Figure 7. If the water-air interface is preequilibrated
with the transported component (there is prespread oil),
then the surface tension decrement, and the instability,
disappears.

The rupture of the asymmetric oil-water-air film is a
precondition for entry of an oil drop at the water-air
interface and effectuation of its foam-destructive action.
Our results about one specific source of film instability
could be helpful for a deeper understanding of the
mechanisms of antifoaming.
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Appendix A: Diffusion of Oil Across the Water
Film

The linear boundary problem consists of the diffusion
eq 2.1, the initial condition, eq 2.2, and two boundary
conditions. The first one is eq 2.3; the second boundary
condition is obtained by elimination of Γ0(t) between eqs
2.4 and 2.5:

We apply a Laplace transformation to eq 2.1:

where ĉ(z,s) is the Laplace transform of c0(z,t). The solution
of the latter equations reads

To determine A(s) and B(s) we use the two boundary
conditions; the Laplace transforms of eqs 2.3 and A.1 are

In accordance with eq 2.2, at the last step we have set
c(h,0) ) 0. Combining eqs A.3-A.5 we obtain

In the limiting case of long times, s f 0, and thin films,
h , Ha, eq A.1 reduces to

The inverse Laplace transform of eq A.7 is eq 2.7.

Appendix B: Derivation of Equations 5.5-5.7
The linear set of five equations, 3.11, 3.17, 3.18, 4.11,

and 5.4, allows one to express the 5 variables, h̃1, p̃, u1,

u2, and Γ̃ in terms of h̃ and ∂h̃/∂t, as follows:

Combining eqs 5.8 and B.1, one obtains

Equations B.1-B.5 are substituted in eq 4.9 to derive a
connection between h̃ and ∂h̃/∂t, which is eq 5.5. In the
derivation we have taken into account that λ (and,
consequently, f) are dependent on time t. With the help
of eqs 2.5, 2.6, 2.8, and 4.2 we obtain

Appendix C: Derivation of Equations 5.16-5.19
In view of eq 5.15, the linear set of four equations, 3.11,

3.17, 3.18, and 4.11, allows one to express the 4 variables,
h̃1, p̃, u2, and Γ̃ in terms of h̃ and ∂h̃/∂t. The expressions
for h̃1 and p̃ are again eqs B.1 and B.2. The expressions
for u2 and Γ̃ are

Next, eqs 5.15, B.1, B.2, C.1, and C.2 are substituted in
eq 4.9 to derive a connection between h̃ and its time
derivatives, that is, eq 5.16; in particular, the second
derivative ∂2h̃/∂t2 in eq 5.16 originates from the dif-
ferentiation of eq C.1. The time dependence of λ and f is
taken into account with the help of eqs B.6 and B.7.
LA0003185

Ha
∂c0
∂t ) -D

∂c0
∂z for z ) h (A.1)

∂
2ĉ

∂z2 -
s
D ĉ ) 0 (A.2)

ĉ(z,s) ) A(s) sinh(az) + B(s) cosh(az), a2
≡ s/D (A.3)

ĉ(0,s) ) ceq/s (A.4)

Hasĉ(h,s) ) -D∂ĉ
∂z|z)h (A.5)

ĉ(z,s) )
ceq
s (cosh az -

aHa + tanh(ah)
1 + aHa tanh(ah) sinh(az))

(A.6)

ĉ(z,s) )
ceq
s -

ceqz
h

1
D/(Hah) + s (A.7)

h̃1 ) (λ - 1)h̃, λ ≡ σOW/(σOW + σWA) (B.1)

p̃ ) fh̃ (B.2)

Γ̃ )
hf
kT h̃ (B.3)

u1 )
R2

hR2
∂h̃
∂t -

h2f
6η

h̃ (B.4)

u2 )
R2

hR2
∂h̃
∂t +

h2f
3η

h̃ (B.5)

f ) R
2

R2σOW(1 - λ) - Π′ (B.6)
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2

kT(hf
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h2
R

2
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u2 )
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