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Abstract. The stability of a partially mobile thin liquid plane-parallel film between two gas or 
oil phases is studied. The long wave approximation is used to analyze the influence of soluble 
ionic surfactants and non-surface active background electrolyte on the increment/decrement 
of fluctuations. The material properties of the corresponding multiphase flow and interfaces 
are taken into account. The equilibrium state of the film is described by the classical DLVO 
theory in which the Van der Waals and electrostatic disjoining pressures are included. The 
fluctuation analysis of the electro-diffusion fluxes, velocity of the components, concentrations, 
electric potential and film thickness give the analytical criteria for stability of the equilibrium 
state. Numerical results show changes of the stability region with increasing surfactant 
concentration and significant influence of the background electrolyte. The stabilizing effects 
of the Gibbs elasticity, surface and bulk viscosities are demonstrated.. The results are useful 
for control of the foam breakdown in the industrial systems.  
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1. INTRODUCTION 
 
 The stability of thin liquid films is an important problem in diverse areas of science and 
technology. Technological and biological examples include foam and emulsion stability 
(Kralchevsky et al., 1997); displacement of crude oil by gas and foam from rock pores 
(Ramamohan and Slattery, 1984); safety of light water cooled nuclear power plants (Lienhard 
et al., 1978); the rupture of the tear film in the human eye (Lin and Brenner, 1982); etc. This 
paper examines the stability of thin liquid film occurring between two drops or bubbles in a 
dispersion stabilized by ionic surfactants in the presence of a background electrolyte 
(inorganic salt).  
 The thin liquid film rupture is due to thermal fluctuations, which lead to corrugations of 
the film surfaces. These corrugations give rise to two forces: (i) capillary pressure, which 
tends to resist any deformation on the surface, and (ii) disjoining pressure, which can amplify 
the amplitude of the corrugations. Therefore, there exists a transition thickness at which the 
characteristics of the waves change. For thicknesses smaller than the transitional one the film 
is unstable and, as the amplitude of the wave increases, it ruptures.  
 The problem of film stability has been investigated by many authors. Early studies 
attributed the film rupture to the onset of a thermodynamically unstable state during the 
drainage process and the usual approach was to calculate the free energy of the film as a 
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function of its thickness (Frenkel, 1955). De Vries (1958) was the first to supplement the 
thermodynamic studies of film stability with a kinetic treatment of the mechanism of rupture. 
Further investigations revealed the importance of the interfacial tension, van der Waals and 
electrostatic forces, density, viscosity ratio of the two phases and interfacial elasticity for 
determining the film stability (see the review of Maldarelli and Jain, 1988). It was found that 
for a thin film between identical phases there exist two modes of vibration of the film: 
symmetric and anti-symmetric. The symmetric long waves were shown to be responsible for 
the film rupture. Ivanov et al. (1974) analyzed the stability of films containing low 
concentrations of surface-active species. Those authors included the effects of surface 
diffusion and surface viscosity and demonstrated that the decrease in the critical thickness 
with increasing surfactant concentration is due to surface viscosity.  
 Most of the publications in the literature (see the review of Danov et al., 1999) describe 
the stability of plane-parallel films in the case of nonionic surfactants. In various applications 
the bulk phase is a multi-component system of different kind of surfactants and background 
electrolytes. The thermodynamics of such liquid interfaces was studied by Kralchevsky et al. 
(1999). In the present work we report a solution of the stability problem of an equilibrium 
plane-parallel thin liquid film between two bubbles when the continuous liquid phase is a 
complex mixture of ionic and nonionic surfactants and background electrolytes.  
 

2. PHYSICAL BACKGROUND  
 
 The stability of foams and emulsions depends on the stability of the thin liquid films 
formed between the colliding particles. In the classical concept of dispersion stability, the so 
called DLVO theory (see the review of Kralchevsky et al., 1997), the total interaction 
between particles is supposed to be a superposition of van der Waals and electric double layer 
interactions. The total disjoining pressure, Π , and the particle-particle interaction energy, U, 
are presented in the form: Π Π Π= +vw el ; U U Uvw el= + . Πvw  is the van der Waals 
attractive disjoining pressure, which leads to fast drainage and rupture of the films, and Πel  
is the electric repulsive disjoining pressure, which may counterbalance the van der Waals 
attraction and stabilize the films. A typical disjoining pressure isotherm, ( )Π H , is depicted in 
Fig. 1a. The maximum represents a barrier against coagulation, the primary minimum appears 
if strong short-range repulsive forces (steric forces) present, and the secondary minimum is 
usually small, but for larger drops could be deep enough to cause coagulation.  
 Thermodynamic equilibrium condition is reached when the total disjoining pressure, Π , 
equals the capillary pressure, Pc : Π = Pc . This equilibrium condition can be satisfied at the 
three points shown in Fig. 1a. Point 1 corresponds to a film, which is stabilized by double-
layer repulsion. Point 3 corresponds to unstable equilibrium and cannot be observed 
experimentally. Point 2 corresponds to a very thin film, which is stabilized by short-range 
repulsion (Newton black film).  
 It is known from experiments that for low surfactant concentrations the equilibrium state 
1 (Fig. 1a) is thermodynamically stable, but at high surfactant concentrations the mechanical 
equilibrium in point 1 is unstable—the film ruptures, or Newton black film is formed. This 
instability may be a result of thermal or mechanical fluctuations in the film shape (Fig. 1b), 
which disturb the surfactant adsorption, concentration and surface potential. Then regions 
with lower subsurface concentration and adsorption appear. In these areas the surface charge 
density decreases and the van der Waals attraction prevails over the electrostatic repulsion. 
Depending on the dissipation of wave energy due to the surface elasticity and viscosity, the 
equilibrium may become unstable. The rupture can be prevented also by bulk and surface 
diffusion fluxes, which tend to restore the equilibrium.  
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Figure 1. Physical illustration of the system under consideration: a) a typical disjoining 
pressure isotherm, Π  vs. H; b) fluctuation waves at film surfaces.  

 
3. MATHEMATICAL MODEL 

 
 The problem for the stability of a plane-parallel, non-draining film, formed between two 
drops or bubbles (Fig. 1b), is described in a cylindrical coordinate system, Orz, where the 
bubble interface, S, is defined as z = (H+h)/2 and the middle plane is z = 0. In the literature 
(Maldarelli and Jain, 1988) the long wave approximation is used for solution of the governing 
equations. The general frame of this approximation is represented by the following 
assumptions: small film thickness compared to the characteristic bubble radius; the 
wavelength is of the order of the film radius, R; the fluctuation in the film thickness, h, is 
much smaller than the wavelength and the film thickness. In order to solve the problem, a 
linear stability analysis can be applied.  
 
3.1 Equilibrium state  
 
 In the equilibrium state the velocity in the film is zero ( v = 0). The equilibrium 
distributions of the ion concentrations in the bulk phase, ci , obey the Boltzmann law  
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where ( )ψ z  and ψm  are the electric potentials in the bulk phase and in the middle of the film, 
k is the Boltzmann constant, T is the temperature, and qi , cm i,  and c i∞,  are the charge, the 
concentration in the middle plane, and the initial concentration of the ions in the solution, 
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 The electric potential, ψ, is related to the bulk charge density through the known Poisson 
equation. In the case of equilibrium [Eq. (1)], for symmetric films, the following first integral 
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where ε is the dielectric permittivity. The electro-neutrality condition for the solution as a 
whole is equivalent to the Gauss law written for the surface charge density, ρs e, . At the 
equilibrium thickness, H, it follows:  
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In Eq. (3) Γi  are the adsorptions of the surface-active ions at the interface, and of the 
counterions or coions in the Stern layer.  
 In the classical DLVO theory the equilibrium condition is reached when the total 
disjoining pressure is equal to the capillary pressure (see Fig. 1a). Here we will investigate the 
stability of the first equilibrium thickness, where the steric interactions are negligible and  
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where AH  is the Hamaker constant, σ  is the interfacial tension, and Rc  is the bubble or drop 
radius. The first term in Eq. (4) is the van der Waals disjoining pressure and the second one 
represents the electrostatic disjoining pressure which is equal to the osmotic pressure built 
from the electric double layer (EDL) overlapping [the Langmuir formula for the electrostatic 
disjoining pressure, see Kralchevsky et al. (1997)].  
 To close the system of equations (1)-(4) the respective isotherms for each species, 

( )Γ Γi i s s s nc c c= , ,2 ,, ,...,1 , are used. The subscript “s” denotes the value of the parameter in 
the contiguous film phase. The list of corresponding isotherms is given in a recent work 
(Kralchevsky et al., 1999). Therefore, for any given kind of surfactants and added salts, from 
Eqs. (1)-(4) and respective isotherms we can calculate all parameters of the equilibrium state.  
 The dependence of the equilibrium film thickness, H, and the corresponding electric 
potentials in the middle plane, ψm , and at the surface, ψ s , on the initial surfactant ion 
concentration, c∞,1 , are plotted in Figs. 2a and 2b. Numerical results are computed for 
dispersion system stabilized by sodium dodecyl sulfate (SDS) in the presence of different 
amount of salt (NaCl). Both the surfactant and salt are symmetric (1:1) electrolytes. The 
calculations are made by using the Frumkin adsorption isotherm and a surface tension 
isotherm which is appropriate for air-water interfaces. The values of the adsorption 
parameters are taken from Kralchevsky et al. (1999). It is seen that the equilibrium film 
thickness, H, and the electric potential in the middle plane, ψm , decrease with increasing 
surfactant concentration, c∞,1 . The surface electric potential, ψ s , has a maximum which 
corresponds to the maximum adsorption of the surface-active ions on the surface. Addition of 
more surfactant results in increasing counterion adsorption while the adsorption of the active 
ions remains constant. The surface charge decreases which leads to decreasing surface electric 
potential. Adding salt reduces the thickness of EDL and causes the electric potentials in the 
middle plane and on the surface to decrease (Fig. 2b). The van der Waals attractive force does 
not depend on the surfactant concentration. The background electrolyte decreases the 
electrostatic repulsion and the equilibrium takes place at smaller thickness (Fig. 2a).  
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Figure 2. Dependence of the equilibrium parameters on the surfactant concentration: a) film 

thickness, H; b) electric potentials ψm  and ψ s . Rc  = 2 mm and AH = × −4 10 20  J.  
 
3.2 Equations of motion and integrated mass balance for fluctuations  
 
 Since the film is thin and the wavelength is of the order of the film radius, the liquid 
motion can be described by simplified Navier-Stokes equations. For displacements having 
azimuthal symmetry, the dynamic equations for the disturbances are  
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In equations (5) η  is the dynamic viscosity, p f  is the fluctuation in the dynamic pressure, 
and vr and vz  are the radial and axial components of the velocity generated by surface waves. 
The superscript "f" denotes the fluctuations of the respective equilibrium parameters (bulk 
concentrations, pressure and electric potential). From the continuity equation, ∇ ⋅ =v 0 , and 
the Poisson equation it follows that the fluctuation in the pressure, p f , depends only on the 
radial coordinate, r, time, t, and electric field (osmotic part of the pressure):  
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where ( )p t rm

f ,  and ( )p t rr
f ,  are the pressure fluctuations in the middle of the film and in the 

thermodynamic reference phase (where ψ → 0).  
 As we solve the stability problem at long wave limit the concentration in the bulk phase, 
ci , obeys the Poisson-Boltzmann distribution. Hence, the fluctuations in concentrations 
caused by surface waves are presented as:  
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where ( )c r tr i

f
, ,  are the fluctuations in concentrations in the thermodynamic reference phase.  

 In order to simplify all equations below we introduce a new function, f i , which is the 
solution of the following boundary problem at equilibrium:  
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 Using the bulk and surface mass balance equations for each component in the case of 
small fluctuation Peclet numbers and long wave approximation the final linearized form of 
the conservation of mass equations is obtained:  
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with respective bulk and surface diffusion coefficients, Db i,  and Ds i, , the fluid velocity at the 

surface, u, and ′′f s i,  denoting the value of d f d zi
2 2/  at z = H/2. Equation (9) explains that 

the total convective flux of i-th species (the left hand side) is counterbalanced by the 
corresponding total bulk and surface diffusion fluxes (the right hand side). Usually 
(Kralchevsky et al., 1999) the coions do not adsorb in the Stern layer.  
 
3.3 Boundary conditions  
 
 We restrict our attention to symmetric disturbances. We assume that the surface 
displacements from the undisturbed state are small and thus the resulting disturbances 
( vr , vz , p f ) may be assumed to be small too. With the above considerations, the linearized 
kinematic boundary conditions at the interface, z = H/2, become v ur =  and 2v h tz = ∂ ∂/ . 
The normal and tangential stress boundary conditions at z = H/2 transform to  
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The influence of the surface tension gradient (capillary and Marangoni effects), the surface 
viscosity (Boussinesq effect), and the influence of the electric part in the bulk pressure stress 
tensor are taken into account in the normal and tangential stress boundary conditions [Eq. 
(10)]. The following notations are used: η η ηs = +sh dil  is the total surface viscosity, defined 
as a sum of the interfacial shear, ηsh , and dilatational, ηdil , viscosities; the derivative of the 
disjoining pressure, Π, at the equilibrium is d d HΠ / , where the electric part of the 
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disjoining pressure has to be included in Π (see Section 2); σa  is the adsorption part of the 
interfacial tension (as it was shown by Kralchevsky et al. (1999) the total surface tension is a 
sum of the adsorption part and the term coming from the non-isotropy of the electric pressure 
tensor in the EDL).  
 From the bulk continuity equation and the kinematic boundary condition the integrated 
bulk continuity equation for fluctuations can be written in the following form:  
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 In order to complete the formulation of the problem, using Eqs. (5.a) and (8), the 
symmetry of the film and the kinematic boundary condition at the film surface, the 
distribution of the radial component of the fluctuation velocity is calculated to be  
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Substituting Eq. (12) into Eqs. (9) and (11), the mass balance and the continuity equation 
become:  
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 The system of equations described in this section is a homogeneous system of partial 
differential equations. It can be used to calculate the increment/decrement of the fluctuations 
for given adsorption isotherms and equation of state.  
 

4. INCREMENT/DECREMENT OF FLUCTUATIONS. STABILITY CRITERION  
 
 For simplicity we assume also that the disturbances vanish at the film periphery, i.e. 
h p v vf

r z= = = = 0  at r = R. This assumption can be justified in view of the results of 
Gumerman & Homsy (1975) who found that the conditions assumed at the edge of the film do 
not significantly affect the predicted values of marginally stable film thickness.  
 Because of the cylindrical geometry and the conditions at the film ring, we can present 
the solution in the following form: ( ) ( ) ( )h p u c h p u c e rr

f
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f

r
f

r i
f t, , , ~, ~ , ~,~, ,= ω αJ 0 , where α  is 

the root of the zero order Bessel function, ( )J0 0α R = , and α −1 has a length dimension. In 
the above equations the tilde denotes the amplitude of the variables and ω  is 
increment/decrement of the fluctuations (stability factor).  
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 After substituting the above solutions into the mass balance equation (13), for amplitudes 
of the fluctuations in surfactant concentrations in the reference phase the following 
relationships are obtained:  
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where bi  and di  are known parameters calculated from the basic (equilibrium) state.  
 We solve the stability problem using the assumption for long waves, i.e. the wavelength 
is of the order of the film radius, λ ∝ R . Therefore the surface viscosity effects compared to 
the elasticity effects can be neglected, [ ] [ ] ( )surf.  visc. surf.  elast./ /∝ <<ηs Gu RE 1. 

( )∂Γ ∂/ ci eq  is much higher than the film thickness, H, for ionic surfactants. Hence, the 

effects from the deviation in the surface electric potential and charge are proved to be also 
negligible. Then after substitution of solutions the normal and tangential stress balance 
equations (10) are simplified to:  
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In Eqs. (16) χ , ξ , and ζ  are dimensionless parameters, which are calculated from the 
equilibrium state. They are defined through the expressions:  
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Substituting the above solutions, Eqs. (15), and (16) into Eq. (14), the stability factor, ω, is 
calculated to be:  
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The dimensionless mobility function Φ  is calculated from the equilibrium state. It takes into 
account the influence of the interfacial properties on the surface mobility and is defined as  
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In the case of high amount of surfactants the interfaces become tangentially immobile and 
Φ = 1. For nonionic surfactants the second term in the right hand side of Eq. (18) is equal to 
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zero (the surface charge density is zero, i.e. ρs = 0). Then, for tangentially immobile 
interfaces, Φ = 1, and nonionic surfactants, the well-known result from the literature is 
recovered (Ivanov, 1980), ( )ω α ∂ ∂ α σ η= −2 3 22 24H HΠ / / .  
 For illustration of the effects of ionic surfactants on the film stability we solve 
numerically Eq. (18) for a foam system stabilized by SDS. The Frumkin isotherm parameters 
are taken from Kralchevsky et al. (1999). The equilibrium parameters of the same system are 
presented in Fig. 2 (solid line). 

 
Figure 3. Stability diagram: dependence of the increment/decrement, ωR D2 / , on the 

surfactant concentration, c. 
 
We plot the dimensionless stability factor, ωR D2 / , vs. surfactant concentration, c1,∞ , 

for different values of bulk diffusion coefficient of the surface-active ion in Fig. 3. The 
negative values of the stability factor, ω, refer to the region where the film is stable, and 
positive values correspond to unstable films. It is seen that at very low surfactant 
concentrations the film is stable. At such concentrations, first, the equilibrium film thickness 
is very large (see Fig. 2a) and the van der Waals attractive force is negligible, and second, the 
electrostatic interaction is very strong because of the almost fully overlapped EDL of the two 
surfaces (see Fig. 2b). With increase of the surfactant concentration the film becomes 
unstable, and at even higher concentrations - again stable, depending on the diffusion 
coefficient. It is important to note that in contrast to the particular case of nonionic surfactant, 
in the case of ionic surfactant solution the stability depends not only on the thermodynamic 
factors but also on the dynamic properties of the system. The higher the diffusion coefficient, 
the more stable the foam film. This is due to the faster diffusion process at higher Db1, which 
leads to faster restoring of the equilibrium. The additional calculations show significant 
influence of surface diffusion coefficient and bulk viscosity. Also the increase of the film 
radius enhances the film instability.  

 
5. CONCLUSIONS  

 A theoretical model for calculation of the influence of surfactants and background 
electrolytes on the stability of plane-parallel, non-draining, liquid films is developed. It takes 
into account the effects of the electric potential, the surfactant distribution, the surface 
elasticity and viscosity, and the surface and bulk diffusion processes. The obtained 
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relationship for increment/decrement, ω , gives a possibility for estimating the rate of 
increasing/decreasing of the fluctuation amplitude. The stability region depends not only on 
the derivative of the disjoining pressure, but also on the fluctuations in the electric potential. 
The mobility of the interfaces accelerates the growth of the corrugations.  
 The obtained results can be used for computation of the critical thickness of liquid films 
stabilized by ionic surfactants and background electrolyte.  
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