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Abstract. The drainage of a partially mobile thin liquid film between two deformed gas 
bubbles is studied. The lubrication approximation and the assumption for small Peclet 
number are used to formulate the mathematical model of the problem. The mass balance 
equations for each of the species (ionic surfactant and background indifferent electrolyte) are 
simplified to an integral mass balance equation in the film. The material properties of the 
surfaces (surface viscosity, Gibbs elasticity, surface and/or bulk diffusivities, and surface 
electric potential) are taken into account in the tangential and normal stress balances. A 
simple analytical solution for a plane-parallel film is derived in the case of small deviations 
from equilibrium. The numerical analysis of the governing nonlinear equations shows the 
region of transition from partially mobile to immobile interfaces. A quantitative explanation 
of the following effects is proposed: (i) the increase of the surface mobility with the bulk and 
surface diffusivities; (ii) the role of the surface viscosity, compared to that of the Gibbs 
elasticity; (iii) the significant influence of the meniscus on the film drainage due to the 
increased hydrodynamic resistance; (iv) the effects of the surface potential and disjoining 
pressure. The model can be applied to explain the stability of foams in practical applications.  
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1. INTRODUCTION 
 
 The stability of emulsions and foams plays a crucial role in various chemical 
technologies. The collision of two emulsion droplets or foam bubbles may be accompanied by 
a deformation (flattening in the zone of contact) depending on the energy of interaction and 
hydrodynamic friction between them. In general, the gap between two fluid particles can be 
considered as a thin liquid film of uneven thickness. Hence, the detailed study of the 
surfactant influence on the velocity of film thinning is a starting point for many publications 
in the literature.  
 The problem for a slow buoyancy-driven motion of two viscous drops towards each other 
in pure liquids was investigated by Yiantsios & Davis (1990,1991). The authors studied the 
influence of the viscosity and the van der Waals intermolecular attractive force on the 
velocity of droplets approach. In most practical applications the emulsions and foams are 
stabilized by surfactant dissolved in the continuous phases. Due to the process of film 
thinning, the interfaces of the equilibrium surfactant solution are disturbed. The equilibrium is 
restored by adsorption from the bulk phase and by surface convection and diffusion, driven by 
the gradient of the interfacial tension (Marangoni effect) in interplay with the interfacial 
viscous friction (Boussinesq effect). Ivanov (1980) and Ivanov & Dimitrov (1988) proved that 
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the surface elasticity and viscosity strongly reduce the interfacial mobility and the viscous 
friction in the droplets is negligible (the emulsion system behaves as a foam). In addition, 
when the distance between the drops (bubbles) is small enough the intermolecular van der 
Waals, electrostatic, steric, and other surface forces become operative. These forces 
significantly change the film lifetime, i.e. the emulsion and foam stability. In addition, the 
meniscus decelerates the bubbles approach for small films (Danov et al., 1999).  
 In various applications the bulk phase is a multi-component system of different 
surfactants and background electrolytes. In a recent work Kralchevsky et al. (1999) proposed 
a thermodynamic description of such liquids and interfaces, in which the effect of counterion 
binding on the surface tension and surface potential of ionic surfactant solutions was 
explicitly accounted for. In this work we present a solution of the drainage problem of a 
partially mobile thin liquid film between two bubbles when the continuous liquid phase is a 
complex mixture of ionic and nonionic surfactants and indifferent background electrolytes.  
 

2. PHYSICAL BACKGROUND  
 

                     
 

 
Figure 1. Sketch of the film zone stabilized by an ionic surfactant solution containing 

dissolved non-amphiphilic electrolyte (salt). The distance between the Stern layer 
and the Gouy plane is exaggerated. 

 
 We consider a thin viscous liquid layer between two gas bubbles, which flows out due to 
their approach under the action of the external force, F (see Fig. 1). When surfactants are 
present in the solution, the liquid flow towards the meniscus carries away the surfactant 
molecules. The surface convective flux, jc i, , of each component (i = 1,...,n) generates reverse 
fluxes, which tend to restore the equilibrium distribution ( js i,  is the surface diffusion flux and 
jb i,  represents the bulk diffusion flux in Fig. 1). The process of adsorption of the ionic 
surfactants on the film interfaces is accompanied with an increase of the surface electric 
potential, ψ s , and the charge density, ρs . In its own turn, the presence of surface electric 
potential is related to the formation of an electric double layer (EDL) inside the film. The 
charged surfaces repel the new-coming surfactant molecules (Fig. 1), which results in a 
deceleration of the adsorption process. The diffusion transport of the surface-active ions, 
counterions and coions is strongly affected by the electric field in the EDL. In the zone where 
the EDL of the two film interfaces overlap, the electric potential distribution changes, and it 
influences the diffusion processes in the gap region.  
 The non-uniform surfactant distribution along the surface leads to variations in the local 
value of the surface tension, σ, which brings about the surface elastic force (Gibbs elasticity). 

- surfactant 
ion 

- counterion

- coion 

js i,

jc i,
jb i,

Gouy plane 
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On the other hand, the adsorption layer and the EDL may undergo dilatational and shear 
deformations during its motion, which produce surface viscous stresses. Finally, the surface 
elements are under the action of the bulk stress caused by the liquid flow and electric 
potential distribution in the film. In the gap region for small film thickness the intermolecular 
forces affect the drainage through the disjoining pressure, Π. For slow motion (low Reynolds 
number) the intermolecular, electric and viscous forces counterbalance the driving force, F, in 
a given moment, t, (quasi-steady-state assumption is used—all parameters depend implicitly 
on time through the local film thickness, H).  
 

3. MATHEMATICAL MODEL 
 
 The problem for the drainage of symmetric films is described in a cylindrical coordinate 
system, Orz, where the bubble interface, S, is defined as z = H(t,r)/2, the middle plane is z = 0, 
and n is the unit normal at the surface S. In the literature (Ivanov, 1980; Ivanov & Dimitrov, 
1988; Danov et al., 1999) the lubrication approximation is used for solution of the governing 
equations. The general frame for this approximation is imposed by: small Reynolds and Peclet 
numbers, small film thickness compared to the characteristic bubble radius, and small slope of 
the interfaces. The mass, momentum and force balance equations are applied to solve the 
problem. 
 
3.1 Integrated mass balance and Poisson equations  
 
 In the lubrication approximation the leading order of the concentration in the bulk phase, 
ci , obeys the local Poisson-Boltzmann distribution  
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where ψ and ( )ψm t r,  are the electric potential in the bulk and in the middle of the film, k is 
the Boltzmann constant, and qi , ( )c t rm i, ,  and ( )c t rr i, ,  are respectively the charge, the 
concentration in the middle plane, and the concentration in the thermodynamic reference 
phase (where ψ → 0).  
 Using the bulk and surface mass balance equations for each component in the case of 
small Peclet numbers and lubrication approximation the final form of the conservation of 
mass equations is obtained:  
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Equation (2) expresses the fact that the change of the total mass across the film is 
compensated by the bulk and surface convection and diffusion fluxes (see Fig. 1). In Eq. (2) u 
is the fluid velocity at the surface, ( )v = v vr z,  is the bulk liquid velocity and Γi  is the 
adsorption of surfactant ions on the film surfaces or the adsorption of counterions belonging 
to the Stern layer. Usually (Kralchevsky et al., 1999) the coions do not adsorb in the Stern 
layer and their adsorptions are practically equal to zero.  
 Using Eq. (1) the bulk diffusion flux, jb i, , in Eq. (2) can be expressed by the relationship  
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where Db i,  is the bulk diffusion coefficient and the second term in the left hand side of Eq. 
(3) (the so called “electromigration” term) accounts for the effect of the electric field on the 
surfactant diffusion. In order to define the surface diffusion fluxes we have to specify the 
mechanism of adsorption. It was proven in the literature (Ivanov & Dimitrov, 1988) that the 
diffusion-controlled adsorption is more important than the barrier controlled adsorption for 
film thinning. From a thermodynamic viewpoint this means that the total electro-chemical 
surface potential of each species, µs i, , is equal to the electro-chemical bulk potential in the 
contiguous layer (Kralchevsky et al., 1999). Hence, from Eq. (1) the total surface diffusion 
flux can be written in the form  
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where Ds i,  is the surface diffusion coefficient.  
 The electric potential, ψ, is related to the bulk charge density through the known Poisson 
equation, which has the following first integral in the case of lubrication approximation  
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where ε is the dielectric permittivity. The condition for electro-neutrality of the solution as a 
whole is equivalent to the Gauss law written for the surface charge density, ρs e, . In the 
lubrication approximation it reads:  
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 The assumption for diffusion-controlled adsorption allows us to close the system of 
equations (1)-(6) with the respective isotherms for the different species: 

( )Γ Γi i s s n sc c c= 1 2, , ,, , ... , . The list of commonly encountered isotherms is given in a recent 
work (Kralchevsky et al., 1999). Therefore, if we know the velocity distribution, the problem 
for the concentrations, adsorptions and electrical potential distributions is completed.  
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3.2 Integrated bulk continuity and tangential stress balance equations 
 
 In the case of a multi-component ionic liquid mixture the density of the electric force, 
ρb e, E  ( ρb e,  is the bulk charge density and E = −∇ψ  is the electric field), plays the role of a 
spatial body force in the known Navier-Stokes equation of motion. For low Reynolds 
numbers and small film thickness, the pressure in the continuous phase, p, depends only on 
the radial coordinate, r, time, t, and the electric field (osmotic part of the pressure):  
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where ( )p t rm ,  and ( )p t rr ,  are respectively the pressures in the middle of the film and in the 
thermodynamic reference phase (where ψ → 0). The substitution of Eqs (1) and (7) into the 
radial component of the momentum balance equation leads to the following expression for the 
radial component of the velocity in the framework of lubrication approximation  
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The dynamic viscosity is denoted by η in Eq. (8). The electric force in Eq. (8) is a complex 
function of z. In order to simplify all equations bellow we introduce the new function, f i , 
which is the solution of the following boundary problem:  
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Hence, using Eqs. (8) and (9), the symmetry of the film and the kinematic boundary condition 
at the film surface, one can calculate the distribution of the radial component of the velocity  
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 The boundary condition for the balance of the surface excess linear momentum takes into 
account the influence of the surface tension gradient (capillary and Marangoni effects), the 
surface viscosity (Boussinesq effect), and the influence of the electric part in the bulk 
pressure stress tensor (see Kralchevsky et al., 1999). In lubrication approximation the 
tangential stress boundary condition at the interface, utilizing Eqs. (6) and (10), is simplified 
to  
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In Eq. (11) η η ηs = +sh dil  is the total surface viscosity, defined as a sum of the interfacial 

shear, ηsh , and dilatational, ηdil , viscosities, and ′′f s i,  is the value of ∂ ∂2 2f zi /  at z = H/2.  
 From the bulk continuity equation (∇ ⋅ =v 0 ) and the kinematic boundary condition the 
integrated bulk continuity equation can be written in the following form:  
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 When the surface equation of state (dependence of the interfacial tension, σ, on the 
adsorption, for example see Kralchevsky et al., 1999) and the film profile, H, are known, then 
Eqs. (10)-(12) give the velocity, vr , the surface velocity, u, and the pressure, pr , 
distributions.  
 
3.3 Drainage velocity and force balance 
 
 In the general case (Yantsios & Davis, 1990, 1991) the local velocity of surface approach 
depends on the radial coordinate through the normal stress boundary condition. Then Eq. (12) 
is a stiff nonlinear differential equation, which is difficult to be solved numerically. The 
quasi-steady state assumption is used in most of the publications in the literature to avoid this 
problem—all variables depend implicitly on time through the local film thickness. Therefore, 
the local velocity of surface approach does not depend on the radial coordinate and it is equal 
to the so-called drainage velocity, V H t= −∂ ∂/ . If we substitute Eq. (10) into Eq. (12) and 
integrate the obtained result, the drainage velocity can be calculated as  
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where f s i,  is the value of f i  at z = H/2.  
 The film between the bubbles thins due to the action of the external force, F, which in the 
quasi-steady state approach is balanced by the hydrodynamic drag force and intermolecular 
forces. Hence, in the lubrication approximation we obtain  
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p∞  in Eq. (14) is the pressure at infinity in the meniscus region. Knowing the film profile and 
the type of intermolecular interactions (van der Waals, steric, etc. disjoining pressure, except 
the electrostatic disjoining pressure component), the external force can be connected with the 
hydrodynamic drag force, Fhd , acting on the bubbles. It is important to note that the 
electrostatic component of the disjoining pressure is already included in the osmotic term of 
the pressure in the middle of the film.  
 The disjoining pressure isotherm, ( )Π H , for symmetric foam film stabilized by SDS is 
plotted in Fig. 2. The Frumkin adsorption isotherm is used for calculation of the 
thermodynamic equation of state and the relationships between subsurface and surface 
concentrations of surface-active ions and counterions, respectively. The adsorption 
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coefficients are taken from Kralchevsky et al. (1999). When the draining film reaches the 
thickness at which the disjoining pressure equals the capillary pressure, the external force 
alters to zero. Then the film reaches its thermodynamic stable equilibrium state and the 
drainage process stops. Due to some thermal or mechanical fluctuations this equilibrium may 
become unstable and the film may rupture or black spots may form. This problem is discussed 
in the other paper presented on the conference (Effect of Ionic Surfactants on the Stability of 
Plane-Parallel Film). The present study discusses the drainage process up to the equilibrium 
point (Fig. 2). 
 

 
Figure 2. Sketch of disjoining pressure isotherm, Π  vs. H 

 
 
4. DRAINAGE VELOCITY OF PLANE-PARALLEL FILMS AT SMALL 
DEVIATIONS FROM EQUILIBRIUM 
 
 The problem (1)-(14) has no analytical solution, due to the strong nonlinear dependence 
of the surface tension and adsorption on the subsurface concentration. In the literature 
(Ivanov, 1980; Ivanov & Dimitrov, 1988; Danov et al., 1999) the following assumption is 
used: small deviations from equilibrium 
 

Γ Γ Γi e i i= +, δ  ,      c c ci e i i= +, δ  ,      c c cr i i r i, , ,= +∞ δ  ,      ψ ψ δψ= +e  ,  (15) 
 
where the subscript “e” denotes the quasi-equilibrium values of the corresponding parameters 
(at which the velocity is zero); with δ we denote small deviations from the basic state of the 
parameters; c i∞,  is the concentration of the i-th ion at infinity in the meniscus region. The 
quasi-equilibrium distributions of the concentrations, adsorption and electric potential are 
described by equations (1), (5), (6) and the respective isotherms. The experimental results 
(Ivanov & Dimitrov, 1988) showed that the complete process of drainage of a thin liquid film 
has five stages, depending on the hydrodynamic and intermolecular interactions. However, 
the time limiting factors for coalescence or flocculation are the approach of drops as non-
deformed spheres (earliest stage), and the drainage of the formed almost plane-parallel film 
between the drops or bubbles. We will discuss below the latest stage of the bubbles 
approach—the plane-parallel film thinning. In the case of symmetric electrolytes and plane-
parallel films the exact analytical formulas are given in Kralchevsky et al. (1997).  
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 If we substitute the series (15) into the mass balance equations (2)-(4) using the velocity 
profile (10) and integrating the result, a simple relationship for the gradient of perturbations in 
the concentration in the reference phase can be derived:  
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All coefficients αi , βi , and γ i  (i = 1,...,n) in Eq. (16) are known parameters. They are 
calculated from the basic (quasi-equilibrium) state. The functions f i  and their derivatives are 
defined through the equilibrium distribution of the electric potential.  
 The surface velocity is a linear function of the radial coordinate in the case of plane-
parallel film and it follows from Eq. (11) that the surface viscosity cannot influence the 
mobility of the interface (see Ivanov & Dimitrov, 1988). We proved that the effect of the 
deviation of the surface electric potential is also negligible. That is why the tangential stress 
balance equation (11) is simplified to  
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In Eq. (17) the derivative of the surface tension is calculated from the respective equation of 
state and isotherms at equilibrium. After the substitution of Eq. (16) into Eq. (17) the final 
form of the surface velocity is derived  
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It is seen that the mobility of the interface depends on the parameter ε f . In the particular case 
of one component nonionic surfactant solution the known formula for the so called in the 
literature foam parameter, ε f , can be obtained from Eqs. (9), (16), (18) 
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where the Gibbs elasticity of the adsorption layer is ( )E eG ≡ − ∂ σ ∂/ lnΓ . After the 

substitution of Eq. (18) into Eq. (13) the pressure gradient as a function of the material 
properties of the interfaces and the drainage velocity is derived to be  
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Then from Eq. (14) the final form of the hydrodynamic drag force becomes  
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where R is the radius of the plane-parallel film and the electrostatic component of the 
disjoining pressure for small deviation from quasi-equilibrium is given as in the classical 

Langmuir form: [ ]Πel = −∞
=
∑kT c q kTi
i

n
i m, exp / ( )

1
ψ . Therefore, the electrostatic interaction 

decelerates the drainage of the film and depending on the surfactant and background 
electrolyte concentrations it can become so large to stop the film drainage (v = 0), i.e. the 
equilibrium film thickness can be reached (see Fig. 2).  

The process of film drainage depends also on the foam parameter, which takes into 
account the mobility of interfaces. The dependence of the inverse foam parameter, ε f

−1, on 
the surfactant concentration, c1,∞ , is shown in Fig.3. The computations are made for foam 
film stabilized by SDS (without salt) with the following physical parameters: diffusion 
coefficients, D Db s1 1

1055 10, , .= = × − m / s2  and D Db s2 2
106 06 10, , .= = × − m / s2 , and 

viscosity, η = × −082 10 3. Ns / m . The Gibbs elasticity is very high for large surfactant 
concentration. Therefore, the foam parameter is a large parameter and the interface is 
tangentially immobile. Lower surfactant concentration and faster diffusion processes lead to 
higher mobility of the interface. The foam parameter, defined through Eq. (18) depends on the 
film thickness and, as it is seen from Fig. 3, the mobility of the interfaces increases for thinner 
films. For every film thickness, at high surfactant concentrations the inverse foam parameter 
tends to the bulk diffusion parameter, b, because the interfaces become tangentially immobile 
and the surface diffusion is negligible.  
 

 
Figure 3. Inverse foam parameter vs. surfactant concentration 

 
From physical viewpoint the main conclusion in the case of small deviations and plane-

parallel films is that the electric potential affects the film thinning in two ways: (i) by slowing 
down the diffusion of the surface active ions and by accelerating the diffusion of coins (these 
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affect the mobility of the interface in a very complex way); (ii) by increasing the disjoining 
pressure trough the electrostatic repulsion term (the classical Langmuir approach). 
 

5. CONCLUSIONS  
 A theoretical model for calculation of the influence of surfactants and background 
electrolytes on the approaching velocity of two bubbles is developed. It takes into account the 
effects of the surface viscosity, the electric and surfactant components of the surface 
elasticity, and the surface and bulk diffusion processes. The surfactant ions, coions and 
counterions distributions in the film phase obey the quasi-Poisson-Boltzmann distributions. 
The time-limiting adsorption processes are shown to be diffusion controlled. The overlapping 
of the EDL produces an additional electrostatic repulsion, which stabilizes the film and 
decelerates the process of film drainage. The model gives a complex system of equations 
which can be solved numerically for a given film profile.  
 In the case of plane-parallel films and small deviation from quasi-equilibrium state (basic 
state when the velocity is zero) the exact analytical solution of the problem is derived. It 
presents a simple relation between the external force, film radius and thickness, and the foam 
parameter. It is shown that the bulk distribution of the ions affects the drainage process 
through the classical electrostatic disjoining pressure and the change of the surface mobility 
of the film.  
 There have been numerous attempts to formulate simple rules connecting the foam and 
emulsion stability with the surfactants properties: the Bancroft rule; Griffin’s criterion, which 
introduces the concepts of the hydrophilic-hydrophobic balance (HLB); the phase inversion 
temperature (PIT) rule of Schinoda and Friberg; etc. Ivanov (1980) and Kralchevsky et al. 
(1997) gave a new interpretation of the Bancroft rule, taking into account the dynamic 
processes in the film between two colliding emulsion droplets. The obtained results can be 
applied in order to generalize this criterion for solutions containing various ions.  
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