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(Part 1 can be found at http://www.lcpe.uni-sofia.bg/publications/1999/pdf/1999-10-1-KD-PK-II.pdf) 

 

VI.  SURFACE FORCES IN THIN LIQUID FILMS 
 
 In the present section, we review the molecular theory of surface forces with a special 

attention to the effect of surfactant adsorption and surfactant micelles on the interactions in 

the thin liquid films and between the particles in dispersions. 

 In the absence of adsorbed surfactants the interactions in the foam or emulsion films 

are dominated by the attractive van der Waals and hydrophobic forces, which lead to a fast 

drainage and rupture of the films. It should be noted that even the pure water-air and water-oil 

interfaces are charged [22, 279], however the resulting electrostatic repulsion is too weak to 

stabilize the films. 

 The adsorption of ionic surfactants gives rise to a relatively high surface potential and 

strong electrostatic repulsion, which may counterbalance the van der Waals attraction and 

stabilize films and dispersions. This classical concept of dispersion stability was formulated 

by Derjaguin, Landau, Verwey and Overbeek (DLVO), see Section A below. 

 More recent experimental data [4] show that considerable deviations from the 

conventional DLVO theory appear for short surface-to-surface distance (hydration repulsion) 

and in the presence of bivalent and multivalent counterions (ionic correlation force). Both 

effects can be interpreted as contributions to the double layer interaction not accounted for in 

the DLVO theory, see Section B below. 

 Special oscillatory structural forces appear in thin films containing small colloidal 

particles like surfactant micelles, polymer coils, protein macromolecules, latex or silica 

particles [268, 280-283]. For larger particle volume fractions these forces are found to 

stabilize thin films and dispersions, whereas at low particle concentrations the oscillatory 
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force degenerates into the depletion attraction, which has the opposite effect, see Section C 

below. 

 When nonionic surfactants, like those having polyoxiethylene moieties, are adsorbed 

at the film or particle surfaces, the formed polymer brushes give rise to a steric interaction 

between such two surfaces [4, 284]. Its quantitative description is reviewed in Section D 

below. 

 The surfactant molecules in adsorption monolayers or lamellar bilayers are involved in 

a thermally exited motion, which brings about the appearance of fluctuation capillary waves. 

The latter also cause a steric interaction (though a short range one) when two thermally 

corrugated interfaces approach each other, see Section E below. 

 Finally, in Section F we discuss the effect of surface forces on the interaction between 

surfactant micelles. 

 

 A. DLVO  theory 

 A.1.  Van der Waals surface forces 

 The van der Waals forces represent an averaged dipole-dipole interaction, which is a 

superposition of three contributions: (i) orientation interaction: interaction between two 

permanent dipoles [285]; (ii) induction interaction: interaction between one permanent dipole 

and one induced dipole [286]; (iii) dispersion interaction: interaction between two induced 

dipoles [287]. The energy of van der Waals interaction between molecules i and j obeys the 

law [288] 

( )u r
rij

ij= −
α

6       (185) 

where uij is the potential energy of interaction, r is the distance between the two molecules 

and αij is a constant characterizing the interaction. The microscopic theory yields [4, 288] 
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where pi and α0i are molecular dipole moment and electronic polarizability, h is the Planck 

constant and νi can be interpreted as the orbiting frequency of the electron in the Bohr atom. 
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 The orientation interaction can yield from 0% (nonpolar molecules) up to 70% 

(molecules of large permanent dipole moment, like H2O) of the value of αij; the contribution 

of the induction interaction in αij is usually low, about 5-10%; the contribution of the 

dispersion interaction might be between 24% (water molecules) and 100% (nonpolar 

hydrocarbons); for numerical data - see e.g. Ref. [4]. Note that these estimates hold for the 

interaction between two molecules in a gas phase; the percentage of the respective 

contributions to the Hamaker constant of condensed phases can be quite different, see Eq. 

(190) below. 

 The van der Waals interaction between two macroscopic bodies can be found by 

integration of Eq. (185) over all couples of interacting molecules followed by subtraction of 

the interaction energy at infinite separation between the bodies. This approach, called the 

microscopic theory, is essentially based on the assumption that the van der Waals interaction 

in a condensed medium is pair-wise additive. The result of integration depends on the 

geometry of the system. For a plane-parallel film from component 3 located between two 

semiinfinite phases composed of components 1 and 2, the van der Waals interaction energy 

per unit area and the respective disjoining pressure, stemming from Eq. (185), are [289]: 

2 3,
12 6

vwH H
vw vw

fA Af
h h h

∂
π ∂ π

= − Π = − = −     (187) 

where, as usual, h is the thickness of the film and AH is the compound Hamaker constant 

[290]: 

A A A A A A i jH ij i j ij= + − − = =33 12 13 23
2 1 2 3; , , , ,π ρ ρ α   (188) 

Aij is the Hamaker constant of components i and j; ρi and ρj are the molecular number 

densities of phases i and j built up from components i and j, respectively.  If Aii  and  Ajj are 

known, one can calculate Aij by using the Hamaker approximation 

( )A A Aij ii jj=
1
2       (189) 

In fact, Eq. (189) is applicable only to the dispersion contribution in the van der Waals 

interaction [4]. The Hamaker constant Aii can be estimated by means of the microscopic 

theory, Eqs. (186) and (188). When components 1 and 2 are identical, AH is positive. 

Therefore, the van der Waals interaction between identical bodies, in any medium, is always 
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attractive. Besides, two dense bodies (even if nonidentical) will attract each other when 

placed in medium 3 of low density (gas, vacuum). 

 When the phase in the middle (component 3) has intermediate Hamaker constant 

between those of bodies 1 and 2, AH can be negative and the van der Waals disjoining 

pressure can be repulsive (positive). Such is the case of an aqueous film between mercury and 

gas. 

 An alternative approach to the calculation of the Hamaker constant, AH , in condensed 

phases is provided by the Lifshitz macroscopic theory [292, 293], which is not limited by the 

assumption for pair-wise additivity of the van der Waals interaction, see Refs. [2, 4, 294]. For 

the symmetric case of two identical phases 1 interacting across a medium 3 the macroscopic 

theory provides the expression [4] 
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where ε1 and ε3 are the dielectric constants of phases 1 and 3; n1 and n3 are the respective 

refractive indices; ωe is a characteristic electronic absorption frequency which is about 

1.85×1015 s-1 for water and the most organic liquids [4]. The first term in the right-hand side 

of Eq. (6.6) expresses the contribution of the orientation and induction interactions, which can 

never exceed  ¾ kT ≈ 3×10-21 J.  The last term in Eq. (190) accounts for the dispersion 

interaction. 

 When the film surfaces represent two surfactant adsorption monolayers, they can be 

modeled as multilayered structures (say, one layer for the headgroup region, another layer for 

the hydrocarbon tails, etc.). There is a general formula for the interaction between two such 

multilayered structures [294]: 
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where NL and NR denote the number of layers on the left and on the right from the central 

layer, the latter denoted by index "0"  -  see Fig. 23 for the notation. Equation (191) reduces to 

Eq. (187) for NL = NR = 1 and h11 = h. 

 Both Eqs. (187) and (191) correspond to infinite plane-parallel film surfaces. On the 

other hand, in the case of a film of finite area, formed between two deformed emulsion 
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droplets (see Fig. 15), the droplet-droplet interaction energy can be expressed in the form 

[295] 
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where h and r are the thickness and the radius of the film formed between the two deformed 

drops and a is the radius of the spherical part of the drop surface. Eq. (192) is a truncated 

series expansion; the exact formula, which is more complicated, can be found in Ref. [295]. 

Expressions for U for other geometrical configurations are also available [294]. 

 

 

 

 

 

 

 

 

 

 

Fig. 23. Two multilayered bodies interacting across a medium "0". The layers are counted 
from the central film "0" outwards to the left (L) and right (R). 
 

 The asymptotic behavior of the dispersion interaction at large intermolecular 

separations does not obey Eq. (185); instead uij ∝ 1/r7 due to the electromagnetic retardation 

effect established by Casimir and Polder [296]. Various expressions have been proposed to 

account for this effect in the Hamaker constant [294]. 

 The orientation  and induction interactions are electrostatic effects; so, they are not 

subjected to electromagnetic retardation. Instead, they are influenced by the Debye screening 

due to the presence of electrolyte ions in the liquid phases. Thus for the interaction across an 

electrolyte solution the screened Hamaker constant is given by the expression [297] 

d
h

H AehAA += − κκ 2
02       (193) 
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where A0 denotes the contribution of orientation and induction interaction into the Hamaker 

constant and Ad is the contribution of the dispersion interaction; κ is the Debye screening 

parameter: 

κ
εε
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2

0

22 1
2

= = ∑e I
k T

I Z ni i
i

,     (194) 

where e is the elementary electric charge, ε and ε0 are the relative and vacuum dielectric 

constants, respectively, and I is the ionic strength of the electrolyte solution; Zi and ni denote 

the valence and the number density of the ions. 

 It should be noted, that the experiment sometimes gives values of the Hamaker 

constant, which are markedly larger than the values predicted by the theory. In part this effect 

could be attributed to the strong attractive hydrophobic force, which is found to appear in 

aqueous films in contact with hydrophobic surfaces.  The experiments showed, that the nature 

of the hydrophobic force is different from the van der Waals and double layer interactions 

[298-302]. It turns out that the hydrophobic interaction decays exponentially with the increase 

of the film thickness, h.  The hydrophobic free energy per unit area of the film can be 

described by means of the equation [4] 

f e h
hydrophobic

/= − −2 0γ λ      (195) 

where typically γ = 10-50 mJ/m2, and λ0 = 1-2 nm in the range 0 < h < 10 nm.  Larger decay 

length, λ0 = 12-16 nm, was reported by Christenson et al. [302]for the range 20 nm < h < 90 

nm.  This amazingly long-ranged attraction entirely dominates over the van der Waals forces.  

In particular, it can lead to rupture of foam films containing small oil droplets or larger 

hydrophobic surfaces. 

 There is no generally accepted explanation of hydrophobic forces.  Nevertheless, 

many authors agree that H-bounding in water and other associated liquids is the main 

underlying factor [4, 303].  Another hypothesis for the physical origin of the hydrophobic 

force considers the possible role of the spontaneous bubble nucleation between two 

hydrophobic surfaces as they approach each other [304-306]. 

 

 A.2.  Electrostatic surface forces 

 The electrostatic (double layer) interactions across an aqueous film are due to the 

overlap of the double electric layers formed at two charged interfaces, e.g. interfaces covered 

by ionic surfactants. Moreover, electrostatic repulsion is observed even between interfaces 

covered by adsorption monolayers of nonionic surfactants [22, 307-310].  
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 Let us first consider the electrostatic (double layer) interaction between two identical 

charged plane parallel surfaces across a solution of symmetrical Z:Z electrolyte. If the 

separation between the two planes is very large, the number concentration of both counterions 

and coions would be equal to its bulk value, n0, in the middle of the film. However, at finite 

separation, h, between the surfaces the two electric double layers overlap and the counterion 

and coion concentrations in the middle of the film, n10 and n20, are no longer equal. As 

pointed out by Langmuir [311], the electrostatic disjoining pressure, Πel, can be identified 

with the excess osmotic pressure in the middle of the film: 

( )Πel k T n n n= + −10 20 02      (196) 

To find the dependence of Πel on the film thickness, h, one solves the Poisson-Boltzmann 

equation for the distribution of the electrostatic potential inside the film. The solution 

provides the following connection between Πel and h for symmetric electrolytes [2]: 

( )Πel n k T h= =4 20
2cot , , sinθ κ ϕ θ θF    (197) 

where F(ϕ, θ) is an elliptic integral of the first kind and ϕ is related with θ as follows: 

( ) ( )cos cot / sinh / 2 fixed surface potentials sZϕ θ= Φ Φ   (198) 

( ) ( )tan tan sinh / 2 fixed surface chargeZϕ θ σ∞= Φ    (199) 
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Here Φs is the dimensionless surface potential and Φ∞ is the value of Φs for h → ∞; Z is the 

valency of the counterion (Z = ±1, ±2, ...) Eq. (197) expresses the dependence Πel(h) in a 

parametric form: Πel(θ), h(θ). 

 In principle, there is a possibility neither the surface potential nor the surface charge to 

be constant when h varies. In such a case a condition for charge regulation is applied, which 

in fact represents the condition for dynamic equilibrium of the counterion exchange between 

the Stern and diffuse parts of the electric double layer. The Stern layer itself can be 

considered as an adsorption layer of counterions. Then the Langmuir adsorption isotherm can 

be applied to yield [1, 290] 
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where di is the diameter of the hydrated counterion, σmax is the maximum possible surface 

charge density due to all surface ionizable groups, σs is the effective surface charge density, 

which is smaller (by magnitude) than σmax because some ionizable groups are blocked by 

adsorbed counterions; Φa is the energy of adsorption of a counterion in kT units (Φa is a 

negative quantity). The product ZΦs is always negative.  At high surface potential, when 

ZΦs → -∞, from Eq. (201) one obtains σs → 0, that is all surface ionizable groups are blocked 

by adsorbed counterions. 

 When the film thickness is large enough (κh ≥ 1) the difference between the regimes 

of constant potential, constant charge and charge regulation becomes negligible [290], i.e. the 

usage of each of them leads to the same results for Πel(h). 

 When the dimensionless electrostatic potential in the middle of the film 

Φm m
e

k T Z
n n= =ψ 1

2 20 10ln( / )      (202) 

is small enough (the film thickness, h, is large enough), one can suppose that Φm ≈ 2Φ1(h/2), 

where Φ1 is the dimensionless electric potential at a distance h/2 from the surface (of the film) 

when the other surface is removed at infinity. Since 

( ) 2
1 / 2 4 e tanh

4

h
sZZ h

κ
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    (203) 

from Eqs. (196), (202) and (203) one obtains a useful asymptotic formula [3]  
2

2 2
0 064 tanh e

4
hs

el m
Zn kTZ n kT κ−Φ Π ≈ Φ ≈  

 
   (204) 

It is interesting to note, that when Φs is large enough, the hyperbolic tangent in Eq. (204) will 

be identically 1, and Πel (as well as fel) becomes independent of the surface potential (or 

charge). 

 Eq. (204) can be generalized [312] for the case of 2:1 electrolyte (bivalent counterion) 

and 1:2 electrolyte (bivalent coion): 

( )

2
:

2432 tanh e
4
i j h

el

v
n kT κ− 

Π =  
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    (205) 

where n(2) is the concentration of the bivalent ions, the subscript "i:j" takes value "2:1" or 

"1:2", and 

( ) ( )2:1 1:2ln 3 / 1 2 e , ln 2 e 1 / 3s sv v−Φ Φ   = + = +       (206) 
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Eq. (204) can be generalized also for the case of two non-identically charged interfaces of 

surface potentials ψs1 and ψs2 for Z:Z electrolytes [2,3] 

( ) 0 1 2

e
64 , tanh 1, 2

4

h
sk

el k

Zeh n kT k
kT

κ ψ
γ γ γ

−  
Π = ≡ = 

 
  (207) 

Eq. (207) is valid for both low and high surface potentials, if only exp(−κh) << 1. 

 

 A.3.  DLVO - criterion for the stability of dispersions 

 A quantitative theory of interactions in thin liquid films and dispersions was proposed 

by Derjaguin and Landau [313] and Verwey and Overbeek [3]. In this theory, called DLVO 

after the authors' names, the total interaction is supposed to be a superposition of van der 

Waals and double layer interactions. In other words, the total disjoining pressure, Π, and the 

particle-particle interaction energy, U, are presented in the form: 

;vw el vw elU U UΠ = Π +Π = +     (208) 

U could be calculated by means of the Derjaguin formula, Eq. (183). A typical curve Π vs h 

exhibits a maximum representing a barrier against coagulation, and two minima, called 

primary and secondary minimum, see Fig. 17a. If the particles cannot overcome the barrier, 

coagulation (flocculation) does not take place and the dispersion is stable due to the 

electrostatic repulsion, which gives rise to the barrier. With larger colloidal particles (R > 0.1 

µm) the secondary minimum (that for h > h1 in Fig 17a) could be deep enough to cause 

coagulation and even formation of ordered structures of particles [314]. 

 By addition of electrolyte or by decreasing the surface potential of the particles one 

can suppress the electrostatic repulsion, thus lowering the height of the barrier. According to 

the DLVO-theory the critical condition determining the onset of rapid coagulation is 

( )U h
d U
d h h

max ,
max

= =0 0     (209) 

where h = hmax denotes the position of the barrier. 

 Based on Eqs. (161), (182), (187) and (204) one can derive from Eqs. (208) - (209) the 

following criterion for the threshold of rapid coagulation of identical particles [3, 313]: 
26
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where e = 2.718... is the Napper number. For a Z:Z electrolyte the substitution of κ2 from Eq. 

(194) into Eq. (210) yields 
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( ) 4
0 6

e1critical tanh
4

sZn
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ψ 
∝  

 
    (211) 

When ψs is high enough the hyperbolic tangent equals 1 and Eq.(211) yields n0(critical) ∝ Z-6 

which in fact is the empirical rule established earlier by Schulze [315] and Hardy [316]. 

 

 B.  Hydration repulsion and ionic-correlation force 

 After 1980 a number of surface forces have been found out which are not taken into 

account by the conventional DLVO theory. They are considered separately in Sections B-E 

below. 

 B.1.  Repulsive hydration forces 

 Effects of different physical origin are termed "hydration forces" in the literature, see 

Ref. [317] for review. For that reason from the very beginning we specify that here we call 

hydration force the short-range monotonic repulsive force which appears as a deviation from 

the DLVO theory for short distances between two molecularly smooth electrically charged 

surfaces. Such a force may appear in foam or emulsion films stabilized by ionic surfactants, 

as well as between the surfactant micelles in a solution. Experimentally the existence of this 

force was established by Israelachvili et al. [318, 319] and Pashley [320, 321] who examined 

the validity of DLVO-theory at small film thickness in experiments with films from aqueous 

electrolyte solutions confined between two mica surfaces.  At electrolyte concentrations 

below 10-4 mol/l (KNO3 or KCl) they observed the typical DLVO maximum, cf. Fig. 17a.  

However, at electrolyte concentrations higher than 10-3 mol/l they did not observe the 

expected DLVO maximum;  instead a strong short range repulsion was detected; cf. Fig. 24.  

Empirically, this force, called the hydration repulsion, appears to follow an exponential law 

[4] 

( )f h f e h
hydr

/= −
0

0λ     (212) 

where, as usual, h is the film thickness; the decay length λ0 ≈ 0.6 - 1.1 nm for 1:1 electrolytes; 

the pre-exponential factor, f0 , depends on the hydration of the surfaces but is usually about 3-

30 mJ/m2. 

 The physical importance of the hydration force is that it stabilizes thin films and 

dispersions preventing coagulation in the primary minimum (that between points 2 and 3 in 

Fig. 17a).  It is believed that the hydration force is connected with the binding of strongly 

hydrated ions at the interface.  This is probably the explanation of the experimental results of 
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Healy et al. [322], who found that even high electrolyte concentrations cannot cause 

coagulation of amphoteric latex particles due to binding of strongly hydrated Li+ ions at the 

particle surfaces. If the Li+ ions are replaced by weakly hydrated Cs+ ions, the hydration 

repulsion becomes negligible, compared with the van der Waals attraction, and the particles 

coagulate as predicted by the DLVO-theory. 

 For the time being there is no generally accepted theory of the repulsive hydration 

force.  It has been attributed to various effects: solvent polarization and H-bonding [323], 

image charges [324], non-local electrostatic effects [325], existence of a layer of lower 

dielectric constant, ε, in a vicinity of the interface [326, 327]. It seems, however, that the main 

contribution to the hydration repulsion between two charged interfaces originates from the 

finite size of the hydrated counterions [328], an effect which is not taken into account in the 

DLVO theory (the latter deals with point ions). 

 The volume excluded by the ions becomes important in relatively thin films, in so far 

as the counterion concentration is markedly higher only in a close vicinity of the film 

surfaces. Paunov et al. [328] took into account this effect by means of the Bikerman equation 

[329, 330] 
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Here x is the distance to the charged surface, ni and Ui are the number density and the 

potential energy (in kT units) of the i-th ion in the double electric layer;  ni0 is the value of ni 

in the bulk solution;  the summation is carried out over all ionic species;  v has the meaning of 

an average excluded volume per counterion;  the theoretical estimates [328] show that v is 

approximately equal to 8 times the volume of the hydrated counterion. 

 The problem for the distribution of the electric potential across the film accounting for 

the effect of the ionic excluded volume can be formulated as follows [328]. The electric 

potential in the film, ψ(x), satisfies the Poisson equation 

( )ε ε ψ ρ0
d
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d
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x

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
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 = −      (214) 

where the surface charge density, ρ(x), is determined from Eq. (213): 
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For v = 0 Eq. (215) reduces to the expression used in the conventional DLVO theory. Eq. 

(214) can be solved numerically.  Then the total electrostatic disjoining pressure can be 

calculated by means of the expression [328] 
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where the subscript "m" denotes values of the respective variables at the midplane of the film.  

Finally, the non-DLVO hydration force can be determined as an excess over the conventional 

DLVO electrostatic disjoining pressure: 
tot DLVO

hr el elΠ ≡ Π − Π      (217) 

where DLVO
elΠ  is defined by Eq. (196), which can be deduced from Eq. (216) for v → 0. Note 

that the effect of v ≠ 0 leads to a larger value of ψm, which contributes to a positive 

(repulsive) Πhr. Similar, but quantitatively much smaller, is the effect of the lowering of the 

dielectric constant, ε, in the vicinity of the interface, which has been also taken into account 

in Ref. [328]. 

 The theory based on Eqs. (214) - (217) is found [328] to give an excellent numerical 

agreement with experimental data of Pashley [320, 321], Claesson et al. [331] and Horn et al. 

[332]. In Fig. 24 theoretical predictions for F/R ≡ 2πf vs h are presented; here F is the force 

measured by the surface force apparatus between two crossed cylinders of radius R; as usual, f 

is the total surface free energy per unit area, see Eq. (161). The dependence of hydration 

repulsion on the concentration of electrolyte (KCl) is investigated. All theoretical curves are 

calculated for v = 1.2x10-27 m3 (8 times the volume of the hydrated K+ ion), AH = 2.2x10-20 J 

and ψs = –128.4 mV; the boundary condition of constant surface potential is used. The 

theoretical curves in Fig. 24 resemble very much the experimental findings, see e.g. Fig. 13.9 

in Ref. [4]. In particular, for Cel = 5x10-5 and 10-4 M a typical DLVO maximum is observed, 

without any indication about the existence of short range repulsion. However, for Cel = 10-3, 

10-2 and 10-1 M maximum is not seen but instead, the short range hydration repulsion appears. 

Note that the increased electrolyte concentration increases the hydration repulsion, but 

suppresses the long-range double layer repulsion. 



 81

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Theoretical plot of F/R ≡ 2πf vs. h for various concentrations of KCl denoted on the 
curves. All curves are drawn for the same values of the surface potential, ψs = −128 mV, 
excluded volume per K+ ion v = 1.2×10-27 m3  and T = 298 K. 
 

 B.2.  Ionic Correlation Force 

 Because of the strong electrostatic interaction between the ions in solution their 

positions are correlated in such a way that a counterion atmosphere appears around each ion 

thus screening its Coulomb potential. As shown by Debye and Hückel [333, 334], the energy 

of formation of the counterion atmospheres gives a contribution to the free energy of the 

system called "correlation energy" [24]. The correlation energy provides also a contribution to 

the osmotic pressure of the electrolyte solution, which can be presented in the form [333, 334] 

3

241OSM

k kTkT nii
κ
π

Π = −∑
=

     (218) 

The first term in the right-hand side of the Eq. (218) corresponds to an ideal solution, whereas 

the seconds term takes into account the effect of electrostatic interaction between the ions (the 

latter is accounted for thermodynamically by the activity coefficient [335]). The expression 

for Πel in the DLVO-theory, Eq. (196), obviously corresponds to an ideal solution (i.e. to the 

first term in Eq. 218), the contribution of the ionic correlations being neglected.  Hence, in a 

more general theory instead of Eq. (208) one is to write 

vw el corΠ = Π + Π + Π      (219) 

where Πcor  is the contribution of the ionic correlations into disjoining pressure; Πcor  can be 

interpreted as a surface excess of the last term in Eq. (218). In other words, the ionic 
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correlation force originates from the fact that the counterion atmosphere of a given ion in a 

thin film is different from that in the bulk of the solution. There are two reasons for this 

difference: (i) the ionic concentration in the film differs from that in the bulk and (ii) the 

counterion atmospheres are affected by the presence of the film surfaces. Both numerical 

[336, 337] and analytical [338, 339] methods have been developed for calculating Πcor. 

 In the case when the electrolyte is symmetrical (Z:Z) and exp(-κh) « 1 one can use the 

asymptotic formula [338] 
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where Πel is the conventional DLVO electrostatic disjoining pressure, 
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 The results for the case of symmetric electrolytes are the following. Πcor  is negative 

and corresponds to attraction, which can be comparable by magnitude with Πvw.  In the case 

of 1:1 electrolyte Πcor  is usually a small correction to Πel.  In the case of 2:2 electrolyte, 

however, the situation can be quite different: the attractive forces, Πcor + Πvw, prevail over Πel  

and the total disjoining pressure, Π, becomes negative. These results show that in general Πcor 

is not a small correction over Πel:  in the presence of bivalent and multivalent counterions 

Πcor  becomes the dominant surface force. 

 The above results are obtained for two overlapping electric double layers inside the 

film. Such films can appear between two colliding droplets in an oil-in-water emulsion. In the 

opposite case of water-in-oil emulsion the double layers are outside the film. Nevertheless, in 

the latter case Πcor  is not zero because the ions belonging to the two outer double layers 

interact across the thin dielectric (oil) film.  The theory for such a film [340] predicts that Πcor  

is negative (attractive) and strongly dependent on the dielectric permittivity of the oil film; for 

such films Πcor  can be comparable by magnitude with Πvw; Πel = 0 in this case. 

 In the case of secondary thin liquid films, stabilized by ionic surfactant (h = h2 in Fig. 

17a), the measured contact angles are considerably larger than the theoretical value predicted 
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if only van der Waals attraction is taken into account [262]. The experimentally detected 

additional attraction in these very thin films (h ≈ 5 nm) can be attributed to short range ionic 

correlation effects [263] as well as to the discreteness of the surface charge [2,261,341]. 

 

 

 C. Oscillatory Structural and Depletion Forces 

 C.1. Experiments with micellar surfactant solutions 

 In the beginning of this century Johnott [342] and Perrin [343] observed that soap 

films decrease their thickness by several step-wise transitions. The phenomenon was called 

"stratification".  Bruil and Lyklema [344] and Friberg et al. [345] studied systematically the 

effect of ionic surfactant and electrolyte on the occurrence of the step-wise transitions.  

Keuskamp and Lyklema [346] anticipated that some oscillatory interaction between the film 

surfaces must be responsible for the observed phenomenon. Kruglyakov [347] and 

Kruglyakov and Rovin [348] reported the existence of stratification with emulsion films. 

 Some authors [348, 349] suggested that a possible explanation of the phenomenon can 

be the formation of surfactant lamella liquid-crystal structure inside the film. Such lamellar 

micelles are observed to form in surfactant solutions, however, at concentrations much higher 

than those used in the experiments with stratifying films.  The latter fact makes the 

explanation with lamella liquid crystal problematic.  Nikolov et al. [280, 350, 351]observed 

stratification not only with micellar surfactant solutions but also with suspensions of latex 

particles of micellar size.  The step-wise changes in the film thickness  were approximately 

equal to the diameter of the spherical particles, contained in the foam film [280-282, 352]. 

The experimental observations show that stratification is observed always, when spherical 

colloidal particles are present in the film at sufficiently high concentration. The observed 

multiple step-wise decrease of the film thickness (see e.g. Fig. 25) can be attributed  to the 

layer-by-layer thinning of a colloid-crystal-like structure inside the film [280]. 

 The mechanism of stratification was studied theoretically in Ref. [353], where the 

appearance and expansion of black spots in the stratifying films was described as a process of 

condensation of vacancies in a colloid crystal of ordered micelles within the film. 

 Recently, oscillatory structural forces due to micelles and microemulsion droplets 

were directly measured by means of a surface force balance [283]. The stable branches of the 

oscillatory disjoining pressure isotherm have been measured [268] with micellar solutions by 

means of the experimental cell of Mysels [354]. Moreover, Denkov et al. [355] took pictures 
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of spherical surfactant micelles in a foam film at different stages of stratification by using 

cryoelectron microscopy.  The micrographs show that the micelles do not form crystal-like 

structure in lateral direction; however, some ordering in normal direction should be expected 

in so far as the film thickness varies in a step-wise manner. On the other hand, the application 

of the interference method, developed in Ref. [356], to free vertical stratifying films, 

containing 100 nm latex particles, confirms that the particles form a colloid crystal structure 

of hexagonal packing within these films. Similar result was obtained by cryoelectron 

microscopy [355]: the micrographs of vitrified stratifying films containing latex particles (144 

nm in diameter) showed well ordered two-dimensional particle array. These results suggest 

that smaller particles like micelles (exhibiting more intensive Brownian motion and 

interacting by relatively “soft” screened Coulomb potential) form less ordered structure 

within the stratifying film. On the contrary, larger particles, interacting like hard spheres, are 

expected to form colloid-crystal like structure within the films.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25. (a) Experimental curve (from Ref. 374) showing the decrease of the thickness, h, of 
an emulsion film with time. The film is formed from 33.5 mM aqueous solution of sodium 
nonylphenol polyoxyethylene-25 sulfate with 0.1 M NaCl added. The "steps" of the curve 
represent metastable states corresponding to different number of micelle layers inside the 
film. (b) Sketch of a film containing two micelle layers. 
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 C.2 Physical origin of the oscillatory structural forces 

 In general, oscillatory structural forces appear in two cases:  (i) in thin films of pure 

solvent between two smooth solid surfaces;  (ii) in thin liquid films containing colloidal 

particles (including macromolecules and surfactant micelles).  In the first case, the oscillatory 

forces are called the "solvation forces" [4, 357]; they could be important for the short-range 

interactions between solid particles in dispersions.  In the second case, the structural forces 

affect the stability of foam and emulsion films as well as the flocculation processes in various 

colloids.  At higher particle concentrations the structural forces stabilize the liquid films and 

colloids [280, 281]. At lower particle concentrations the structural forces degenerate into the 

so called depletion attraction, which is found to destabilize various dispersions [358, 359]. 

 In all cases, the oscillatory structural forces appear when monodisperse spherical (in 

some cases ellipsoidal or cylindrical) particles are confined between the two surfaces of a thin 

film.  Even one "hard wall" can induce ordering among the neighboring molecules.  The 

oscillatory structural force is a result of overlap of the structured zones at two approaching 

surfaces [360-363]. 

 It is worthwhile noting that the wall can induce structuring in the neighboring fluid 

only if the magnitude of the surface roughness is negligible compared with the particle 

diameter, d.  Indeed, when surface irregularities are present, the oscillations are smeared out 

and oscillatory structural force does not appear.  If the film surfaces are fluid, the role of the 

surface roughness is played by the interfacial fluctuation capillary waves, whose amplitude 

(usually between 1 and 5 Å) is comparable with the diameter of the solvent molecules. In 

order for structural forces to be observed in foam or emulsion films, the diameter of the 

colloidal particles must be much larger than the amplitude of the surface corrugations. 

 The period of the oscillations is close to the particle diameter [4, 350, 352]. In this 

respect the structural forces are appropriately called the "volume exclusion forces" by 

Henderson [364], who derived an explicit (though rather complex) formula for calculating 

these forces. Numerical simulations [365, 366] and density-functional modeling [367] of the 

step-wise thinning of foam films are also available. 

 Recently, a semiempirical formula for the oscillatory structural component of 

disjoining pressure was proposed [368] 

( )
3

0 2
1 1 2 2

0

2cos exp for

for 0

osc
h d hh P h d

d d d d
P h d

π   
Π = − >   

   
= − < <

    (221) 



 86

where d is the diameter of the hard spheres, d1 and d2 are the period and the decay length of 

the oscillations which are related to the particle volume fraction, ϕ, as follows [368] 
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0 237 0 633 0 4866 0 420= + + = −. . ; . .∆ϕ ∆ϕ
∆ϕ

  (222) 

Here ∆ϕ = ϕmax - ϕ with ϕmax = π/(3√2) being the value of ϕ at close packing.  P0 is the 

particle osmotic pressure determined by means of Carnahan-Starling formula [369] 
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where n is the particle number density.  For h < d, when the particles are expelled from the 

slit into the neighboring bulk suspension,  Eq. (221) describes the so called depletion 

attraction. On the other hand, for h > d the structural disjoining pressure oscillates around P0  

(defined by Eq. 223) in agreement with the finding of Kjellander and Sarman [370]. The finite 

discontinuity of Πosc at h = d is not surprising as, at this point, the interaction is switched over 

from oscillatory to depletion regime. As demonstrated in Ref. [368], the quantitative 

predictions of Eq. (221) compare well with the Henderson theory [364] as well as with 

numerical results of Mitchell et al. [371], Karlström [372], Kjellander and Sarman [370]. 

 It is interesting to note that in oscillatory regime the concentration dependence of Πosc  

is dominated by the decay length d2 in the exponent, cf. Eq. (222).  Roughly speaking, for a 

given distance h the oscillatory disjoining pressure Πosc increases five times when ϕ is 

increased with 10%, see Ref. [368]. 

 The contribution of the oscillatory structural forces to the interaction free energy per 

unit area of the film can be obtained by integrating Πosc: 
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 C.3.  Comparison between theory and experiment 

 It should be noted that Eqs. (221) and (224) refer to hard spheres of diameter d.  In 

practice, however, the interparticle potential can be "soft" because of the action of some long-
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range forces.  If such is the case, one can obtain an estimate of the structural force by 

introducing an effective hard core diameter [352] 
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where β2 is the second virial coefficient in the virial expansion of the particle osmotic 

pressure: Posm/(nkT) = 1 + β2n/2 + ... In the case of charged particles, like ionic surfactant 

micelles, the following approximate expression can be also used [350] 

d = dH + 2κ-1      (226) 

where dH is the hydrodynamic diameter of the particle, determined, say, by dynamic light 

scattering. It was found [350, 368] that Eq. (226) compares well with the experimental data 

for stratifying films. 

 Two pronounced effects with stratifying films deserve to be mentioned.  (i) The 

increase of electrolyte concentration leads to smoother and faster thinning of the foam films 

from ionic surfactant solutions.  When the electrolyte concentration becomes high enough, the 

step-wise transitions disappear.  This can be explained by suppression of the oscillatory 

structural forces due to decrease of the effective micelle volume fraction because of shrinkage 

of the counterion atmospheres [350]; (ii) In the case of nonionic surfactant micelles the 

increase of temperature leads to a similar effect: disappearance of the step-wise character of 

the film thinning [352]. This can be attributed to the change of the intermicellar interaction 

from repulsive to attractive with the increase of temperature [373]. The electrolyte and 

temperature dependence of the colloid structural forces provides a tool for control of the 

stability of dispersions. 

 As an illustration let us consider experimental data [374] for micellar solutions of the 

ionic surfactant sodium nonylphenol polyoxyethylene-25 sulfate (SNP-25S) at concentration 

3.35×10-2 M. The step-wise thinning of a film formed from such a micellar solution is shown 

in Fig. 25. Comparative experiments with 0.1 M added NaCl and without any added NaCl 

have been carried out.  From the experimental number concentration of the micelles, n, their 

effective diameter and volume fraction, ϕ, have been calculated by means of Eqs. (223) and 

(226).  
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Table 3. Data for stratifying films stabilized by SNP-25S at concentration 3.35×10-2 M. 

Cel 
M  

NaCl 

ϕ d 
nm 

d1 
nm 

d2 
nm 

fel 
(10−3 erg 

/cm2) 

fvw 
(10−3 erg 

/cm2) 

fosc 
(10−3 erg 

/cm2) 

θ 
theory 

deg 

θ 
experim. 

deg 

0.1 0.18 7.7 8.8 3.5 0.03 -0.40 -1.99 1.02 1.0±0.04 

0 0.38 9.8 9.7 9.1 15.47 -0.37 -23.51 1.92 1.89±0.08 

 

The calculated values of ϕ and d are listed in Table 3 One sees that the addition of 0.1 M 

electrolyte (NaCl) decreases the volume fraction of the micelles from 0.38 to 0.18 due to the 

shrinkage of the micelle counterion atmospheres.  The period and decay length of the 

oscillations, d1 and d2 , are calculated from Eq. (222); one sees that d2 is markedly lower than 

d1 and d for the lower volume fraction ϕ = 0.18. The electrostatic and van der Waals surface 

free energies, fel and  fvw, are calculated by means of Eqs. (187) and (204) with AH = 5×10-21 J 

and  area per surface charge 76 Å2, whereas, the oscillatory free energy, fosc, is determined 

from Eq. (224). For that purpose, the experimental (interferometric) thickness of films 

containing one layer of surfactant micelles have been used; corrections for the thickness of 

the two surfactant adsorption monolayers are taken into account when calculating fel and  fosc. 

The experimental values of the contact angle, θ, of the respective films are also shown in 

Table 3. The theoretical values of θ are calculated by means of Eq. (161), where  

f =  fel +  fvw +  fosc     (227) 

is substituted (σ = 7.5 mN/m). One sees that the theoretical and the experimental values of θ 

coincide in the framework of the experimental accuracy [374]. The theoretical plot of fosc vs. 

h calculated by means of Eq. (224) with the parameters values taken from Table 3 is shown in 

Fig. 26. Note that the experimental thickness of the film containing one layer of surfactant 

micelles corresponds to the first minimum of fosc (that at h≈12 nm in Fig. 26). In general, the 

metastable states of the film (the steps in Fig. 25) correspond (approximately) to the minima 

of f vs h curve. 

 The numerical results in Table 3 and Fig. 26 call for some discussion. First, one sees 

that the contribution of the oscillatory structural force,  fosc, to the total surface free energy, f, 

is the greatest one, cf. Eq. (227). Moreover, the magnitude of  fosc (the depth of the first 

minimum in Fig. 26) increases with the decrease of the electrolyte concentration because of 
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the increase of the micelle effective volume fraction ϕ. As a result, the contact angle, θ, 

increases with the decrease of electrolyte concentration. This tendency is exactly the opposite 

to that in the absence of micelles, when oscillatory structural forces are missing. 

 

 

 
 

 

 

 

 

 

 
 

 

Fig. 26. Plot of the oscillatory free energy, fosc , vs. the film thickness, h, calculated from Eq. 
(224) with the parameters values from Table 3 for SNP-25S micelles: ϕ = 0.32, d = 9.3 nm, 
d1 = 9.5 nm and d2 = 7.0 nm. The inset shows the region 8 nm < h < 28 nm in an enlarged 
scale. 
 

 C.4. Depletion interaction 

 With the decrease of particle (micelle) volume fraction ϕ the amplitude of the 

oscillations (Fig. 26) decreases and the oscillatory structural force degenerates into the 

depletion interaction. The latter interaction manifested itself in the experiments by Bondy 

[375], who observed coagulation of rubber latex in presence of polymer molecules in the 

disperse medium.  Asakura and Oosawa [358] published a theory, which attributed the 

observed interparticle attraction to the overlap of the depletion layers at the surfaces of two 

approaching colloidal particles - see Fig. 27. The centers of the smaller particles, of diameter, 

d, cannot approach the surface of a bigger particle (of diameter D) at a distance shorter than 

d/2, which is the thickness of the depletion layer.  When the two depletion layers overlap (Fig. 

27) some volume between the large particles becomes inaccessible for the smaller particles.  

This gives rise to an osmotic pressure, which tends to suck out the solvent between the bigger 

particles thus forcing them against each other.  The total depletion force experienced by one 

of the bigger particles is [358] 
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( )F k T n S hdep = − 0     (228) 

where the effective depletion area is 
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Fig. 27. Overlap of the depletion zones around two particles of diameter D separated at a 
surface-to-surface distance h0; the smaller particles have diameter d. 
 

Here h0  is the shortest distance between the surfaces of the larger particles and n is the 

number density of the smaller particles.  By integrating Eq. (228) one can derive an 

expression for the depletion interaction energy between the two larger particles, Udep(h0).  For 

D » d this expression reads 

( ) ( )U h k T D
d

d h h ddep 0 3 0
2

0
3
2

0/ ≈ − − ≤ ≤ϕ    (230) 

where ϕ = πnd3/6 is the volume fraction of the small particles.  The maximum value of Udep at 

h0 = 0 is Udep(0)/kT ≈ -3ϕD/(2d).  For example, if D/d = 50 and ϕ = 0.1, then Udep(0) = -7.5kT.  

This depletion attraction turns out to be large enough to cause flocculation in dispersions.  

De Hek and Vrij [359]studied systematically the flocculation of sterically stabilized silica 

suspensions in cyclohexane, induced by polystyrene molecules.  Patel and Russel [376]  

investigated the phase separation and rheology of aqueous polystyrene latex suspensions in 

the presence of polymer (Dextran T-500).  The stability of dispersions is often determined by 

the competition between electrostatic repulsion and depletion attraction [377].  An interplay 

of steric repulsion and depletion attraction was studied theoretically by van Lent et al. [378] 

for the case of polymer solution between two surfaces coated with anchored polymer layers.  

Joanny et al. [379] and Russel et al. [284] re-examined the theory of depletion interaction by 
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taking into account the internal degrees of freedom of the polymer molecules;  their analysis 

confirmed the earlier results of Asakura and Oosawa [358]. 

 In the case of plane-parallel films the depletion component of disjoining pressure is 

( )
( )

0

0
dep

dep

h P h d

h h d

Π = − <

Π = >
     (231) 

which is a special case of Eq. (221) for small d2. Evans and Needham [380] succeeded to 

measure the depletion energy of two interacting bilayer surfaces in a concentrated Dextran 

solution; their results confirm the validity of Eq. (231). 

 The depletion interaction is present always when a film is formed from micellar 

surfactant solution; the micelles play the role of the smaller particles.  At higher micellar 

concentrations the volume exclusion interaction becomes more complicated:  it follows the 

oscillatory curve depicted in Fig. 26.  In this case only the region of the small thickness (the 

linear portion for 0< h <d in Fig. 26) corresponds to the conventional depletion force. 

 

 D. Steric Polymer Adsorption Force 

 Steric interaction can be observed in foam or emulsion films stabilized with nonionic 
surfactants, or with various polymers, including proteins.  The nonionic surfactants molecules 
are anchored (grafted) to the liquid interface by their hydrophobic moieties (Fig. 28a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 28. Polymeric chains adsorbed at an interface: (a) terminally anchored polymer chain of 
mean end-to-end distance L; (b) a "brush" of anchored chains; (c) adsorbed (but not anchored) 
polymer coils; (d) complex conformation of an adsorbed polymeric molecule: "loops", "tails" 
and "trains" are formed. 
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When two such surfaces approach each other the following effects take place [4, 381-383]: 
(1) The entropy decreases due to the confining of the dangling chains which results in a 
repulsive osmotic force known as "steric" or "overlap" repulsion.  (2) In a poor solvent the 
segments of the chain molecules attract each other; hence the overlap of the two approaching 
layers of polymer molecules will be accompanied with some intersegment attraction; the 
latter can prevail for small overlap, however at the distance of larger overlap it becomes 
negligible compared with the osmotic repulsion.  (3) Each polymeric chain in an adsorption 
monolayer (brush), see Fig. 28b, is subjected to an elastic stress (extension) because of the 
repulsive interactions with the chains of neighboring molecules in the brush. This elastic 
stress can be partially released when two such monolayers are pressed against each other in a 
thin film; this brings about an effective attractive contribution to the steric surface force. 
 
 D.1. Adsorption of polymeric molecules 
 Adsorbed polymeric molecules may form not only brushes (Fig. 28b), but coils of 
macromolecules, like proteins, which can also adsorb at a liquid surface - Fig. 28c.  
Sometimes the configurations of the adsorbed polymers are very different from the statistical 
coil: loops, trains and tails can be distinguished (Fig. 28d). 
 The osmotic pressure of either dilute or concentrated polymer solutions can be 
expressed in the form [384] 

P
n k T N

n v n wosm = + + +
1 1

2
1
3

2 ...     (232) 

Here N is the number of segments in the polymer chain, n is the number segment density, v 
and w account for the pair and triplet interactions between segments.  In fact v and w are 
counterparts of the second and third virial coefficients in the theory of non-ideal gases [12].  v 
and w can be calculated if information about the polymer chain and the solvent is available 
[284] 

( )w v m N v wA
1 2 1 2 1 2/ // , ,= = − χ    (233) 

where v  (m3/kg) is the specific volume per segment, m (kg/mol) is the molecular weight per 
segment, NA  is the Avogadro number and χ is the Flory parameter.  The latter depends on 
both the temperature and the energy of solvent-segment interaction.  Then v can be zero (cf. 
Eq. 233) for some special temperature, called the theta temperature.  The solvent at theta 
temperature is known as theta solvent or ideal solvent.  At the theta temperature the 
intermolecular (intersegment) attraction and repulsion in polymer solutions are exactly 
counterbalanced.  In a good solvent, however, the repulsion due mainly to the excluded 
volume effect dominates the attraction and v > 0.  In contrast, in a poor solvent the 
intersegment attraction prevails, so v < 0. 
 The steric interaction between two approaching surfaces appears when the film 
thickness becomes of the order of, or smaller than 2L where L is the mean-square end-to-end 
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distance of the hydrophilic portion of the chain.  If the chain were entirely extended, then L 
would be equal to Nl with l being the length of a segment.  However, due to the Brownian 
motion L < Nl.  For an anchored chain, like that depicted in Fig. 28a, in a theta solvent L can 
be estimated as [284] 

L L l N≈ ≡0      (234) 
In a good solvent L > L0, whereas in a poor solvent L< L0.  In addition, L depends on the 

surface concentration, Γ, of the adsorbed chains, i.e. L is different for an isolated molecule 
and for a brush - cf. Figs. 28a and 28b.  The mean field approach [284, 385] applied to 
polymer solutions provides the following equation for calculating L 
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where , andL vΓ% % %  are the dimensionless values of L, Γ and v defined as follows: 

( ) 3/ 2/ , / , /L L l N N w l v v N l= Γ = Γ = Γ% % %    (236) 

For an isolated adsorbed molecule ( )0Γ =%  in an ideal solvent ( )~v = 0  Eq. (235) predicts 
~L = 1, i.e. L = L0. 

 
 D.2. Interaction of two polymeric adsorption monolayers 
 Dolan and Edwards [386] calculated the steric interaction free energy per unit area, fst, 

for two polymeric adsorption monolayers (Fig. 28b) in a theta solvent as a function of the film 
thickness, h,: 
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where L0 is the end-to-end distance as defined by Eq. (234).  The boundary between the 
power-law regime (fst ∝ 1/h2) and the exponential decay regime is at h = L0 3 ≈  1.7L0, the 

latter being slightly less than 2L0 which is the intuitively expected beginning of the steric 
overlap.  The first term in the right-hand side of Eq. (237) comes from the osmotic repulsion 
between the brushes, which opposes the approach of the two surfaces; the second term is 
negative and accounts effectively for the decrease of the elastic energy of the initially 
extended chains with the decrease of the film thickness, h. 
 In the case of a good solvent the disjoining pressure Πst = -dfst/dh can be calculated 

by means of Alexander-de Gennes theory [387, 388] as 
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where Lg is the thickness of a brush in a good solvent [389].  The positive and the negative 
terms in the right-hand side of Eq. (239) correspond to osmotic repulsion and elastic 
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attraction.  The validity of Alexander-de Gennes theory was experimentally confirmed by 
Taunton et al. [390] who measured the forces between two brush layers grafted on the 
surfaces of two crossed mica cylinders. 
 Claesson et al. [373] studied the effect of temperature on the interaction between 
monolayers of the nonionic surfactant C12E5 . These authors observed that the fSt vs. h curves 
exhibit a minimum related to attraction, whose depth increases with the increase of 
temperature (Fig. 29). Most probably this is an effect of the intersegment attraction of 
hydrophobic origin, which cannot be described by the Alexander-de Gennes theory. Theories 
applicable to this case are reviewed by Russel et al. [284]. 
 In the case of adsorbed molecules, like these in Figs. 28c and 28d, which are not 
anchored to the surface, the measured surface forces can depend on the rate of approaching of 
the two surfaces [391, 392]. The latter effect can be attributed to the comparatively low rate 
of exchange of polymer between the adsorption layer and the bulk solution.  This leads to a 
hysteresis of the surface force: different interaction on approach and separation of the two 
surfaces [4]. In the case of more complicated configuration of the adsorbed polymers (Fig. 
28d) one can observe two regimes of steric repulsion:  (1) weaker repulsion at larger 
separations due to the overlap of the tails  and  (2) stronger repulsion at smaller separations 
indicating overlap of the loops [393]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 29. Plot of experimental data for 
measured forces, F/R≡2πf vs. h, between 
two surfaces covered by adsorption 
monolayers of the nonionic surfactant 
C12E5 for various temperatures. The 
appearance of minima on the curves 
indicate that the water becomes a poor 
solvent for the polyoxyethylene chains 
with the increase of temperature (from 
Claesson et al., [373]). 
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 E. Fluctuation Wave Forces 
 
 The adsorption monolayers at fluid interfaces and the bilayers of amphiphilic 
molecules in solution (lipid membranes, surfactant lamellas) are involved in a thermal 
fluctuation wave motion.  The configurational confinement of such thermally exited modes 
within the narrow space between two approaching interfaces gives rise to short-range 
repulsive surface forces, which are briefly presented below. 
 
 
 E.1. Protrusion force 
 Due to the thermal motion the protrusion of an amphiphilic molecule from an 
adsorption monolayer (or micelle) may fluctuate about the equilibrium position of the 
molecule, Fig. 30a.  In other words, the adsorbed molecules are involved in a discrete wave 
motion, which differs from the continuous modes of deformation considered in sections E.2 
and E.3 below.  Aniansson et al. [394, 395] analyzed the energy of protrusion in relation to 
the micelle kinetics. These authors assumed energy of molecular protrusion of the form 

u(z) = αz, where z is the distance out of the surface (z > 0);  they determined α ≈ 3×10-11 J/m 
for single-chained surfactants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 30. Surface forces due to configurational confinement of thermally exited modes into a 
narrow region between two approaching interfaces: (a) fluctuating protrusion of adsorbed 
amphiphilic molecules gives rise to the protrusion surface force; (b) bending mode of 
membrane fluctuations gives rise to the undulation force; (c) squeezing (peristaltic) mode of 
membrane fluctuations gives rise to the peristaltic force. 
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 By using a mean-field approach Israelachvili and Wennerström [317] derived the 
following expression for the protrusion disjoining pressure which appears when two 
protrusion zones overlap (Fig. 30a): 

( ) ( ) ( )
( ) ( )
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, .
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h h kTh
h h

α λ λ
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λ λ α
Γ −

Π = ≡
− + −

   (240) 

λ has the meaning of protrusion decay length; λ = 0.14 nm at 25°C; Γ denotes the number of 

protrusion sites per unit area.  Note that Πprotr decays exponentially for h >> λ, but Πprotr ∝ h-

1 for h < λ, i.e. Πprotr is divergent at h → 0. 
 
 E.2. Undulation force 
 The undulation force arises from the configurational confinement related to the 
bending mode of deformation of two fluid bilayers, like surfactant lamellas or lipid 
membranes.  This mode consists in undulation of the bilayer thickness and constant area of 
the bilayer midsurface, Fig. 30b.  Helfrich et al. [396, 397] established that two such bilayers, 
at a mean surface-to-surface distance h apart, experience a repulsive disjoining pressure given 
by the expression 
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where kt  is the bending elastic modulus of the bilayer as a whole.  The experiment [398] and 
the theory [233] show that kt is of the order of 10-19 J for lipid bilayers.  The undulation force 

has been measured and the dependence Πund ∝ h-3 confirmed experimentally [399-401]. 
 
 E.3. Peristaltic force 
 Similar to the undulation force, a peristaltic force [317] can appear between two 
surfactant lamellas or lipid bilayers. It originates from the configurational confinement related 
to the peristaltic (squeezing) mode of deformation of a fluid bilayer, Fig. 30c.  This mode of 
deformation consists in fluctuation of the bilayer thickness without bending of the bilayer 
midsurface.  The peristaltic deformation is accompanied with extension of the bilayer 
surfaces.  Israelachvili and Wennerstöm [317] demonstrated that the peristaltic disjoining 
pressure is related with the stretching modulus, ks, of the bilayer: 
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The experiment [206] gives value of ks varying between 135 and 500 mN/m depending on 
temperature and composition of the lipid membrane. 
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 F. Surface Forces and Micelle Growth 
 
 As an illustration in the present section we consider the effect of the surface forces on 

the interactions between surfactant micelles and the growth of rod-like micelles in solution.  

 A useful experimental method, providing quantitative information for the micelle-

micelle interactions (in not too concentrated solutions), is the static light scattering (SLS). As 

known, this method is based on the measurement of the concentration dependence of the 

scattered light and the solution refractive index [402, 403]. From the intensity of the scattered 

light the Rayleigh ratio, Rθ, is determined and the data are plotted in accordance with the 

Debye equation [402-404] 
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where KS is the so called optical constant of the solution, n0 and nr are the refractive indices of 

the pure solvent and the solution, λ is the light wavelength in vacuo,  NA is the Avogadro 

number, M1 (g/mol) is the micelle mass, cSM is the concentration of surfactant micelles in the 

solution; A2 is the second virial coefficient. A2 is positive when the micelles repel each other, 

whereas A2 is negative when the attractive interaction between the micelles is predominant. 

 In Fig. 31 we present SLS data for micelles of ionic surfactant (sodium dodecyl 

dioxyethylene sulfate: SDP-2S) in the presence of added NaCl (the upper line) and mixture of 

NaCl and AlCl3 (the lower line); in both cases the ionic strength of the solutions is the same, 

I = 24 mM. The surfactant concentration is small enough to have only small spherical 

micelles in the solution. The ratio 

SM Al/(3 )c cξ =      (244) 

(cAl is the concentration of Al3+), is kept constant, ξ = 1.15, for the solution with AlCl3. As 

seen in Figure 31, the presence of Al3+ ions inverts the sign of A2 from positive to negative. In 

other words, the micelle-micelle interaction is repulsive in the presence of Na+ counterions 

only, whereas it becomes attractive if Al3+ counterions are present.  This can be attributed to 

the fact that the ionic-correlation attraction dominates over the double layer repulsion in the 

presence of divalent and trivalent counterions [336, 339]. SLS data with Mg2+ and Ca2+ (not 

shown in Figure 31) also give negative A2, as it could be expected if the ionic correlations are 

the source of the attraction between the micelles. Note however, that at higher surfactant 
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concentrations the transition from spherical to elongated micelles could give an apparent 

negative value of A2, which should not be attributed to micelle-micelle attractive interactions, 

such as van der Waals or the ionic correlation forces [404]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 31. Static light scattering data for SDP-2S micelles plotted in accordance with Eq (243). 
The full dots correspond to solutions with NaCl, whereas the empty dots are measured with 
mixtures of AlCl3 and NaCl; the total ionic strength, I = 24 mM, is fixed. 
 

 As known, the spherical surfactant micelles undergo a transition to larger rod-like 

aggregates with the increase of surfactant concentration [4]. It was found out experimentally 

that the formation of rod-like micelles is enhanced by the addition of electrolyte and/or 

decreasing the temperature [405-413], as well as by increasing the length of the surfactant 

hydrocarbon chain [414-416]. It was recently established [417] that the presence of 

multivalent counterions (Ca2+, Al3+) in solutions of anionic surfactant (sodium dodecyl 

dioxyethylene sulfate) strongly enhances the formation of rod-like micelles. A qualitative 

explanation of this fact is that a multivalent counterion, say Al3+, can bind together three 

surfactant headgroups at the micelle surface thus causing a decrease of the area per headgroup 

[417].  In accordance with the theory by Israelachvili et al. [4, 418] this will induce a 

transition from spherical to cylindrical micelles. 

 From a practical viewpoint it is important to note that the giant cylindrical micelles 

formed in the presence of Ca2+ and Al3+ exhibit a markedly larger solubilization efficiency 

than the common spherical micelles [417], see Figure 32. In other words, the same amount of 

surfactant solubilizes more oil when it is organized as large cylindrical (rather than small 

spherical) micelles. This finding could be employed in detergency. The light scattering 

experiments [417] reveal that in the process of solubilization the giant rod-like micelles 
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disassemble to smaller spherical swollen micelles (their hydrodynamic radius, Rh is also 

shown in Fig. 32). Therefore, it turns out that in this case the process of solubilization is a 

rather complex one. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 32. Solubilisation of oil (di-isopropyl benzene) in 8 mM solution of SDP-2S in the 
presence of added electrolyte (NaCl, CaCl2 or AlCl3) of fixed ionic strength, I = 24 mM. The 
volume of solubilized oil per unit volume of solution, Voil/Vsolution, is plotted against the 
valence of the counterions (Na+, Ca2+ or Al3+). The measured apparent hydrodynamic radius 
of the swollen micelles, Rh, is also plotted vs the counterion valence. 
 

 

VII. HYDRODYNAMIC FORCES IN THIN LIQUID FILMS 

 

 It is now generally recognized that the presence of surfactants plays an important role 

for the drainage velocity of thin liquid films and the hydrodynamic forces in these films. The 

surfactants change not only the disjoining pressure (see Section VI above), but also the 

tangential mobility of the interface of the droplet or bubble. This affects the flocculation and 

coalescence rate constants, which determine the rates of reversible and irreversible 

coagulation of the dispersions [419], and emulsions [420-422]. The role of the film properties 

for the foam stability is discussed in [267]. Depending on the behavior of the interdroplet 

film, two kinds of foam and emulsion stability can be distinguished: (i) thermodynamic 

stability governed by repulsive disjoining pressure, and (ii) kinetic stability affected by 

hydrodynamic and diffusion fluxes inside the film. These two types of stability are actually 
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interrelated and both are involved in the theoretical interpretation of the Bancroft rule 

[419,420,423-425,488]. 

 When two colloidal particles come close to each other, they experience two types of 

forces. The first one, the surface forces of intermolecular origin (the disjoining pressure), 

which are due to the van der Waals, electrostatic, steric, etc. interactions, have been discussed 

in Section VI above. The second type represent the hydrodynamic forces which originate 

from the interplay of the hydrodynamic flows around two moving colloidal particles or two 

film surfaces. It becomes important when the separation between the particle surfaces is of the 

order of the particle radius and increases rapidly with the decrease of the gap width.  

 The simultaneous action of disjoining pressure and hydrodynamic forces determines 

the stages of the formation and evolution of a liquid film of fluid surfaces [5,426]: 

 (i) Two slightly deformed fluid particles approach each other (see Fig. 33a and 

Section VII.A). 

 (ii) Dimple is formed at a certain small separation between the fluid particles (see Fig. 

33b and Section VII.B). The dimple initially grows, but latter becomes unstable and quickly 

outflows. 

 (iii) Then a plane-parallel film of radius R and typical thickness from 15 to 200 nm 

forms (see Fig. 33c and Section VII.C). When the long range repulsive forces are strong, an 

equilibrium (but thermodynamically metastable) primary film forms, cf. point 1 in Fig. 17a. 

(This film is also called the common black film (CBF)). 

 (iv) The film surface corrugations, caused by thermal fluctuations or other 

disturbances, amplified by attractive disjoining pressure may increase their amplitude so 

much that the film either ruptures or a spot of thinner Newton black film (NBF) forms (see 

point 2 in Fig. 17b, Fig. 33d and Section VIII). 

 (v) If the short-range repulsive disjoining pressure is large enough the black spots 

(secondary films of very low thickness, h2 ≈ 5 – 10 nm) are stable. They either coalescence or 

grow in diameter, forming an equilibrium secondary (NBF) thin film (see Fig. 33e). 

 (vi) After the whole film area is occupied by the Newton black film, the equilibrium 

between the film and the meniscus is violated and the NBF expands until reaching its final 

equilibrium radius, RNBF, corresponding to an equilibrium contact angle θ (see Fig. 33f). 

Sometimes no plane-parallel film forms, but instead the dimple persists until rupture or 

formation of NBF occurs. For more details - see part IV.C of ref. 267. 
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Fig. 33. Consecutive stages of evolution of a thin liquid film between two bubbles or drops: 
(a) mutual approach of slightly deformed surfaces; (b) the curvature at the film center inverts 
its sign and a "dimple" arises; (c) the dimple disappears and an almost plane-parallel film 
forms; (d) due to thermal fluctuations or other disturbances the film either ruptures or 
transforms into a thinner Newton black film (e) which expands until reaching the final 
equilibrium state (f). 
 

 A. Films of Uneven Thickness between Colliding Fluid Particles 

 For the sake of simplicity we will assume that the colloidal particles approach each 

other along their axes of symmetry (see Fig. 33a). The driving force can be the buoyancy, the 

Brownian force, etc. The hydrodynamic interaction is stronger in the front zones and leads to 

a weak deformation of the fluid particles (drops, bubbles) in this front region. The 

deformation is proportional to the hydrodynamic capillary number Ca = ηVRc/(σh), where V 

is the velocity of thinning, Rc is the particle radius, and h is the minimal distance between the 

particle surfaces. 

 When the surfactant is soluble only in the continuous (film) phase, the velocity of 

particle approach can be calculated from the following formula stemming from the lubrication 

approximation [5]: 
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where he ≡ (∂Γ/∂c)e is the characteristic adsorption distance for a given equilibrium surfactant 

concentration (see Table 1), Ds is the surface diffusion coefficient of the surfactant (see 

Section III, Eq. 3.3), and VTa is the well known Taylor velocity [427] of approach of two non-

deformable solid spheres under the action of an external force F. From Eq. (245) we can 

deduce that the velocity of particle approach, V, increases with the increase of the bulk and 

surface surfactant diffusivities, D and Ds, as well as with the decrease of the Gibbs elasticity, 

EG, and the slope of the adsorption isotherm, he ≡ (∂Γ/∂c)e. A more general treatment, valid 

for droplets of different radii and different interfacial properties, can be found in Ref. [428]. 

In emulsion systems, containing surfactant soluble in both continuous phase and the droplets, 

the velocity, V, depends on the surfactant distribution between the phases [429]. 

 In the case of emulsion films with surfactant soluble only in the drop phase, the 

presence of surfactant does not influence the approach of the two film surfaces (the particles 

behave as droplets of pure liquid), see Section C.3 below. The approach of two nondeformed, 

spherical, drops or bubbles in pure liquid phases (in the absence of any surfactant) has been 

investigated by many authors [5,430-439]. All results show that the approaching velocity at 

small distances (h/Rc << 1) is much larger than that for solid spheres; it is proportional to the 

Taylor velocity, VTa, multiplied by factors larger than unity: 

  V V/ Ta = ( )[ ]0 75. / ln /R h R hc c  for bubbles without surfactant  [420], 

and 

  V V/ Ta = ( )0 811. /η ηR hc dr  for droplets without surfactant  [438]; 

the viscosities of the droplets and of the medium are ηdr and η, respectively. It turns out that 

even small amount of surfactant soluble in the continuous medium decreases the approaching 

velocity by several orders of magnitude because the surfactant immobilizes the drop (bubble) 

surfaces and then V ≈ VTa. 

 The shape of the gap between two pure liquid drops for different characteristic times 

is calculated numerically in Refs. [440,441]. Experimental investigations of these effects for 

symmetric and asymmetric drainage of foam films were carried out by Joye et al. [442,443]. 

In some special cases the deformation of the fluid particle can be very fast: for example, the 

bursting of a small air bubble at an air/water interface is accompanied by a complex motion 

resulting in the production of a high-speed liquid jet [444]. Unfortunately, in Refs. 

[440,441,444] the effect of surfactant is not investigated. 
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 B. Inversion Thickness and Dimple Formation 

 At a given gap width the curvature in the middle of the film surfaces, at r = 0, changes 

its sign and the surfaces acquire a concave lens-shape form, called „dimple“ [445] (see Fig. 

33b). This stage is observed also for asymmetric films [443]. This stage is possible if the force 

acting on the fluid particles is high enough, so that the energy barrier, created by the increase 

of surface energy during the deformation, can be overcome [446]. For example, in the case of 

Brownian flocculation of small droplets at low electrolyte concentration such a dimple might 

not appear [446]. The parallel experiments [447] on the formation and thinning of emulsion 

films of macroscopic and microscopic areas, prepared in the Scheludko cell [448] and in a 

miniaturized cell, show that the patterns and the time scales of the film evolution in these two 

cases are significantly different. There is no dimple formation in the case of thin liquid films 

of small diameters [447]. Other effect of the quasistatic surface forces is the prevention of the 

dimple formation in the case of large van der Waals attraction [440] when a reverse bell-

shape deformation appears and the film ruptures quickly. 

 There is a number of theoretical studies describing the development of a dimple at the 

initial stage of film thinning [442,443,449-452]. The distance at which the dimple forms is 

called the inversion thickness hi. From Eq. (57) in the paper by Ivanov et al. [428] the 

following expression for hi could be derived for the case when the surfactant is soluble only in 

the continuous phase: 
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where the dimensionless parameter bs and the characteristic surface diffusion thickness hs are 

defined as 
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From Eq. (246) it follows that the presence of surfactants in the continuous phase decreases 

the inversion thickness if we keep the interfacial tension, σ, and the exerted force, F, constant. 

For most surfactant solutions one has bs << 1, and then only the surface diffusivity and Gibbs 

elasticity influence the inversion thickness. For large inversion thicknesses from Eq. (246) 

one can derive the following asymptotic equation  

     ( )/ 2ih F πσ≈ , 

which is valid also when the surfactant is soluble in the droplet phase. 
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 With parameter values typical for foams, σ = 30dyn/cm, and Rc = 50 µm, and with the 

buoyancy as driving force, from Eq. (246) one obtains hi = 14 nm, which is an unrealistically 

small value. This means that the buoyancy force might be insufficient to explain the 

formation of films during the hydrodynamic interaction of two bubbles. Another outer force 

that can be important for the emulsion and foam stability is the hydrodynamic force in a shear 

or non-turbulent flows [461]. An attempt to treat the case of turbulence was performed by 

Kumar et al. [462,463]. For micron-size liquid droplets the Brownian force is still several 

orders of magnitude greater than the buoyancy force due to gravity. Following the scheme of 

Smoluchowski [464,465], Danov et al. [446] investigated the diffusion of deformable 

miniemulsion drops toward a given „central“ drop by taking into account also the van der 

Waals attraction and the electrostatic repulsion. The total force acting on the particles is 

obtained as a sum of the Brownian (diffusion) force and the potential force, which is due to 

non-hydrodynamic interactions between the particles. The detailed solution leads to the 

calculation of the inversion thickness. These authors pointed out that: (i) the van der Waals 

attraction promotes the film formation, (ii) at bigger droplet radii the film formation is 

enhanced, (iii) the interfacial mobility does not influence significantly the inversion thickness, 

(iv) with the increase of the dimensions the role of the Brownian force decreases, but it is 

predominant over the buoyancy force at small particle dimensions. Therefore, the surfactants 

influence the inversion thickness only due to the change of the interfacial tension and the 

electrostatic interaction between the particles. Indeed, when the electrostatic repulsion is 

taken into account (Fig. 34), the inversion thickness decreases with the decrease of electrolyte 

concentration Cel. The points in Fig. 34 correspond to concentration at which the kinetic 

energy of the drops is not large enough to overcome the energy barrier accompanying the 

drop deformation, and the particles behave like non-deformable charged spheres. 

 

 

 

 

 

 

 

Fig. 34. Influence of the 
electrolyte concentration, Cel, on 
the inversion thickness, hi . The 
physical parameters of the 
system are AH = 10-13 erg, Rc = 5 
µm and σ = 1 dyn/cm. Curves 1, 
2 and 3 correspond to ψS = 50 
mV, ψS = 25 mV and ψS = 10 
mV, respectively. The full points 
at the ends of the curves 
corresponds to concentrations, at 
which the drop deformation 
becomes important [446]. 
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 C. Effect of the Surfactant on the Rate of Film Thinning 
 
 After the dimple disappears the resulting almost plane-parallel film thins at constant 

radius R. The theoretical description of thin film drainage is based on the lubrication theory 

[59,466], in which the following assumptions are made: (i) the thickness of the film, h, is 

smaller than the film radius, R, and the film radius is smaller than the particle radius, Rc:  

    h R Rc
2 2 2<< << ,  

and (ii) the Reynolds number, Re = vh/v (where V = -dh/dt is the velocity of film thinning, 

and ν is the kinematic viscosity of the continuous phase), is small enough to neglect the 

convective term in the classical Navier-Stokes equation of the liquid motion in the film phase. 

The general solution of this problem in the film phase reads [5,267,419,420] 
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where r and z are the cylindrical coordinates, the midplane of the film corresponds to z = 0, p 

and u are the pressure and the radial component of the velocity inside the film, and ps and us 

are the corresponding pressure and the radial component of the velocity at the film surfaces. 

Equation (248) shows that the liquid motion in the film is a superposition of the flow with 

constant velocity profile, us (which corresponds to the interfacial mobility rate), and of the 

parabolic velocity profile (which represent the Poiseuille flow between tangentially immobile 

interfaces). In the droplet phase the pressure does not change in radial direction [5] and the 

velocity decreases (see Fig. 35). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 35. Fluid motion in the 
film and droplet phases. The 
flow in the film phase is 
superposition of the Poiseuille 
flow and a flow of constant 
velocity us. Due to the 
nonuniform interfacial 
surfactant distribution surface 
diffusion and convective fluxes 
appear. 
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From the integral mass balance of the liquid in the film and the from the solution of Eq. (248), 

the equation for determining the local film thickness can be deduced [5,267] 
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The generalization of the lubrication problem for a film between droplets of different radii 

was first solved by Ivanov et al. [428]. In all systems of practical interest the Peclet number 

(Pe = Vh/D) is small enough to neglect the convective flux in the bulk diffusion equation, Eq. 

(18), for the continuous phase, which leads to slow dependence of the surfactant 

concentration inside the film on the z-coordinate. Thus the concentration throughout the film 

is close to that in the subsurface, c ≈ cs(r,t); the latter depends on the interfacial adsorption 

mass balance expressed by Eqs. (20)-(22). Then if the surfactant is soluble only in the 

continuous phase the surface convective flux of surfactant is compensated only by the surface 

and the bulk diffusion fluxes: 
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Equations (249) and (250), along with the balance of the stresses on the interface, Eq. (80), 

and the adsorption isotherm or the kinetic rate expression (see Sections III.B and III.C), 

describe the influence of the surfactant on the film drainage. From Eq. (249) a generalization 

of the known formula of Charles and Mason [467] can be derived: 
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It shows that as a rule the presence of surfactant decreases the interfacial mobility and 

decreases the velocity of thinning under the action on an outer force, F. The following 

particular cases are given in the literature: (i) tangentially immobile interfaces, (ii) partially 

immobilized interfaces, and (iii) completely mobile interfaces. These three cases are 

considered in Sections C.1 - C.3 below. 

 

 C.1. Film surfaces immobilized by dense adsorption monolayers 

 For surfactant concentrations close or above CMC the Gibbs elasticity and the 

interfacial viscosity are large enough to immobilize the interface, us ≈ 0 (see refs. 

5,58,267,420). Similar effect is observed when the droplet dynamic viscosity is much larger 

than the dynamic viscosity of the continuous phase (for example in the bitumen emulsions 
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ηdr  is about 150 000 poises at room temperature). For the case of film with immobile 

surfaces from Eq. (251) on e can deduce the well known Reynolds formula [466], in which 

the disjoining pressure, Π, can be also included: 
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FhV
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=
( )

=
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3

2
P h

R
c Π

η
    (252) 

where  Pc = 2σ/Rc is the capillary pressure, and F is identified with (Pc - Π)πR2. Therefore in 

such a case the surfactant influence on the film drainage is mainly due to the disjoining 

pressure: repulsive or attractive surface forces (see Section VI) can decrease or increase the 

velocity of thinning. 

 

 C.2. Films of partially mobile surfaces: surfactant soluble in the film phase 

 When the surfactants are soluble only in the film phase and their concentrations are 

below CMC, the solution of Eqs. (249)-(251), (80) reads [470,471] 

Re

1 11 , s
s

f f

hV b
V hε ε

= + ≡ +      (253) 

where ε f  is the so called foam parameter, and bs  and hs  are defined by Eq. (247). For film 

thickness of the order of hs only the bulk diffusion affects the interfacial mass balance of 

surfactant. For surfactant concentrations, for which the Langmuir adsorption isotherm is 

obeyed, Ivanov and Dimitrov [5] reported the following values of these parameters: 

hs ≈ 100 nm and bs << 1.  

 The negligible role of the bulk diffusion in thin films is due to the overlap of the 

diffusion layers at the two film interfaces. This leads to a more uniform surfactant distribution 

across the film and hence to a smaller concentration gradient and bulk diffusion flux. Under 

such conditions the surface diffusion becomes important. In the range of large concentrations 

the Gibbs elasticity, EG, is high and hs → 0. For low molecular surfactants bs → 0 and 

V → VRe, but for organic solvents, especially at a liquid/liquid interface, saturated adsorption 

monolayers are usually not obtained [28], That is the reason why in such cases the surface 

diffusion will be dominant factor determining the film drainage all surfactant concentrations. 

 Expressions for the rate of thinning, similar to Eq.(253), which are valid for various 

ranges of values of the interfacial parameters, can be found in the literature 

[5,267,428,476,478]. The validity of the Eq. (253) was checked experimentally with several 

systems: CH3(CH2)3COOH in water [5,420,472], aniline films containing dodecanol 
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[5,420,473], and for more than fifty systems by Jeelany and Hartland [474]. A typical plot of 

V/VRe vs. h-1 is shown in Fig. 36 for free nitrobenzene films stabilized by dodecanol. In 

agreement with Eq. (253), the dependence is linear and from the intersection point of the 

curves the surface diffusion coefficient was calculated to be Ds = 7×10-9 m2/s. The latter value 

of Ds is comparable by magnitude with the values obtained by Teissie et al. [475], Vollhardt 

[476], and Feng [477] by means of various methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 36. A typical plot of V/VRe vs. h-1 for nitrobenzene films stabilized with various 
concentrations of dodecanol: (1) 11 × 10-2 M; (2) 4.4 × 10-2 M; (3) 17.8 × 10-2 M; after Ref. 
[471]. 
 

 When the surfactant adsorption is barrier controlled (see Section III.C) the 

equilibrium adsorption isotherm is replaced by the equation of adsorption balance, Eq. (43). If 

such is the case, instead of Eq. (253) one should apply the following formula for the film 

drainage velocity [5]: 

( )
( ) ( )
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8 I

s

G s

qhV q q R
V h q E h h

ηβ  = + ≡    +   
,   (254) 

where the dimensionless film radius q is defined by Eq. (254), In(q) are the modified Bessel 

functions of the first kind, n-th order, and the kinetic rate parameter β ≡ ∂(rad – rdes)/∂Γ is 

assumed to be constant (independent of h). In the limiting case q → 0, V/VRe → 1 + hs/h and 

the adsorption flux from the bulk phase of the liquid is negligible. In other words, the 
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surfactant behaves like insoluble one and its interfacial distribution is determined by the 

surface diffusion and convection. The exchange of surfactant between bulk and interface 

becomes important for not too small values of q, i.e. when the film radius R increases, the 

Gibbs elasticity EG decreases and the film thickness h decreases, cf. Eq. (254). 

 The investigation of the influence of the interfacial viscosity on the rate of film 

thinning and the shape of the film surfaces is a computationally difficult task, which could be 

solved only numerically. The results for a symmetrical plane-parallel foam and emulsion 

films, obeying the classical Boussinesq-Scriven constitutive law (see Section III.F) are 

presented in [5,58,267,479,480]. Ivanov and Dimitrov [5,481] showed that to solve this 

problem it is necessary to use the boundary conditions on the film ring (at r = R); for that 

reason the calculations given in Refs. [479,480] may not be realistic. The only correct way to 

solve the boundary problem is to include the influence of the Plateau border in the boundary 

conditions; however this makes the explicit solution much more difficult. As a first 

approximation, in Ref. [267] an appropriate asymptotic procedure foam films is applied to 

foam films and the following formula for the velocity of thinning was obtained 

( ) ( ) 1/ 2
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η η
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 ∆ + 
+ = + ≡         

   (255) 

where ηs is the sum of the interfacial dilatational and shear viscosities (cf. Section III.F 

above), and the function ∆η, which is parametrically presented in Fig. 37, depends only upon 

the dimensionless radius Rη. Therefore, the increase of the film thickness h, film radius R, and 

the parameter εf (εf is proportional to EG) lead to decrease of the influence of the surface 

viscosity on the film thinning rate. 

 

 

 

 

 

 

 

 

 

Fig. 37. Function ∆η vs. 
dimensionless film radius 
Rη. defined by Eq. (255) 
(cf. Ref. 267). 
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 Model of more complicated surface rheology was proposed by Tambe and Sharma 

[482], who studied the hydrodynamics of drainage of thin liquid films surrounded by 

viscoelastic interfaces, which obey a generalized Maxwell model for the interfacial stress 

tensor. 

 

 C.3. Films of completely mobile surfaces: surfactant soluble in the drop phase 

 When the surfactants are soluble in the drop phase, the film drainage is practically the 

same as in the case of a film between pure solvent phases; this has been proven both 

theoretically and experimentally [484-487]. The flow in the droplet phase is very complicated 

and the full Navier-Stokes equation have been used by Ivanov and Traykov [486] to obtain 

the following exact expression for the film drainage velocity: 
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where ρdr and ηdr are respectively the droplet density and dynamic viscosity, and εe is the so 

called emulsion parameter. Substituting typical parameter values in Eq. (256) one can 

demonstrate that at a given constant force the velocity of thinning of an emulsion film (the 

velocity of approach of two deformed emulsion drops, Fig. 15) is smaller than the velocity of 

approach of two non-deformed droplets (see ref. 419), but much larger than VRe. It is 

interesting to note that the velocity of thinning does not depend on the viscosity of the 

continuous phase, η, and its dependence on the drop viscosity, ηdr, is rather weak, see Eq. 

(256). There are experimental observations confirming this prediction (see Ref. 28, p. 381, 

and Refs. 419,420,423-425).  

 In Ref. [429] it was established that for micron-size non-deformed droplets the 

surfactant in the drop phase can slightly influence the velocity of film thinning, (in contrast 

with the case of deformed drops, Fig. 15, described by Eq. 256). 

 Based on Eqs. (253) and (256) one may give an explanation of the Bancroft rule for 

the stability of emulsions, and of the process of chemical demulsification, see Refs. 

[419,420,423-425,488] 
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 D. Role of Surfactant Transfer across the Film Surfaces 
 
 Nonionic surfactants are often soluble in both water and oil phases. In the practice of 

emulsion preparation the surfactant (the emulsifier) is initially dissolved in one of the liquid 

phases and then the emulsion is prepared by homogenization. In such a case, the initial 

distribution of the surfactant between the two phases of the emulsion is non-equilibrium. 

Therefore, surfactant diffusion fluxes appear across the surfaces of the emulsion droplets. The 

process of surfactant redistribution usually lasts from several hours, up to several days, until 

the final equilibrium distribution is established. The diffusion fluxes across the interfaces, 

directed either from the continuous phase toward the droplets or in the opposite direction, are 

found to stabilize both the thin films and the emulsions [310,489-491]. In particular, even 

films which are thermodynamically unstable may exist for several days because of the 

surfactant diffusion transfer; however, they rupture immediately after the diffusive 

equilibrium has been established. Experimentally this effect manifests itself in a phenomena 

called osmotic swelling [489] and cyclic dimpling [490,491]. 

 

 D.1. Stabilization due to osmotic swelling 

 Velev et al. [310] reported that emulsion films, formed from preequilibrated phases 

containing the nonionic surfactant Tween and 0.1 M NaCl, spontaneously thin down to 

Newton Black Films (thickness ≈ 10nm), and then rupture. However, when the nonionic 

surfactant (Tween 20 or Tween 60) is initially dissolved in the xylene drops and the film is 

formed from the non-preequilibrated phases, neither black film formation, nor rupture is 

observed [489]. Instead, the films have a thickness above 100 nm, and one observes formation 

of channels of larger thickness connecting the film periphery with the film center (Fig. 38b). 

One may observe that the liquid is circulating along the channels for a time period from 

several hours to several days. The phenomenon continues until the redistribution of the 

surfactant between the phases is accomplished. These observations can be interpreted in the 

following way:  

 Since the surfactant concentration in the oil phase (the disperse phase) is higher than 

the equilibrium one, the surfactant molecules cross the oil-water boundary and enter the 

aqueous phase; there it forms micelles (denoted by black dots in Fig. 38a) in so far as the 

background surfactant concentration is above CMC. Thus surfactant micelles accumulate 

within the film, because the bulk diffusion through the film is not fast enough to promptly 

transport the excess micelles into the Plateau border. Thus the film is subjected to osmotic 
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swelling because of the increased concentration of micelles in its interior. The excess osmotic 

pressure  

P kT C Posm mic c= ≥       (257) 

counterbalances the outer capillary pressure and prevents further thinning of the film. 

Moreover, the excess osmotic pressure in the film gives rise to a convective outflow of liquid: 

this is the physical origin of the observed channels (Fig. 38b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 38. Osmotic swelling of an aqueous film formed between two oil droplets: (a) The 
surfactant dissolved in the oil is transferred by diffusion toward the film; there it forms 
micelles whose osmotic effect increases the local pressure. (b) Photograph of a typical pattern 
from a circular film with channels. 
 

 The experiment [489] shows that the occurrence of the above phenomenon is the same 

for initial surfactant concentration in the water varying from 1 up to 500 times the CMC, if 

only a small fraction of surfactant is initially dissolved also in the oil. This fact implies that 

the value of the surfactant chemical potential inside the oil phase is much greater than that in 

the aqueous phase, the latter being closer to its value at the CMC in the investigated range of 

(a) 

(b) 
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concentrations. This large difference between the surfactant chemical potentials in the two 

non-preequilibrated liquid phases is the driving force of the observed process, whose main 

feature is the transport of surfactant from the droplets toward the continuous phase. The 

complementary case, which corresponds to surfactant transport of the opposite direction, is 

considered in the next subsection. 

 

 D.2. Stabilization due to cyclic dimpling 

 This phenomenon is driven by surfactant transfer from the continuous phase toward 

the droplets. It manifests itself as a cyclic dimpling of emulsion films. The phenomenon was 

first observed [490] with aqueous films between two xylene droplets in the presence of the 

nonionic emulsifier Tween 20 or Tween 80 (initially dissolved in water, but also soluble in 

oil). The same phenomenon has been observed also with other emulsion systems [491]. 

 After the formation of such an emulsion film, it thins down to a certain thickness 

(usually above 100 nm), at which a dimple spontaneously forms in the film center and starts 

growing (Fig. 39a). When the dimple becomes bigger and approaches the film periphery, a 

channel connecting the dimple with the aqueous phase outside the film forms (Fig. 39b). Then 

the liquid inside in the dimple flows out leaving an almost plane-parallel film behind. Just 

afterwards a new dimple starts to grow and the process repeats again. The period of this cyclic 

dimpling remains approximately constant for many cycles and depending on the concrete 

system could be from a couple to a dozen of minutes. It was established that this process is 

driven by the depletion of the surfactant concentration on the film surfaces due to the 

dissolution of surfactant in the adjacent drop phases. The depletion triggers a surface 

convective flux of surfactant along the two film surfaces directed from the periphery toward 

the center. This flux, driven by the interfacial tension gradient (Marangoni effect), causes a 

tangential movement of the film surfaces; the latter drags along a convective influx of 

solution in the film, which feeds the dimple (Fig. 39a). Thus the cyclic dimpling appears to be 

a process leading to stabilization of the emulsion films and emulsions due to the influx of 

additional liquid in the region between the droplets. This influx prevents the droplets from a 

closer approach and coalescence. 
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Fig. 39. Cyclic formation of dimples caused by the surfactant diffusion from the film surfaces 
toward the two adjacent oil phases: (a) schematic presentation of the process; (b) photograph 
of a large dimple just before flowing out; the interference fringes in reflected light allow to 
determine the dimple shape. 
 

 Combining the general hydrodynamic equations for films of partially mobile surfaces, 

the interfacial mass balance, and the boundary conditions for the surface stresses, one can 

derive [491] the following governing equation for the time evolution of the dimple profile, 

h(r,t): 

( )
2

31 1
3 2

h h jhrrh r h
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  (258) 

where j is the diffusion flux from the film surfaces toward the drop phase, and as usual, r is 

the radial coordinate, σ is the surface tension, Γ is the adsorption, and Π is the disjoining 

pressure.  

(a) 

(b) 
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 The comparison between the numerical calculations based on Eq. (258) and the 

experimental data for the cyclic dimpling is shown in Fig. 40. The experimental points are 

obtained from the interference fringes, see Fig. 39b. The shape at the initial moment, t=0, 

serves as an initial condition for determining h(r,t) by solving Eq. (258); the flux j is 

determined from this curve as an adjustable parameter. With this value of j the curves for 

t = 3, 9, 17 and 29 s are drawn without the usage of any adjustable parameter; one sees that 

the theory agrees very well with the experiment, Fig. 40. 

In Ref. [491] the profile of the radial velocity inside the film was computed as a 

function of the vertical coordinate. Near the central region the velocity changes its sign along 

the z-line. This is an important finding which proves the existence of a vortex. Indeed, the 

flow near the surface is directed towards the film center, whereas close to the midplane z = 0 

the fluid moves to the opposite direction. Around the film periphery the vortex disappears due 

to the liquid influx from the outside. This behavior is time-dependent. The vortex shows up 

after c.a. 40 seconds of the dimple time evolution. It occupies larger parts of the film as the 

dimple grows, and may have a share in causing instabilities which ultimately lead to dimple 

expulsion. Fig. 41 presents a very simplified sketch of the vortex; the drawing is not in scale 

(we recall that even in the case of a dimple h/R ≈ 10-2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 40. Comparison between the theory of cyclic dimpling (the lines) and the experimental 
data (the points) for the dimple shape, h(r), determined from the interference fringes (cf. Fig. 
39b); emulsifier: nonylphenol polyoxyethylene-40; the oil phase is styrene; the scaling 
parameters are h0 = 350 nm and R = 320 µm. 
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VIII. INFLUENCE OF SURFACTANT ON CAPILLARY WAVES 

 

 As a result of thermodynamic fluctuations or outer disturbances the surfaces of a 

thinning liquid film are corrugated (see Fig. 33d). When the derivative of the disjoining 

pressure, ∂Π/∂h, is positive, the amplitude of the film surface corrugations spontaneously 

grows with the decrease of the film thickness [5,6,420,492]. The appearance of unstable 

fluctuations is possible even in the relatively thick primary equilibrium films as a result of 

fluctuations in the electric potential [6,493]. The evaporation or condensation of solvent at the 

film surface(s) have also destabilizing effect [7]. The mass transfer of solutes, which do not 

exhibit surface activity, across the film surfaces can influence significantly the film stability 

[494].  

 At large separation (thick film) the film surfaces are independent from each other and 

the film stability depends on the stability of the separate phase boundaries. In this case the 

short waves, which obey the relation Dk2/ω ≥ 1, with k being the wave number in the plane of 

the film and  ω being the frequency, have a large decrement due to the energy dissipation and 

the surfactant does not influence the stability. The viscosity of the bulk phases affects the 

wave propagation and must be taken into account (see Section VIII.F).  

 In the case of thin liquid film the different lateral and normal length-scales and the 

small wavelength of the fluctuations lead to significant energy dissipation due to the bulk 

viscous effect. That is why the waves with length longer than the film thickness (kh <<1) are 

predominant (see Section VIII.B). 

 

 

Fig. 41. A sketch of the flow 
pattern inside a growing 
cyclic dimple. 
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 A. Waves in Surfactant Adsorption Monolayers 
 
 A surfactant monolayer (or thin layer of oil) spread at a fluid interface damps the 

surface waves. This phenomenon is due to the fact that as the surfactant monolayer is 

compressed and expanded during the wave motion, the oscillations of the local surfactant 

concentration result in oscillations of the local interfacial tension. As a result a combination 

of Marangoni and interfacial viscosity effects damp the surface waves. Following the classical 

approach of small-amplitude waves Hansen and Ahmad [495] and Hedge and Slattery [496] 

derived the dispersion relation between the wave number k and wave frequency ω  (see also 

Ref. [58]): 
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where ρ is the liquid density, g is the gravity acceleration, ηs = ηsh + ηd  is the sum of the 

interfacial shear and dilatational viscosities (see Section III.F), n = (k2 - iω/v)1/2  is the vertical 

complex wave number, the complex dilatational modulus E* is defined in the following way 
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,    (260) 

and the interfacial fluctuations are proportional to exp[I(kx - ωt)]. The study of such waves at 

the surface of a droplet (see Eq. (87)) allow measurement of the Gibbs elasticity and the 

interfacial viscosity. That is why dispersion relations, such as Eqs. (259)-(260), are employed 

in the analyses of capillary and longitudinal waves. The wave techniques can be classified as 

capillary, longitudinal and light scattering wave methods. 

 The capillary wave method corresponds to small frequency fluctuations. For pure 

transverse wave motion Eq. (259) leads to: 
2 2 32i k k gkρω η ω σ ρ= + +   (for damped waves)    

2 3k gkρω σ ρ= +    (for non-damped waves)      (261) 

The latter relation is known as Kelvin’s equation. Methods for creating propagating capillary 

ripples typically involve either a mechanical or electrocapillary disturbance of the fluid 

interface [189-191]. The laser is more appropriate because it does not necessitate physical 

contact with the fluid surface [497]. The wave characteristics, which are necessary for the 

evaluation of the interfacial properties through the dispersion relation, are often determined 

by reflection of a laser beam from the fluid surface to a position-sensitive photodiode. 
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 The longitudinal wave method was first described by Lucassen [498]. Since 

Lucassen’s original work, propagation characteristics of longitudinal waves have been widely 

used for measuring dilatational elasticity and interfacial viscosity of adsorbed surfactant 

monolayers. The pure longitudinal waves motion obeys the dispersion relation 

( ) ( )2 2 2
* si n k nk E iη ω ωη+ = −      (262) 

which is a special case of Eq. (259). The longitudinal wave techniques involve the oscillation 

of a barrier within the plane of a fluid interface and the detection of longitudinal wave 

characteristics by either Wilhelmy plate or an electrocapillary method. If the frequency of 

oscillation is large, so that the surface wave expands and contracts at a rate sufficiently larger 

than the rates of surfactant adsorption and desorption, the surfactant monolayer is rendered 

insoluble and the complex dilatational elasticity E* may be regarded as Marangoni elasticity, 

defined as EM = ∂σ/∂lnA. The experimental results for Marangoni elasticity for poly-L-

lysine/SDS aqueous mixtures are given in Ref. [111]. If the frequency of the wave oscillation 

is small, the wave disturbance will cause only a small deviation from the equilibrium state of 

the interface and the complex dilatational elasticity E*  is close to the Gibbs elasticity. The 

experimental results for the Gibbs elasticity of aqueous solution of decanoic acid are reported 

in Ref. [499], and for the interfacial viscosity in Refs. [191,194,500,501]. 

 Using the light scattering method, thermally-induced capillary waves of very small 

amplitude may be observed to propagate at equilibrium fluid interfaces. The accuracy of the 

measurement obtainable with this method combined with the linear surface wave theory of 

thermal capillary waves of high frequency, render the light scattering techniques attractive for 

measuring dynamic surface properties [193,502-504]. 

 All the waves discussed above are stable. To illustrate the opposite case of normal 

mode instability, let us consider two fluid phases, A and B, of densities ρA  and ρB; say 

ρA > ρB. By placing the heavier fluid A above the lighter fluid B, the superposed configuration 

will generally be unstable to any mechanical deviation of the interface from its equilibrium 

planar shape. The corresponding dispersion relation, which governs the non-damped wave, is 

[505] 

( ) ( )2 3
A B A Bk gkρ ρ ω σ ρ ρ+ = − −      (263) 

Two opposing effects may be distinguished in this relation: (i) the buoyancy force causes the 

wave amplitude to grow, rendering the system unstable, whereas the effect of interfacial 

tension tends to diminish the amplitude growth and suppress the instability; (ii) the short 
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wavelength capillary waves enhance the stabilizing effect of interfacial tension (the term σk3 

increases), while long wavelength gravity waves lead to an opposite effect. It turns out that 

the increase of the surfactant concentration decreases the interfacial tension and decreases the 

stability of the interface. The critical wavelength for a surfactant solution surface is from 0.2 

to 0.3 cm. 

 The interfacial turbulence is another effect which leads to destabilization of interfaces 

and thin films. It appears in the presence of intensive spontaneous transfer of a solute across 

the interface. The various dynamic phenomena of interfacial turbulence range from a subtle 

twitching of the interface, to the kicking of drops in one of the phases or formation of long, 

narrow streams of one phase penetrating into the other one, breaking finally into small 

emulsion droplets (spontaneous emulsification) [506-508]. Similar effect in a thin film 

stabilized by nonionic surfactant was reported in Ref. [489]. In the classical theoretical study 

of Sterling and Scriven [144] the origin of interfacial turbulence was attributed to local 

interfacial fluctuations in the surface concentration of the solute. The latter induce interfacial 

tension gradients, which lead to a local interfacial agitation and to the ultimate appearance of 

interfacial motion. Hennenberg et al. [509] have summarized the factors which affect the 

interfacial turbulence as follows.  

 Let us consider the transfer of a solute from phase "a" to phase "b". The conditions for 

instability of the interfaces between these two phases are multiform, i.e. various sufficient 

conditions are present: (i) at least one of the following relations holds: 
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where ν is bulk kinematic viscosity, D is the bulk diffusivity of the solute which is being 

transferred, and the subscripts "a" and "b" denote the respective phases. (ii) Other sufficient 

condition for instability is the viscosities νa  and νb, and the diffusivities, Da and Db to be 

small. (iii) Another sufficient condition is the Gibbs elasticity, EG, to be high in order to 

withstand large interfacial tension gradients and the interfacial viscosity, ηs, to be small. 

 On the other hand, the sufficient conditions for stability of an interface can be 

formulated as follows: 

( )k D D k Da b a b s s
2 31 1η η σ η σ+ + >> >>( ) / , / .or     

The last two relations show that the interfacial turbulence is suppressed (i) by large bulk 

viscosities and diffusivities, or (ii) by large interfacial viscosity and diffusivity. 
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 Interfacial instability due to fluctuations of the electric potential is investigated by 

Felderhof [493]. Theoretical description of the stability of an evaporating liquid surface is 

given by Prosperetti and Plesset [510]. They established that at large evaporation flow rates 

the instability is very strong with growth time of a millisecond or less. This theory has found 

an interesting practical application for providing a stable regime of light-water cooled nuclear 

power plants. 

 

 B. Waves in Surfactant Stabilized Liquid Films 
 
 The stability of thin liquid films and membranes (of thickness of the order of 10−100 

nm) against thermal capillary waves and other disturbances is an important issue in many 

areas of science and technology. Some examples of systems and processes are: foams and 

emulsions [267,419-425,511]; displacement of the petroleum in rock pores by gas and foams 

[512,513]; coating and deposition processes in various technologies like semiconductor chip 

deposition [514] and fiber optic coating [515-520]; the rupture of the tear film in the human 

eye [521,522]; bio-membrane and lipid vesicle deformations [523-526]; fusion, flicker and 

engulfing of cells [527-533]; etc. There are many factors which can give rise to hydrodynamic 

instability in thin liquid films: capillary forces, gravitational effects (Rayleigh-Taylor 

instabilities), temperature gradients (Bénard convection), tangential stresses caused by 

interfacial tension gradients (Marangoni instability), hydrodynamic effects arising from the 

presence of parallel flows in the film (Kelvin-Helmholtz and shear flow instabilities), and the 

action of surface forces (see Section VI), which can be treated in the framework of the so 

called body force approach [6,534-536].  

 The inability to obtain general analytical solution of the problem makes the linear 

instability analysis the most widely applied mathematical approach [487,537,538]. Below we 

review the application of this approach to free and wetting thin liquid films (see Sections 

VIII.B.1 and VIII.B.2). 

 

 B.1. Influence of surfactant on the stability of free liquid films 

 A detailed linear analysis of the fluctuations in a quasi-equilibrium plane-parallel thin 

liquid film intervening between two different phases is given by Maldarelli et. al. [6,534-

536]. The authors have derived complex dispersion relations (relations between frequency ω 

and wave number k, see Eqs. (88), (89) in Ref. [6]) which include the influence of the van der 

Waals and electrostatic interactions, and the Marangoni effect. These dispersion relations can 
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be analyzed only numerically and the influence of the different factors cannot be explicitly 

extracted. Nevertheless two general conclusions can be drawn: 

 (i) Most important for the thin liquid film stability are the long waves, whose 

wavelength is much greater than the film thickness, kh << 1. 

 (ii) There are two types of eigenmodes of a symmetrical film system, so called 

squeezing and bending modes (see Fig. 42). The bending mode is not effective to cause film 

rupture; therefore the investigation of the squeezing mode instabilities is sufficient to 

determine the conditions for film stability. 

 

 

 

 

 

 

Fig. 42. Symmetric “squeezing” (a) and anti-symmetric “bending” (b) modes of the film 
surface fluctuations. 
 

 In the case of a squeezing mode fluctuations in a symmetrical foam film the dispersion 

relation can be expressed in the following simplified form [539] 

( )
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where Ω is the dimensionless increment; the fluctuation of the film thickness is  

h r t( , ) ∝ ( ) ( )0exp J /t kr Rω ;       

for positive (negative) ω the disturbances will grow (decay); k is the dimensionless Fourier-

Bessel wave number, and 
2 22

2
2 2 2
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2 41
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+

   

is a dimensionless factor taking into account the influence of the interfacial viscosity and 

diffusivity.  

 Eq. (264) provides an expression for the dependence ω(h,k). When the film is thick 

enough ω is negative for all h and k; therefore all corrugations decay with time and the film is 

stable. As the film thickness decreases in the process of film drainage, a certain thickness, 
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h = ht, will be reached, for which ω becomes zero for some wave special value, kt, of the wave 

number:  

( , ) 0t th kω = ;   ( , ) 0 fort th k k kω < ≠     

Combining the last equation with Eq. (264) and the condition that the film has a finite area, 

πR2, one derives a simple criterion for the destabilization of the film by small perturbations: 
2

2
1

2 5.783R j
h

∂
σ ∂

 Π
≥ ≈ 

 
     (265) 

where j1 s the first zero of the Bessel function J0.The thickness, ht at which the first unstable 

mode (that with k = kt) appears, is called the transitional thickness. In fact, when a thinning 

film reaches thickness h = ht, it undergoes a transition from stability (damped corrugations) to 

instability (growing corrugations). Eq. (265) shows that the inequality ∂Π/∂h > 0 is a 

necessary, but not sufficient, condition for this transition to happen. De Vries [540,541] was 

the first to point out that local fluctuations of the film thickness lead to two opposite effects: 

positive contribution to the free energy due to the increase of the film area and negative 

contribution resulting from the increased negative surface energy of attraction in the thinner 

part of the film (Fig. 42).  

 The presence of surfactant increases the film stability. To demonstrate that we will use 

the special case of Eq. (264) for Ω << 1: 

2 3 2
2 2

4 2

2 61 / ,
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G s
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η σ ∂

     Π
= − + +     

      
   (266) 

Let us assume that the sign of ω, which is determined by the term in the first brackets, is 

positive, and consequently, the perturbation grows. Eq. (266) shows that all factors, leading to 

decrease of ω decelerate the destabilization of the film; such factors are the increase of Gibbs 

elasticity EG  and surface viscosity, ηs, both of them stemming from the presence of adsorbed 

surfactant. On the contrary, larger surface diffusivity, Ds, accelerates the growth of the 

corrugations. 

 Vrij [542] and Vrij and Overbeek [543] considered the growth of a single wave, of a 

given wavelength. On the other hand, the real corrugation is rather a superposition of waves 

of various wavelengths, than a single wave. This idea was incorporated in the theory by 

Ivanov et al. [492], who investigated the stability of a planar foam film of tangentially 

immobile surfaces. These authors derived a set of two equations for determining the critical 
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thickness of film rupture, hcr, and the thickness, hm, at which the harmonic, which breaks the 

film (the critical harmonic), starts growing: 
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In general ht ≥ hm ≥ hcr; by definition ω(hm, kcr) = 0=0, whereas hcr is defined as the film 

thickness for which the amplitude of the critical wave is so large, that the corrugated film 

surfaces touch each other [492]. Numerical solution of the above set of equation confirms that 

the theory correctly predicts the experimentally observed [544] increase of hcr with the 

increase of the film radius, R. Note, however, that hcr depends not only on the film radius, but 

also on the bulk surfactant concentration c0 :  hcr(R,c0); the effect of c0 is not accounted for in 

Eq. (267). 

 Systematic experimental studies of the influence of the bulk surfactant concentration, 

c0, and the film radius, R, upon the stability of foam [420,492,545] and emulsion 

[420,487,546] films are available. The general conclusions are that the critical thickness, hcr, 

increases when R increases and c0 decreases. In Fig. 43 the dependence of the critical 

thickness of rupture of aniline films on the concentration of dodecanol is shown [420].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 43. Experimental dependence of
the critical thickness of rupture, hcr, of
aniline films on the concentration, c0 ,
of dodecanol, which plays the role of
surfactant [420]. 
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 A first attempt to explain the observed decrease of hcr with the increase of c0 was 

undertaken by Ivanov and Dimitrov [545], who improved the model from Ref. [492] by 

accounting for the partial mobility of the film surfaces. Geometrically, the film was modeled 

as two plane-parallel disks of restricted area, πR2, in this study. The results show that the 

latter model does not predict a considerable effect of the surfactant concentration, c0, in 

contrast with the experimental observations (Fig. 43). For the time being there is no full 

solution of this problem. However, there are encouraging evidences that the problem can be 

solved if the restriction for finite film area is removed and the propagation of the capillary 

waves into the transition zone between the film and the Plateau border is taken into account. 

The development in this direction is described below. 

 Ivanov et al. [5,428,547] derived equations approximating the real shape of the 

surfaces of a draining film (film + Plateau border) formed between two approaching bubbles 

of radius a 
3
0

0 4
0
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i s
i s

i i

yh Fh hyh h y h V b
h h y R hπη

   
= + − + − = + +   +   

  (268) 

where h0 is the closest distance between the surfaces of the two bubbles, V = dh0/dt is the 

drainage velocity, y = r2/a is a characteristic radial coordinate, R = [Fa/(2πσ)]1/2 is a 

characteristic radius of the film formed between the bubbles, and hi is the inversion thickness, 

defined by Eq. (246). The analysis of Eq. (268) shows that h has only one extremum (a 

minimum at r = 0) and, in a rather extended region of radius 0 < r < R the film profile is 

almost plane-parallel. If hf expresses a small perturbation of the film profile, h, the following 

equation for the fluctuations in the film region can be derived [548] by using the classical 

linear perturbation analysis: 
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where ( )0 01 s sh b h hχ ≡ + +    is a parameter of the radial scaling, x ≡ χr, used to derive Eq. 

(269); the profile of the fluctuation is proportional to J0(kx) where k is the Fourier-Bessel 

wave number corresponding to the new radial coordinate x. Then one can derive the following 

expression for calculating the transitional thickness ht: 

( )
( ) ( )

223 1
1 12

s t s t

s t s c

b h h h R
b h h P h

∂
σ ∂

+ +  Π
=  + + −Π  

,    (270) 
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see Eq. (247) or the notation. The left-hand side of Eq. (270) varies from 1 for pure (free of 

surfactant) liquid surfaces (hs → ∞), up to 3 for tangentially immobile surfaces (EG → ∞, 

bs = hs = 0). In the latter case of tangentially immobile surfaces, assuming that only the van 

der Waals attraction is operative, from Eq. (270) one deduces the following simple expression 

for ht: 
1/ 72 2

2 2288
H

t
aR Ah
π σ

 
=  
 

      (271) 

where AH is the Hamaker constant (see Section VI.1). The values of ht predicted by Eq. (271) 

are compared in Fig. 44 with data for the dependence of the critical thickness, hcr, on the film 

radius R. Curve 1 gives the experimental data for aniline films stabilized by dodecanol [420], 

Curve 2 presents hcr theoretically calculated from Eq. (267), Curves 3 and 4 present the 

transitional thickness, ht, calculated respectively from Eq. (265) and Eq. (271). One sees that 

the theory from Ref. [492] gives a relatively good agreement with the experimental data for 

hcr. The transitional thickness, ht, calculated from Eq. (265) is markedly larger than that 

calculated from Eq. (271), the latter being close to the critical one. A further development of 

this theory to explain the dependence of hcr vs c0 (Fig. 43) is under way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 44. Dependence of the critical thickness
of rupture, hcr, and the transitional thickness,
ht, on the film radius, R. Curve 1 -
experimental data for aniline films stabilized
by dodecanol [420]; curve 2 - theoretical
calculation on the basis of Eq. (267); curves 3
and 4 - the transitional thickness calculated
from Eqs. (265) and (271), respectively. 
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 Finally, we consider the effect of interfacial turbulences, which are due to mass 

transfer across the phase boundaries, on the stability of emulsion films. Experimentally, the 

diffusion transfer of alcohols, acetic acid and acetone has been studied [549,550]. The 

observed destabilization of the films can be attributed to the appearance of Marangoni 

instability [494]. The latter manifests itself through the growth of capillary waves at the 

interfaces, which eventually can lead to film rupture. Lin and Brenner [521] examined the 

role of the heat and mass transfer in an attempt to check the hypothesis of Holly [551] that the 

Marangoni instability can cause the rupture of tear films. Their analysis was extended by 

Castillo and Velarde [552] who accounted for the tight coupling of the heat and mass transfer 

and showed that it drastically reduces the threshold for Marangoni convection. 

 

 B.2. Stability of thin wetting films 

 The dispersion relation in the case of wetting film (one of the adjacent phases is solid) 

can be deduced from Eq. (88), (89) in Ref. [6] in the limit of very large dynamic viscosity of 

one of the adjacent phases: 
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where ~
Ω  is the dimensionless increment, the fluctuation of the film thickness is 

h x t( , ) ∝ ( ) ( )exp exp /t ikx hω ,       

k is the dimensionless wave number (k << 1), and ∆ρ is the difference between the densities 

of the lower and upper phases. The surfactant is assumed to be soluble only in the film phase. 

The dimensionless factor ~Fs , which takes into account the influence of the interfacial 

viscosity and diffusivity, is defined as follows: 
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The linear stability analysis of wetting films was first performed for surfactant-free films by 

Jain and Ruckenstein [553] and this analysis was further extended to surfactant containing 

films by Edwards et al. [58].  

 From the dispersion relation (8.14) it follows that the increase of the surface tension,σ, 

and/or the magnitude of the density difference, ∆ρ, decreases ω (the increment of instability 

growth) and thus stabilizes the film. The disjoining pressure effect stabilizes the film when 

∂Π/∂h < 0, but destabilizes the film when ∂Π/∂h >< 0. 
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 In general, the presence of surfactant has a stabilizing effect on the wetting films. At a 

first glance it may seem that the surfactant has destabilizing effect in so far as it decreases the 

surface tension. However, the main effect of the surfactant on the increment of perturbation 

growth, ω, comes from the contribution of dynamic factors as EG and ηs in ~Fs , see Eqs. 

(272)-(273). Indeed, Fs changes from 3 (for surfactant free surface) to 0 (for tangentially 

immobile surface), and the factor (1 + Fs) in Eq. (272) decreases 4 times due to the effect of 

surfactant. 

 Gumerman and Homsy [554] have extended this analysis by taking into account the 

effects of wall and film drainage. Williams and Davis [555] have shown that the nonlinear 

effects (in the case of a surfactant-free thin liquid films) may have significant effect on the 

rupture time. The nonlinear stability of evaporating/condensing thin liquid films, free from 

surfactant, is discussed in Refs. [556-558]. The authors show that the evaporation and the 

condensation lead to destabilization of the film.  

 Hatziavramidis [7] investigated the influence of insoluble surfactant on the film 

stability. He proved that the Marangoni flows driven by gradients of the surface concentration 

(adsorption) are directed opposite to the thermocapillary flows originating from surface 

temperature variations. The Marangoni flows are usually predominant; they destabilize 

condensing films, but stabilize evaporating films. The theory of nonlinear waves on vertical 

falling films is described in Refs. [559,560] for moderate and high Reynolds numbers. 

 Another type of interfacial instability are induced by the thermal fluctuations, 

resulting from temperature inhomogeneity along the interface. When a liquid layer (say a 

paint film) dries, periodic cellular patterns are often observed; these patterns are known as 

Bénard cells, called after the pioneering experimental studies of Bénard [561]. He has 

observed that cellular (hexagonal) circulation patterns appear when a liquid film is heated 

from below. This cellular instability has been first attributed to buoyancy-driven convection 

until Rayleigh [562] proved that this phenomenon is driven by gradients of the interfacial 

tension caused by temperature inhomogeneity. Interfacial tension gradients give rise to flows 

in the interface and the adjacent liquid layer, carrying liquid from the areas of low interfacial 

tension to those of high tension. Thus, the Bénard convection cells are produced. This 

coupling of surface concentration and temperature instabilities have been investigated by 

many authors [131,563-574]. A general conclusion from these works is that the surfactant 

opposes the surface movement and delays or inhibits the appearance of instability. The theory 

was experimentally verified by Imaishi et al. [575]. 
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 The studies of Marangoni-Bénard instabilities have been mostly carried out with static 

films, or with films of initially uniform velocity. The classical works of Benjamin [576] and 

Yih [577] proved that isothermal flow of a wetting liquid film down a vertical plane is 

unstable for all finite Reynolds numbers, in the absence of any evaporation and condensation. 

The surfactant usually has a stabilizing effect on the falling films. Emmert and Pigford [578] 

found experimentally that the addition of surfactant reduces the rippling in falling liquid 

films. Whitaker [579] established that the surface elasticity has a primary importance for the 

stabilizing action. Lin [580] showed that both soluble and insoluble surfactants have a 

stabilizing effect on falling films, suppressing the natural wave instability.  

 The surface waves, along with the thermocapillary instability, have been studied with 

wetting films flowing down an inclined plane, which is subjected to heating [562,581,582]. 

The authors conclude that three mechanisms may cause the instabilities of the flow. One of 

them is associated with the shear stress exerted on the film surface from the bulk flow; this 

stress may bring about instability of the capillary waves. The other two mechanisms are 

related to the thermocapillary instabilities of moderate and of long wavelengths. Such an 

instability can grow in the form of either long transfer waves or short longitudinal rolls, 

depending on which is the dominant mechanism that triggers the instability. 

 The desorption of surfactant was found to contribute also to the Marangoni instability. 

The practical origin of this problem is the process of adsorption refrigeration. Some 

surfactants, when added in small quantities, increase the capacity of adsorption cooling 

machines [583]. It is generally believed that the reason for this effect is the Marangoni 

convection. The enhancing effect of interfacial convection has been experimentally verified 

with solutions of aqueous lithium bromide adsorbing water vapors [584,585]. 
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IX. SUMMARY 

 

 The major property of surfactants is their ability to adsorb at interfaces and thus to 

decrease the surface excess energy and to modify the interface. Various adsorption and 

surface tension isotherms are used in the thermodynamic description of this phenomenon, see 

Section II above. 

 Many practical processes (foaming, emulsification, dispersing, wetting, washing, 

solubilization) are influenced by the rate of adsorption from surfactant solutions. This rate 

depends on whether the adsorption takes place under diffusion, electro-diffusion, barrier or 

convective control. The presence of surfactant micelles, which serve as carriers and reservoir 

of surfactant, can strongly accelerate the kinetics of adsorption, see Section III.A-E. 

 As a rule dynamic processes with fluid interfaces are accompanied by interfacial 

dilatation, compression and/or two-dimensional flows in the surfactant adsorption monolayer. 

These processes are affected by the interfacial rheological properties, such as surface (Gibbs) 

elasticity, dilatational and shear surface viscosity, adsorption relaxation time, see Section 

III.F. The interfacial rheological properties are especially important for the foaminess of 

surfactant solutions and the emulsion preparation by homogenization. 

 The mechanical properties of surfactant adsorption monolayers are characterized not 

only by the interfacial tension, but also by the interfacial bending moment, which is 

proportional to the so called spontaneous curvature of the interface. In addition, the variation 

of the interfacial bending moment with curvature is characterized by the curvature elastic 

moduli. These interfacial flexural properties are determined mostly by the interactions 

between the headgroups and tails of the adsorbed surfactant molecules. In their own turn, the 

interfacial flexural properties influence phenomena and processes such as formation of 

microemulsions, critical emulsions, holes in foam and emulsion films, fluctuation capillary 

waves, flocculation in emulsions, etc., see Section IV. 

 The modification of the fluid interfaces due to surfactant adsorption strongly 

influences the interactions between fluid particles (droplets, bubbles) in dispersions. 

Frequently a thin liquid film is formed in the zone of contact of two fluid particles. The 

contact angle at the periphery of such a film is a measure for the interaction of the two 

opposite surfactant adsorption monolayers. When the latter adhere to each other, a hysteresis 

of the contact angle is observed, irrespective of the fact that the fluid interfaces are 

molecularly smooth. The properties of the thin liquid films are important for the flocculation 
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in dispersions and the deposition (attachment-detachment) of particles at surfaces, see 

Section V.  

 Several types of surface forces determine the interactions across thin liquid films. In 

addition to the universal van der Waals forces, the adsorbed ionic surfactants enhance the 

electrostatic (double layer) repulsion. On the other hand, the adsorbed nonionics give rise to a 

steric repulsion due to the overlap of hydrophilic polymer brushes. The presence of surfactant 

micelles in the continuous phase gives rise to oscillatory structural forces, which can stabilize 

or destabilize the liquid films (and dispersions) depending on whether the micelle volume 

fraction is higher or lower. These and other surface forces, related to the surfactant properties, 

are considered in Section VI. 

 The presence of surfactant affects also the hydrodynamic interactions between fluid 

particles in dispersions. When the surfactant is soluble in the continuous phase, the adsorption 

monolayers immobilize the drop (bubble) surfaces and decelerate the approach of such two 

particles. On the contrary, if the surfactant is dissolved in the droplets (in the disperse phase), 

it efficiently damps the surface tension gradients and accelerates the approach and 

(eventually) coalescence of the droplets. The processes of surfactant transfer from the 

continuous toward the disperse phase, or vice versa, also influence the droplet-droplet 

hydrodynamic interactions, see Section VII. 

 Another property of surfactants is that they influence the capillary waves. This 

property is employed by several methods for determining the rheological properties of 

surfactant adsorption monolayers. Moreover, the breakage of liquid films (and the destruction 

of foams and emulsions) is often related to the growth of the amplitude of thermally exited 

capillary waves facilitated by attractive surface forces. The theoretical description of these 

effects is considered in Section VIII. 

 We hope that the present review of the thermodynamic, kinetic and mechanical 

properties of adsorption monolayers and liquid films will be helpful for understanding the role 

of surfactants in various processes of scientific and practical importance. 
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