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The minimization of the free energy of a two-phase system with
an interface of arbitrary curvature leads to an extremum (Laplace)
condition containing the pressure difference, AP, between the two
sides of the interface. The expression for AP is a function of the
normal curvatures and of the resulting bending moments which
are themselves functions of the normal curvatures, the mathemati-
cal form of which depends on the particular model for the interfa-
cial bending energy that has been employed. On this basis, conclu-
sions can be drawn about the equilibrium shape and curvatures
of an interface, e.g., for bicontinuous microemulsions and vesicles.
In addition, the pressure difference between the inside and the
outside of surfactant-laden interfaces can be calculated. This pres-
sure difference influences the work of formation of microemulsion
droplets. A section devoted to the boundary conditions has also
been included where in particular the case of a liquid meniscus
attached to a cylindrically shaped solid surface is treated. © 1997
Academic Press

Key Words: minimization, of free energy of curved interfaces;
free energy, of curved interfaces; Laplace equation, generalized
forms of; boundary conditions, in surface theermodynamics; mi-
cromechanical expressions, for surface excess quantities.

INTRODUCTION

The reader no doubt recognizes that the proper way to
proceed when deriving the equilibrium condition for an inter-
face consists in minimizing the free energy, F, of the inter-
face and its ambient bulk phases. The exact choice of this
free energy, F, depends on the actual properties of the system
and is not always equal to the Helmholtz free energy, F, as
will be discussed under the section below entitled ‘*On the
Choice of the Free Energy Function.”’

For an ordinary fluid two-phase system minimization of
the free energy results, first of all, in the well-known chemi-
cal potential condition for diffusive equilibrium with respect
to the soluble components present. Further, the mathematical
minimum condition for the free energy contains the pressure
difference, AP, across the interface as a parameter. Solving
for AP, this minimum condition takes the form of a Laplace
eguation.
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In the present paper we discuss various forms of the gener-
alized Laplace equation which are valid for interfaces with
variable curvature and for an arbitrary choice of dividing
surface between the two bulk phases. This rather complete
surface-thermodynamic background is needed, especially
when considering more exotic forms of surfactant aggregates
for which the (curvature-dependent) interfacial free energy
plays a key role.

On the basis of earlier works of Buff (1), Murphy (2),
Melrose (3), and Eliassen (4), the first rigorous treatment
of this kind was presented by Boruvka and Neumann (5) in
1977. Later on Kralchevsky (6) formulated an even more
general thermodynamics of curved interfaces (encompassing
the effect of elastic surface shear) subsequently commented
by the present authors (7).

THE GENERALIZED LAPLACE EQUATION

The overall free energy, F, of the interface plus the adja
cent bulk phases must, of course, have aminimum at equilib-
rium, i.e., the variation, §F, should be equal to zero when
the surface is subject to an infinitesimal deformation from
its equilibrium shape. Let the infinitesimal deformation vec-
tor be

R = s+ yn, [1]

where s = s'a, + s?a, isin the tangent plane of the surface
and a; and &, are the corresponding basis vectors, while n
is in the direction of the surface normal n. After a compli-
cated series of deduction steps Kralchevsky (6) arrived at
the following expression for the variation of the free energy
of aclosed interfacial system with fixed overall volume com-
prising the interface and the adjacent phases, held at constant
temperature, and for an arbitrary choice of dividing surface

6F = AP ffs¢ds+ ffs(yc‘ia + 6B

+ B6H + 66D)dS, [2]
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where the first integral represents the pV -work and where,
apart from the term {d 3, the integrand of the second integral
is identical to the expression for the infinitesimal work of
surface deformation given by Gibbs (8). This expression
for 6F isvalid both for the variation of the grand Q-potential
of an open interfacial system equilibrated at constant chemi-
cal potentials and for the variation of the Helmholtz free
energy of an interface containing insoluble adsorbents pro-
vided that the chemical potentials of the components of the
interface are constant throughout the interface so that there
isno surface diffusion, and finally also for the mixed case, as
shown in the Appendix. For completely rigid solid surfaces,
however, Eq. [ 2] reduces to

§F = ffs(yéa + (5B)dS [3]

because then we have to set ¢, 6H, and 6D equal to zero
everywhere. This special case wastreated earlier by Eriksson
(9) and by Rusanov (10).

In Eqg. [2] above, AP is the pressure difference between
the two sides of the interface, H = 3(c, + ¢,) the mean
curvature, and D = (¢, — ¢,) the deviatoric curvature, ¢,
and ¢, being the principal curvatures of the surface. All the
variations, éa, 66, 6H, and 6D are local, i.e., they are func-
tions of the curvilinear surface coordinates (u* and u?) with
the following meaning: 6« is the relative dilatation of the
dividing surface element dS, and 6 isthe shearing deforma-
tion, while 6H and 6D are the local variations of H and D,
respectively. Further, v is the ordinary (thermodynamic)
surface tension, { the surface density of shearing free energy,
while B and O are quantities related to the local bending
moments of the interface which are defined below.

The sign conventions for the curvatures ¢, and ¢,, and the
pressure difference AP between the two sides of the inter-
face are related to the direction of the surface normal, n,
which, as a rule, is assumed to be the outward normal in
the case of a surfactant aggregate. This means that the sur-
face normal is directed toward the phase on the (predomi-
nantly) convex side of the interface. Further, since according
to differential geometry, 2H = —Vs- n, where Vs = a%(d/
ou®) is the surface gradient operator, it follows, e.g., that H
= —(1/R, + 1/R;)/2 (where R, and R; are curvature radii).
More generally we adopt the convention that the curvatures
¢ are negative when the corresponding principal curves of
normal section are convex toward the phase to which the
surface normal is pointing, and we define AP asthe pressure
jump when crossing the interface in the direction of the
surface normal. This definition is the opposite of the more
intuitive definition of AP, as, e.g., the pressure difference
between the interior and the exterior of a droplet.
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In terms of s and ¢ the above variations may be written

(6)

ba = UsiVss — 2Hyr = Vg s — 2Hy [4]

68 = q:Vss — 2Dy [5]
6H = s-VsH + (H? + D)y + 3Vay [6]
6D = $:VsD + 2HDY + 20:VeVa. [7]

Further, Us = a’a;, + a%a, (where a, = dr/ou” are basis
vectors on the surface) is the surface identity tensor and q,
the surface deviatoric tensor, is defined by the relation

b = HUs + Dq. [8]

Here, by definition, b = —Van is the curvature tensor (or
second fundamental tensor) of the interface. Since the princi-
pa axes of the tensor b are identical to the principal axes
of curvature, the same must hold for the tensor q as follows
directly from its definition. These tensors obey the orthogo-
nality relations

UssUs=2, q:g=2; Usq=0. [9]

Since b is, of course, diagonal in the basis of the principal
curvatures (which are, in fact, the diagona components,
bg of the curvature tensor b), Eq. [ 8] tells us that the tensor
g is aso diagona in the basis of the principa curvatures.
This congtitutes a certain limitation of the generality of Eq.
[2], since the latter is based on the assumption that the rate
of deformation tensor, d, can be written in the form?

ddt = V¥R = Vs — b = 36aUs + 2689  [10]

which, in turn, requires d to be diagonal in the basis of the
principal curvatures. For symmetry reasons, however, this
requirement is automatically satisfied in the case of cylindri-
cal and spherical surfactant aggregates. Further, we note that
Egs. [4] and [5] follow from the definitions éa = Us:ddt
and 68 = q:ddt. Equations [6] and [7] were derived by
Eliassen (4) (Eq. [ 7] implicitly).

2 For a definition of d, which is more general than Eq. [10], see Eq.
[172] below.
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The equilibrium condition, §F = 0 at constant T and over-
al volume V can now be written (irrespective of whether
the system is closed, partially closed or completely open)

6F = ff [‘}/SZVSS + (BVSH + OVSD)' S] ds
S
+ ff [AP — 2Hy — 2D( + (H? + D?)B
S

+ 2HDO]dS + ff $(BUs + 0Q):VsVaidS = 0,
S
[11]
where we have introduced the surface tension tensor

vs = yUs + {q [12]

whichislikewise diagonal in the basis of the principal curva-
tures.

According to the ordinary procedure of variational calcu-
lus, ¥ and VsV gl (or sand Vss) cannot be regarded as being
independent of each other. On the contrary, a procedure
equivalent to a partial integration has to be undertaken in
order to convert the integrals in the expression for 6F into
integrals that contain only ¢ (or s) itself. Considering ¢ and
its derivatives as being independent would be similar to
setting the terms containing the factors 9 f/9y and 9 f/9y’
separately equal to zero in the expression for the variation
of | obtained when minimizing the integral | = [ f(x, v,
y’)dx. For this very reason, the argument invoked by Neogi
and Friberg (11) is fase and their resulting AP expression
of restricted validity. The same criticism is implicitly valid
also for the derivation of an expression for AP by Melrose
(3) using parallell displacements.

We now make use of a divergence theorem for curved
surfaces due to Green, Gauss, and Ostrogradsky (cf. Weath-
erburn (12)) and obtain

ff 'ys:vssds=f m - ys- sdl
S C
— ff [Vs ys + 2Hn- 5] - sdS, [13]
S

where C denotes the boundary curve which limits the inter-
face and where the last term in the last integral containing
2H vanishes because ys is a tensor in the tangent plane of
the surface. The unit vector m is perpendicular both to the
tangent of the boundary curve and to the normal vector of
the surface at the boundary and it is directed outward. Thus,

ff ‘)/g:vSst
S

= _.”; (Vs vs) - sAS + fc m-ys-sdl. [14]
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We next introduce the surface bending moment tensor

Ms = 3(BUs + Oq) [15]

which is also supposed to be diagonal in the basis of the
principal curvatures. The corresponding eigenvalues are de-
noted by M; and M,. Using another surface divergence theo-
rem for curved surfaces, we obtain

ffS;(BUS + 0Q):VeVgrdS

_ ffSMS:VSVgpdS= ”S YVVsMs

+ fcm-MS-VSzpdl — fc (Vs Mg)- mdl  [16]
and finally we get
§F = ffs [(BVsH + OVsD) — V- vs] - sdS
+ ”; Y[VeVs:Ms + AP — 2Hy — 2D¢
+ (H? + D?)B + 2HDO]dS + fo m-Ms- Vgl
- fc (Vs Mg)- mdl + fo m-ys-sdl = 0. [17]

The expression within brackets in the first integral of Eq.
[17] represents the tangentia force acting on the surface
element dS, and the expression within brackets in the second
integral represents the corresponding normal force. These
expressions are, in fact, nothing else than the functional
derivatives 6F/6s(r) and 6F/6y(r), respectively, with r de-
noting the coordinate of the surface element.

The scalar surface tension vy is related to the tensor ysin
the following way:

y = 3Usiys = 3Tr(¥s) = 3(y1 + v2), [18]

where y, and vy, (or more precisely yi and y3) are the
principal components of ys. In an analogue way the shearing
tension is given by the relation

1

€ =307 = 3(v1 — 72)- [19]

From Eq. [16] we directly obtain the Euler—Lagrange equa-
tions for the variational problem with respect to the varia-
tions s and ¢. Firgt,



MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

which is the condition for lateral equilibrium, and, second,

AP = 2Hy + 2D{ — (H2 + D?)B — 2HDO — VVsMsg
[21]

which is the condition for equilibrium in the direction per-
pendicular to the interface.

It isworth noting that the expression [21] for AP is noth-
ing else than an extremum condition for the free energy. To
calculate the equilibrium shape of the interface under given
conditions, in addition, the numerical value of AP must be
known. Equation [ 21] can also be regarded as a generalized
Laplace equation. We stress that assigning a value to AP is
an integra part of the minimization of the free energy and
not an extra, unrelated condition. Moreover, Eq. [ 20] isthe
condition for the chemica potentials to be constant within
the interface.

Upon choosing the surface of tension as the dividing sur-
face for an isotropic interface with constant curvature, Eq.
[21] reduces to the familiar form AP = 2Hy.

THE BOUNDARY CONDITIONS

Let us now consider the integrals over the boundary, C,
occurring in Eq. [17]:

f m'Ms'VSl//dl - f lp(vS‘Ms)'de + f m"}/s'sdl.
C C c
[22]

These integrals will, of course, be equa to zero if Vg, ¥,
and s all vanish on the boundary.

The coefficientsin front of these variables in the integrals
over the boundary represent the forces or bending moments
acting on the boundary. Thus, m- s in principle yields the
stretching force acting on the boundary in the tangent plane
of the surface (not necessarily directed aong m), while
(Vs*Mg) - m yields the force in the direction of the surface
normal at the boundary, and, finally, m - M s yields the bend-
ing moment acting on the boundary.

If any of these forces (moments) is equal to zero on the
whole boundary (or part of it) this means that the corre-
sponding variation can be let free on the same part of the
boundary. This is what is referred to in variational calculus
as natural boundary conditions.

The expression m - ys for the stretching force is a two-
dimensional analogue to the expression -n = n- o in the
three-dimensional casefor the force acting at a planar surface
with the unit normal vector n, and o being the bulk stress
tensor. However, for reasons to be further discussed in a
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following section, ys in this expression will have to be re-
placed by yet another surface tension tensor, os.

The meaning of the bending moment expression m-Mg
is most smply understood if, for example, we assume that
the vector m is directed along the basis vector a, in the
surface at the boundary. The relevant components of m- Mg
will then be M,;, and M,, of which M,, represents a torque
on the boundary about the vector m and M, a torque about
the tangent vector of the boundary curve.

The meaning of the term (Vs-Mg)- m for the normal
force on the boundary can be visualized as follows. Assume,
for instance, that m points along the u' coordinate axis
which, in turn, points in a principal direction of the

(Vs*Mg) m = (Vs Mg) - & [23]
which is the two-dimensional analogue to the expression for
the shearing stress in a loaded beam in the one-dimensiona
case.

The above considerations are of particular importance in
connection with bicontinuous microemulsions and so-called
L3 phases with internal interfacial structures resembling in-
finite periodic minimal surfaces. The question about the ex-
ternal closure of such a lattice is, however, unsolved so far
(cf. Ref. (13)).

ON THE CHOICE OF THE FREE ENERGY FUNCTION

The correct thermodynamic analysis of a system consists
of two indispensable steps. First, the boundaries of the sys-
tem must be carefully defined; i.e., it must be prescribed
which parts of the universe that belong to the system and
which do not. Second, the nature of the system must be
clarified and it should be clearly stated which of the (inde-
pendent) thermodynamic variables that are to be held con-
stant and which will be allowed to vary. Surprisingly, these
rather self-evident rules are often overlooked in the litera-
ture.

For a interface with components that are soluble in the
adjacent bulk phases (asis often the case), the interface has
to be treated as a completely open system, for which, at
equilibrium, the chemical potentials are kept constant. Fur-
ther, if the pressure on the two sides of the interface are not
equal, a small displacement of the interface will aways be
accompanied by mechanical PV -work. In order to account
for this, the system definition cannot be limited to the inter-
face itself but portions of the bulk phases on both sides of
the interface must also be included. Assuming the entire
system to be an open one such that matter can pass through
its borders, we can, without limitation, claim that it has a
constant volume. It now follows that the variables to be
held constant are u;, T, and V which are the characteristic
variables of the grand canonical ensemble. The appropriate
potential is thus the grand potential, 2 = F — 3 Ny, of
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the interface plus those parts of the bulk phases that belong
to the system.

On the other hand, if there is no exchange at all of matter
between the interfacial system and the adjacent bulk phases,
the appropriate free energy to invoke is the overall Helm-
holtz free energy, F. In this case the appropriate variables
aeN;, T, and V.

For partially open interfacial systems the appropriate free
energy to consider is a mixed Q-potential/Helmholtz free
energy where the Q-potential part refers to the soluble and
the Helmholtz free energy part to the insoluble components.

THE GENERAL LAPLACE EQUATION IN THE FORM
DUE TO BORUVKA AND NEUMANN

For a interface with components that are soluble in the
bulk phases one can easily derive a generalized Gibbs sur-
face tension equation (at constant temperature):

[24]

showing that the surface tension y generally depends on the
mean and deviatoric curvatures, H and D. Accordingly, by
way of definition

B = (0y/OH) 1.0 [25]

and

O = (0y/0D) 1 um [26]
Switching to the Gaussian curvature K = ¢;¢c, = H? — D?
as independent variable instead of the deviatoric curvature,
D, we can write Eq. [24] in the form employed by Markin
et al. (14)

[27]

d’)/ = - z Fi d/.L| + CldH + ngK

where

Cl = (87//8H)TM,K C2 = (ay/aK)T,M,H. [28]

The coefficients B, © and C,, C, are interrelated through
the relationships

B=C +2CH

[29]
[30]
In terms of the Gaussian curvature, K, and the new variables

C, and C,, the Euler—Lagrange Eqgs. [20] and [21] can be
written in the following alternative way

LJUNGGREN, ERIKSSON, AND KRALCHEVSKY

Vsy — CiVsH — CVsK + Vs (L) = 0 [31]

and

AP = 2Hy + 2yH? — K{ — C;(2H? — K)
— 2C,HK — 3V3C, — 2HVEC, + b:VVLC,. [32]

Thisisjust another way of writing the minimum free energy
condition for the interface. It is easily shown (7) that Eq.
[32] agrees with the corresponding generalized Laplace
equation derived by Boruvka and Neumann (5) taking into
account their differing definition of the (isotropic, { = 0)
interfacial tension.® It is also in agreement with a somewhat
less general expression, more recently derived by Ou-Yang
and Helfrich (15) by a variational method, for the Laplace
pressure of aclosed (in the geometrical sense) vesicle mem-
brane.

DIFFERENT KINDS OF SURFACE TENSIONS

The local work of deformation per unit surface may be
written (2)

SWs = yéa + (6B + BSH + O6D. [33]

Apart from the term {64, this expression was aready pro-
posed by Gibbs (8). Gibbs tacitly assumed that y; = v,
which yields { = 0, that probably holds for most ordinary
surfactant interfaces in the liquid state (as opposed to the
gel state) but not necessarily for interfaces of amore compli-
cated structure such as biological membranes or, for that
part, rubber membranes and solid surfaces. Here, y is the
usual (thermodynamic) surface tension.

When the dividing surface is chosen to be coincident with
the surface of tension (s.o.t.), the tensor ys will actualy
yield the‘*hydrostatic’” mechanical tensionsin the tangential
plane of the surface. However, especially with the compara-
tively thick interfaces encountered in surfactant aggregates,
the use of the s.o.t. is mostly nonfeasible. The reason for
this is that for these thick interfaces the s.o.t. is usualy
located far away from any natural choice of the dividing
surface such as the hydrocarbon/water interface, and some-
times even the calculation of the position of the s.o.t. repre-
sents a complicated mathematical problem in its own right.
Under such circumstances the s.0.t. concept is rather useless
for practical purposes.

At other dividing surfacesthan the s.o.t. the ‘** hydrostatic’’
tensions in the tangential plane of the surface at a given

% The Boruvka and Neumann surface tension, y®", is related to the y
we use by y®N = v — BH — OD (6).
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point of the surface are given by a surface tensor, o-s, differ-
ent from ys. The tensor o5 can be written

os = oUs + nq [34]

with

o= %Us30's = %(Ul +02) n= %qio's = %(01 -

02) [35]

o, and o, (or more exactly o} and %) being the principal
components of the surface tensor o5, assuming, of course,
that the tensor o is diagonal in the basis of the principal
curvatures.

The relation between o and y has been worked out by
Gurkov and Kralchevsky (16). The result is that the infini-
tesima work of surface deformation amounts to

oWs = (o + 3BH + 30D)éa

+(n + 1BD + 1OH)58 + BSH + O5D  [36]

A comparison with the previous expression [33] for éws
then shows that

y = o + 3BH + 30D [37]
{=mn+3BD + 36H [38]

with
B = US:MS = Ml + M2 [39]
6=qZMs=M1_M21 [40]

where M, and M, (or more exactly M} and M32) are the
principal values of the bending moment tensor M s which is
diagonal in the basis of the principal curvatures, i.e., in the
principal axes of the curvature tensor, b.

The basic reason for the difference between ys and o5 is
apparent already from the expression [33] for éws above
which shows that éws = yéa only holds if 648, 6H, and 6D
are equal to zero, i.e, if H and D are kept constant. This
means that a curved surface should result from the dilatation,
which implies that the different layers of the interface paral-
lel to the dividing surface will be stretched to different de-
grees, or differently stated, a dilatation is always accompa-
nied by bending which gives rise to the extra terms in the
expression for o, which may also be written

It is obvious that 2(M.c, + M,C,)éa is the work of bending
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that accompanies the dilatation under conditions of constant
H and D.

In terms of o and n the generalized Laplace equation can
now be written as

AP = 2Ho + 2Dn — VsVsiMg [42]
or,sincec = (o1 + 0z)/2andn = (o, — 0,)/2, even more
simply as

AP = Cio, + Cop — VSVS:Ms, [43]
where ¢, and ¢, are the two principal curvatures of the sur-
face. Thus, even if o, and o, were both equal to zero, the
bending moment alone might give rise to a AP different
from zero, just as a construction beam can accept a distrib-
uted load although there is no longitudina tension in the
beam. On the other hand, if 0, = o,, and if Mg is constant
we recover the usua Laplace equation.

From the argument above it should be clear that the pure
stretching force acting on the boundary should equal m - o5
and not m- ys.

Finally, we note that Eq. [ 21] can aso be written

where
e = —(M.c% + M,c3) [45]
may be termed the curvature pressure, and we have
AP = 2Hy + 2D{ + m. — VsVs:Ms. [46]

The curvature pressure is zero at the surface of tension where
the tensor components M; and M, vanish. However, as was
pointed out above, to employ the surface of tension as divid-
ing surface is generally inconvenient for surfactant aggre-
gates and surfactant-laden interfaces.

FURTHER DIGRESSION
ON THE BOUNDARY CONDITIONS

Variational Derivation of the Young Equation

When deriving Egs. [20] and [21] we used variations at
fixed boundaries, i.e, wesets=0,¢ = 0,and Vg = 0 at
the contour C in Eq. [17]. The next step is to derive the
respective boundary conditions by using variations at mov-
able boundaries.

This time we start by considering a meniscus attached to
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Phase 11

FIG. 1. A liquid meniscus which is attached to a solid cylindrical nee-
dle. w, is the excess free energy of the solid/phase | interface, and, wy,
correspondingly, of the solid/phase Il interface.

a vertical solid cylinder (Fig. 1). (Later we will consider
the general case.) The variation of points on the contact line,
C, can be presented in the form
bR=¢ee,+ M (ReQC), [47]
where g, is the unit vector along the vertical and t is the
running tangent to the contact line; ¢ and N denote two
independent infinitesimal displacements. 6R has a zero pro-
jection aong the normal to the cylinder. Note also that

m-t=0 n-t=0. [48]
From Eqgs. [1], [47], and [48] one obtains
Slrec = 86, Us + M, §|rec = €€, N. [49]

The expression for the variation, 6F, Eq. [17], now contains
an additional term, viz.

fc (w — wy)edl, [50]

where w, and w,, are the surface densities of the grand ther-
modynamic potential for the solid—fluid | and solid—fluid
Il interfaces, respectively. In fact, Eq. [50] expresses the
variation of the energy of wetting of the solid due to the
variation in the position of the contact line. Since Egs. [ 20]
and [ 21] hold, the surface integrals disappear and from Egs.
[17] and [50] we get

sF :f [M-M-Vgh — m- (Vs M)
+ m"}/s's+ (W| - w”)S]dl = 0. [51]

To have 6F = 0, the expressions multiplying the independent
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variations Vg, &, and A must be equal to zero. As Vg
represents the change of meniscus slope at the contact line
at a fixed position of the contact line, one has

t-Vog =0, m-Vgy # 0. [52]

Then from Egs. [49], [51], and [ 52] we have the following
conditions for equilibrium at the contact line

m-M-m=20 [53]
m-ysce,— m-(Vs-M)(n-€) + wy —w; =0 [54]
m-ys-t =0. [55]

The left-hand sides of Egs. [53], [54], and [55] are the
coefficients multiplying the independent variations Vg, «,
and \, respectively. Below, we analyze the implications of
these equations.
Let us start with Eq. [55]. In keeping with Egs. [8] and
[12] we derive from Eq. [55] that
m-b-t=0 [56]
showing that the curvature tensor, b, must be diagonal in

the basis formed by the vectors m and t at the contact line.
In other words, we can write

b=cmm + citt forR € C. [57]
Besides, from Egs. [8] and [57] we can derive
m-g-m=1 forR &€ C. [58]

Next we consider Eq. [53]. In accordance with Egs. [15]
and [ 58] we get from Eq. [53]
B+6 =0 forReC. [59]

To elucidate the physical meaning of this equation we recall
that according to Egs. [39] and [40],

B=M +M,, 6=M; —M,, [60]
where M; and M, are eigenvalues of the tensor M . By anal-
ogy with Eg. [57] one can write

Substitution of Eq. [60] into Eq. [59] yields

For the mechanical meaning of the components of M, see
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Eqg. [60] and Fig. 4c in Ref. (16). Equation [62] implies
that the interfacial bending moment around the tangent t
must be zero at the contact line.
Finally we consider Eq. [54]. Sincet - e, = 0, one obtains
m-ys' € =m-ys m(m-e,). [63]
Besides, m-e, = cos «, where « is the contact angle (see
Fig. 1). Then, from Egs. [12], [54], [58], and [63] we
derive
(y + {)cosa — m-(Vs:M)sna = w, — w,. [64]
If the stresses in the liquid interface are laterally isotropic,
i.e, n = 0in Eq. [34], then from Egs. [37] and [38] we
get

y+{=0+3B+0O)H+D)=0c ReC. [65]

At the last step we have utilized Eq. [59]. Moreover, it is
known that
oM = —a*- (Vs M), [66]
where o “" isthe transversal component of the surface stress
tensor:
o = o5+ anc®m. [67]
In view of Egs. [65] —[67], Eq. [ 64] can be represented in
the form
m-o-e, = w, — w. [68]
This equation will be useful when comparing with the me-
chanical approach to the boundary conditions treated below.
In the simplest case when the interfacial shearing and
bending effects are negligible, onehas{ = 0, y = o, and M
= 0, and Eq. [64] reduces to the classical Young eguation:
oCOSa = w; — w. [69]
For a Helfrich interface with curvature-dependent interfacial
tension

Y = Yo + 2k(H — Ho)? + kK [70]

we have
B=B+ 2(2k. + k)H, ©6 = -2k.D, [71]

where k; and k. are the two curvature elastic moduli and B,
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is the bending moment of a flat interface, which is related
to the spontaneous curvature, Hy:

By = —4k.Ho. [72]
Substitution of Eq. [71] in Eq. [59] yields
By + 2k, + 2(k. + k.)c, =0, Re C. [73]

For the special case of axial symmetry, like the one depicted
in Fig. 1, we can write

u” u,
C = = s
1 [l + (ur)2]312 G r[l + (ur)Z]lIZ

[74]

where z = u(r) determines the meniscus shape. Hence, Eq.
[ 73] is aboundary condition relating the derivatives u’ and
u”. It is interesting to note that the boundary condition, Eq.
[73] contains k.. Yet, k. does not enter the generalized La
place equation, cf. Ref. (17).
In addition, for a Helfrich interface (17), we have,
Vs'M = 2kVsH. [75]
Then, in accordance with Egs. [59], [64], and [65] one
obtains the generalized Y oung equation for a Helfrich inter-
face such that n = O:

H .
JCOSa—i-cha—Sma:w“—wh [76]
om

where 9H/9m denotes the directional derivative along m.

Balances of the Linear and Angular Momenta at a
Contact Line

Sresses and moments. Next we present a hydrostatic
derivation of the balances of the linear and angular momenta
at a three-phase contact line. This derivation is made after
Podstrigach and Povstenko (18). In spite of being purely
phenomenological, the hydrostatic approach is conceptually
transparent and yields results in quite a general form.

Let us consider a volume, V, containing a part of the
contact line, C, and portions of the adjacent three phases
(see Fig. 2). V4, V,, and V; are the portions of phases 1, 2,
and 3 confined in the volume V; L;,, Li3, and Ly are the
intersection lines of the surface of volume V with the inter-
faces S;,, Si3, and Sy, respectively. The lines L,,, Li3, and
L,; divide the surface of the volume V into three portions,
called A;, A;, and Az, whose outer normals are denoted by
Ny, Ny, and n, respectively (see Fig. 2).

Further, by o, o,, and o; we denote the bulk stress
tensorsin the phases 1, 2, and 3. Similarly, let o1,, o3, and
o3 be the surface stress tensors of the interfaces S, S,
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FIG. 2. Sketch of the volume V which entails a portion of the three-
phase contact line, C, and is composeed of the volumes V,, V,, and V; of
phases 1, 2, and 3, respectively. For additional information, see text.

and S;;, respectively. Note that each of the tensors oy,, 013,
and o»; has both lateral and transversal components with
respect to the interface, cf. Eq. [67]. Findly, by o we
denote the linear stress tensor at the contact line C.

The tensors of the interfacial momentsin the surfaces S5,
Sz, and S;; are denoted by My, M3, and My;; they are
anaogues of the symmetric tensor M defined by Eq. [15].
We will also use the tensors N;,, Ni3, and N,; defined as
follows (15):

N = —Mypre, Nig=—Myre, Ny =My g, [77]

where the components of £ = &,,a%a” are aternators in the
respective surfaces. The mechanical meaning of the compo-
nents of the M- and N-type tensors is illustrated in Fig. 4
of Ref. (16). In addition we aso introduce the linear tensor
of moments exerted at the contact line, N.. In general, the
linear tensors o, and N, can be represented in the form (3)

o= o{"*Nac NL = N{")e,, [78]

where e, = g,, &, = g, and e; = e, are the unit vectors of
the Cartesian axes; A is the running unit tangent to the con-
tact line C.

Balance of the linear momentum. At hydrostatic equilib-
rium the net force and the net moment exerted at the volume
V must be equal to zero. Let us start with the force balance.
The force exerted on the volume V is a superposition of
body force, bulk stresses exerted at the surface of the volume
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V, interfacial stress exerted at the lines Ly, Lig, and Log,
and linear stresses exerted at the points P and Q in Fig. 2:

3
0 = Z f dekfk + z dSp|Jf|J
k=1 Y Vk

1<i<j<3 Y S

3
+ J. dlpoL + Z f dAnk'o'k
c k=1 ¥ A

o2

f dlmij‘ﬂ'ij +(A'0’L)i. [79]
1<i<j=<3 YL

Here p1, p,, and p; are the mass densities of phases 1, 2,
and 3; f,, f,, and f; are the respective body forces per unit
mass; p; and f;; are the respective mass density and body
forcefor theinterface §;; likewise, p. and f_ are mass density
and body force for the contact line C; mj is a unit vector
which is simultaneously tangential to the surface §; and
normal to the contour encircling S;; finally

(}\’("l_)t = }\’U'L|P - )\'O'L|Q

is the contribution of the linear stressto the net force exerted
on the volume V. Similarly, the net force exerted on the
volume V; reads

0=f delfl+f dS‘]l'O'l
1 Ay

+ dS’]lz’ o, +
Si2 Si3

d9113'01, [80]

where n;, and n,; are the unit normals to the surfaces S,
and S;;. The balance of the forces exerted at the surface S,
yields

0= dSPlzf 12—
Si2 Si2

dSyz- (01 — 03)
+ f d|m12'0'12. [81]
L,UC

By using Egs. [80] and [81] and analogous expressions for
V>, Vs, S, and S from EqQ. [ 79] we get

0= J. dlp f, — f di(My o + M- os
C C
+ m23'0'23) + (A'(TL)i. [82]

Finally, by making use of the Newton—Leibnitz theorem,
viz.
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N 0
f diVi-o, = (No)", Vi=N_ [83]
c ol
we derive
VicoL+ pfl = My o + Mize 013 + Mz 0. [84]

Hence, for the system depicted in Fig. 1 one derives from
Eqg. [82] (linear effects negligible)
0=16,01"6—6'013°6+M 056 [85]

where we have substituted m;, = —my3 = €, My = +M;
further, setting e,- 02+ €, = w;; € 013° €, = Wy, and o3 =
o one recovers the Young equation, Eg. [69].

If the linear body force term in Eq. [84] is negligible and
if

o = 01U, 013 = 013U,

O3 = 023Uz, oL = o AN [86]
with U; being the unit tensor of the surface §;, then Eq.
[82] reduces to a generalized form of a Neumann triangle
(16):

BUL
My 0 + Myz* 013 + Moz O3 = KO + a A [87]

Here pu is the unit normal vector of the contact line, C, and
k is the geodesic curvature of C; we have used the Frenet
formula ON Ol = ku. Various specia cases of Eq. [87]
(with line tension terms) were derived and/or used by Vese-
lovsky and Pertzov (19), Pethica (20), Torza and Mason
(21), Pujado and Scriven (22), Lane (23), lvanov et al.
(24), etc. Notethat in the general case Eq. [ 82] aso contains
a contribution from the interfacial bending moments hidden
in the transversal components of o, cf. Eq. [66].

Balance of the angular momentum. The net moment
(torque) exerted on the volume V is

3
0= z dekfk Xr + z dSp”f” Xr

k=1 ¥ Vk 1<i<j<3 VS

3
+f dipfe xr + 3% f dA(ng- o) X r
c k=1 YA

o2

1=i<j=<3

f dl[(m”'(r”) Xr + mij'Nij]
+ (Ao Xr)* + (N-N)*. [88]

In a similar way one can write expressions for the net mo-
ment exerted at the volume V; and the surface S,:
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Vi A

+ dS(nlz'O']_) Xr +
Si2 Si3

dS(nlg'O'l) Xr [89]

0= dY piofiz + Nz (01 — 02)] X r
Sz

+ f d|m12'(0'12 Xr + N]_z). [90]
LucC

By using Egs. [89] and [ 90] and similar expressions for V,,
Vi, Sz, and Sy; from Eqgs. [88], [83], and [ 84] one derives

VL'NL + A‘G’L X N

= My N + Mz Nz + My Ny [91]
where we have used the identity
VL°(0'|_><I’)=(V|_'0'|_)><r +)\'0'|_><)\. [92]

Equation [91] expresses the local balance of the linear mo-
mentum. Let g; be the alternator in the surface ;. Then

girh=m; (ReC) [93]
Upon neglecting the line tension effects in Eq. [89] and
multiplying by N one obtains

My MMy + Mige Mz Mgz + My M- my; = 0

[94]

where Eqgs. [ 77] and [ 88] have been used. In fact, Eq. [ 92]
is a more general form of Eq. [53].

Discussion

It isinstructive to illustrate the application of the derived
eguations as boundary conditions for a specified problem.
Let us consider the ** meniscus on aneedle’’ depicted in Fig.
1 for a small meniscus slope when the Laplace equation can
be linearized:

oViu — kVaVau = gulp

209 o9
(Vu —exax‘f‘eyay). [95]

Here Ap is the difference in density between the lower and
upper phases and g is the gravity acceleration. To obtain Eq.
[95] we have used that AP = guAp (flat interface at infin-
ity) and we have assumed a Helfrich interface. In fact, this
equation is a fourth-order ordinary differential equation (u
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= u(r)) and four boundary conditions are needed. One of
them is

limu(r) = 0.

r—o

[96]

The second one stems from Eq. [ 76] where the term with
sin « is negligible in a linear approximation:

(du/dr) . = —cota; cOSax = (wy — w)lo. [97]
The third boundary condition originates from Eq. [56]. In
a linear approximation one has

e — Vyu
n=———"———-=¢— Vu 98
(1 + |V“u|2)l/2 eZ 1 [ ]
b=-Van= V,Vju [99]
and consequently
2,
- ou 10 pee),  [100]

r“’:ara(p_l’&p

where (r, @) are polar coordinates in the plane xy. This
boundary condition is automatically satisfied in view of the
axia symmetry. The last boundary condition stems from
Eqgs. [72] —-[74]:

d?u —y1ldu
By + 2k— +2(k+k)-—=0 (ReC) [101
ot ez T2kt k) T ( ) [101]
where again the linear approximation was used.
Next, let us consider the problem from another point of
view. One can represent Eq. [95] in the form

(Vi — «kD(Vi — k3)u=0, [102]
where
K3, = i [1+ (1 - 4kgAplo?)¥?].  [103]
In afirst approximation to Eqg. [103] one obtains
k2~ gAplo, k3=~ olk.. [104]

k1t and k;* determine two characteristic decay lengths,
which, in fact, are the decay lengths of the solutions of the
equations (Vi — «3)u = 0 and (Vi — «3)u = 0. For a
water/air interface we have o = 72 mN/m, Ap = 1000 kg/
m3, k. = 4 X 102 J and one calculates
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kit =27%X107°m k3;'=24x10""m [105]
showing that «>* is extremely small (molecular length
scale). The physical meaning of the solutions of the macro-
scopic Laplace equation with a microscopic decay length is,
of course, problematic.

If one disregards all solutions of Eq. [102] having a mo-
lecular decay length, it reduces to

(Vi — k%u=0. [106]
This is a second-order differential equation which is to be
solved in conjunction with the boundary conditions, Egs.
[96] and [97].

The bending moment effects, and the boundary conditions
[100] and [101], can become important when the interfacial
tension is very low and «5* is comparable to «;*, viz.,

o~ (gk:Ap)H? ~ 6 X 10°° mN/m. [107]
Such low interfacial tensions may exist in critical emulsions
and microemulsions.

MICROMECHANICAL EXPRESSIONS FOR SURFACE
EXCESS QUANTITIES

All the relevant interfacial quantities can be expressed as
integrals over the three-dimensional pressure tensor, P, of
theinterface regarded as athree-dimensional body. The pres-
sure tensor is simply the negative of the three-dimensional
mechanical stress tensor o (to be distinguished from the
two-dimensional mechanical stresstensor, o). The pressure
tensor must, of course, satisfy the mechanical equilibrium
condition

V-P=0 [108]
which for a spherical aggregate can be written
d(r2Py)/d(r?) = Py [109]
or
rdPy/d(r?)] = Py — Py. [110]

The corresponding equation for a cylindrical aggregate has
the following form

d(rP.)/dr = P,,. [1171]
Next we introduce the excess pressure tensor
Ps=P—-P,U [112]
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where U is the three-dimensional (or bulk) identity tensor,
related to Us in the following way

U=Us+nn [113]

bearing in mind that Us = a'a, + a%a,. Further,

P P
af — Pﬁ

where \ is a coordinate along the surface normal and equal
to zero at the dividing surface, and P, is the homogeneous
isotropic pressure ‘‘below’’ the interface and P, the corre-
sponding pressure ‘‘above’’ the interface. We then have the
following micromechanical definitions of the surface tension
tensors:

ifA<O
if >0

A

A
y = —fZPSXdA o= —sz-PSdA [114]
A A
The tensor L is defined as
L = (1 - 2\H)Us + \b [115]

It serves the following purpose. In order to calculate the
tangential tensions and the bending moments we need to
know the forces acting upon a vectorial surface element,
dSymn, Of asectoria strip that is perpendicular to the dividing
surface. Then, according to Eliassen (4)
dSowm = v-LdAdl, [116]
where v is a vector in the tangent plane of the dividing
surface, normal to the above-mentioned perpendicular secto-
rial strip at values of \ different from zero. Then v-L isa
vector perpendicular to the sectoria strip.
Further, since

o =3Uso; y =3Usly [117]

¢ =y [118]

n =30,

which, due to the orthogonality of Us and q, is consistent
with Egs. [12] and [34], i.e,

[119]
[120]

vs = yUs + ((q
O'Us+ T]q

Os =

it follows that
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)\2 )‘2
v = —%f Us:PSxd\; € = —%f g:Psxdn [121]
A\ A1

and
A Ay
o=t LPan =1 @uPan 122)
N\ A1
Further
Ay
M =§f L - PS\d\ [123]
A

which is a tensor in three dimensions. The corresponding
two-dimensional surface tensor equals

Ms = 3(UUs + qg):M = 3(BUs + ©q) [124]

as was aready anticipated above. Since B = jUs:M and ©
= 30:M it follows that

A A
B =f2L:PS)\d)\; o =f2(q-L):PS)\d)\. [125]
A

A
In the equations for y and { above, the variable
x = (1 —\H)? = \?D?=1-— 2\H + \’K [126]

is recognized as the local dilatation factor for the area of a

parallel surface compared to that of the dividing surface.
In connection with the work of formation of the interface

at constant chemical potentials we define another quantity

A

A1

\ A

[0] 0
'y—f (Pa—Pﬁ)Xd}\:'y—APf xd\
1 1
[127]

Then, per unit surface,

0
oW = yoéa — (5aAPf xdN\.

A

[128]

Thus, the work of formation at constant chemical potentials
isclosely related to the deformation work for pure dil atation.
As was pointed out above, the infinitesimal deformation
work is the same in an open and in a closed system (in the
thermodynamic sense). Finally, we note that if AP = 0 it
follows that éwr = ydéw. As to the interpretation of A; we
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remark that for a closed spherical or cylindrical aggregate
N = \; correspondstor = 0.

Below, wetreat the special cases of spherical and cylindri-
cal interfaces. Some of the formulas quoted have been pub-
lished earlier, cf. Ref. (16).

Finally, it should be mentioned that Eqgs. [121] and [125]
were first published in Ref. (25).

The Spherical Interface

As an example of the application of the above relations
we will take the case of a spherical interface. If the radius
of the dividing surface is denoted by R, the following rela
tions ensue

1 ( 1
= ?J‘ (Paﬁ - PT)I‘ZdI‘, = ﬁf (P,_,(ﬂ - PT)I’dI‘
0 0

[129]
where, now,
P, ifr<R
Pap = .
P, ifr>R
Further,
5 (=
B=- —f (Pus — P)r(r — R)dr [130]
RJo
Thus,
vy = o + 3BH. [131]
The Laplace equation reads
AP = 2Hy — BH? = 2Ho [132]
with H = —1/R. The negative of curvature pressure, — ¢,

equals BH? = B/R?. The condition of lateral mechanical
equilibrium requires that Vgy and BVsH should both be
egual to zero, which is obviously satisfied on a sphere. Fi-
nally

M=M,=M,=— %f (P.s — Pr)r(r — R)dr = B/2
0
[133]
whence

v =0+ BH/2 = ¢ + Mc. [134]
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n is, of course, equal to zero for a spherical surface implying
that v and o are equal at the s.o.t. where M = 0. The work
of formation of a spherical aggregate at constant chemical
potentials amounts to

W = 4r f (P — Pr)r2dr = 47R%y
0

R
- 47rf (P, — Pg)r2dr
0

= (47R%3)(y + BH¥R)
= (47R%3)(y + BIR)

= (47R?/3)(y + ©R) [135]

This work may be written in several different ways

0 0

= 27rf (Py — Py)rar. [136]
0]

The radius of the surface of tension, Ry, is obtained by
setting B and 7. equal to zero. We obtain

Ry = P Pﬁf (Ps — Pr)r(r — R)dr
:P fPﬁf (P — Pr)r2dr
“p Pﬁf (Pn — Pr)r2dr
= P Pﬁf (Pn — Py)r2dr [137]

where we have also used the condition of mechanical equi-
librium

J‘x (Ps — Py)rdr = 0. [138]

Equation [138] can be obtained by substituting the Laplace
equation o = (P, — Ps)Rsor/2 in EQ. [129].

The Cylindrical Interface

For a cylindrical surface we have quite generally H = D
= —1/2Rand N\ = r — R where R is the radius of the
dividing surface, and
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L = (1 — 2\H)Us + Ab.

We then have
1 ” S s r
v =-3 . (P¢,¥,+Pzz)§dr
and
g——lfw(Ps — Py Lar
2 o P z R

and further

[139]

[140]

[141]

Tpp = —f Ps.dri oy = —f P;édr [142]
0 0]

<
I

and

Q
Il
|

NI

and

~ r
n= _%J.o (Piw - §P2>dr = %(Uw’ )

and

. r
B =f0 (wa +§P§Z>(r — R)dr = M, + M,

and

0= f < ——PS>(r—R)dr=MW—MZ.

It follows that
WW_Z(B+6) ME:%(B_G)-
Then Egs. [37] and [38] reduce to

y=0+3B+ O)H=0— Mpp/2R

. r
1f0 <ij + R P;)dr = %(UW, + 04)

* * r
e f Pssmp(r - R)dl’, Mzz = f P?z_ (r - R)dr
0 0 R

[143]

[144]

[145]

[146]

[147]

[148]

[149]

{=n+3B+O)H=n— Mpp/2R. [150]

Thus, for a cylindrical surface

y-8=0-n [151]

Cylindrical Micelles

Simple mechanical equilibrium considerations show that

afreely floating cylindrical object must satisfy the condition
0., = 20, 8Sis shown in Eq. [155] below. On the other

hand, a perfectly fluid interface must be isotropic in the
tangent plan of the interface, i.e., o,, = 0. We conclude
that aggregates with a perfectly fluid surface cannot have a
cylindrical shape.

A completely different case is presented by solid elastic
interfaces, e.g., rubber membranes. Another interesting case
isthat of rod-shaped micelleswhich are considered to have at
least an approximately cylindrical shape. We must, therefore,
conclude that the entanglement of the hydrocarbon chains
endows the interface (which comprises the whole of the
micelle) with sufficient rigidity to support anisotropic ten-
sions in the tangent plane of the dividing surface so that
the condition o,, = 20, is sdatisfied. Such interfaces are
sometimes said to be fluid since the surfactant molecules are
able to exchange places, but then mainly by reptation. In
the following we exclusively treat the idealized case where
this condition (i.e., o,, = 20,) is satisfied exactly.

Mechanical equilibrium with respect to two sections, one
at right angles to the cylinder axis and another containing
the axis, requires that

JW (P — Pg)rdr =0 [152]
Jm (P,, — Pg)dr =0 [153]

The micromechanical definitions of o, and o, Eq. [142],
then yield, after simple calculations,

Opp = R(Pu = Pp); 0z =3R(P, — Py) [154]

whence

O = 3000 [155]
Thus, according to Eqg. [142]
f P dr_zf Ps, L ar. [156]
0 R

Finally, according to Eq. [141] we have
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1

(=g ). P = Ri2)dr. [157]

An important quantity in the thermodynamics of micelle
solutions is the work of formation at chemical equilibrium,
i.e., when the chemical potential of surfactant monomersin
the solution is the same as for the surfactant molecules in
the micelles. The work of formation of a cylindrical micelle
can be written in two different ways corresponding to two
different modes of formation at constant chemical potentials.

In the first mode, the cylindrical part is stretched very
sowly in the z-direction so that chemical equilibrium is
maintained al the time. Then,

w;(2) = —ZWALI (P — Pg)rdr. [158]
0
From Eq. [152] it follows directly that
wi(z) =0 [159]

In the second mode the cylindrical part is formed by letting
a wedge-shaped cylindrical sector (like a piece of cake)
grow from ¢ = 0to ¢ = 27 in analogy with the growing
spherical cone generally used to calcul ate the work of forma-
tion of a spherical droplet. Thus,

Wi (p) = —2rAL fw (P,, — Pyrdr.  [160]

From Egs. [157], [158], and [160] it follows directly that

1
RG = A [Wile) = wi(2)].

[161]
However, the right-hand side of Eq. [161] is manifestly inde-
pendent of the radius R of the dividing surface. It follows
that RC is invariant with respect to R. Further, since, for
physical reasons, the work of formation must be the same
in the two modes of formation, we must have w; (¢) = w; (2)
= 0, and consequently

¢=o0.

From Egs. [18] and [19] it followsthat v + { = v, and y
— { = .. Hence,

[162]

Y1i=Y2=Y [163]

Further, from Eqgs. [140] —[142] we deduce that

Y1=7Y2=7Y =0z [164]
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Finally, Eqg. [157] may be written

—2R = fw Ps_(r — R/2)dr [165]

from which we conclude that the integral on the right-hand
side must be independent of R and equal to zero, athough
this may not be immediately apparent. However,

Jm P, (r — R/I2)dr = Jm (Pyy — Pag)(r — R/I2)dr
= fx (P,, — Pg)(r — R/2)dr + fR (Ps — P.)

X (r — R/2)dr= f (P,, — Pg)rdr
0

- (R/2) Jm (P,, — Pg)dr + 0

=W (p)/2rAL — 0+ 0=0. [166]
which implies that the right-hand side of Eq. [165] is inde-
pendent of R and equal to zero.
According to Eq. [43]
AP =

— 0

oo/ R [167]
while according to Eq. [46]

AP = —y/R-C{/R+ m. = —y./R+ 7. [168]
where, according to Eq. [ 45] and the micromechanical equa-
tions, it is easy to show that

e = —M,,/R? = y1/R — 0,,/R.
Hence,

AP = —vyi/R+ vi/R—- 0,,/R= —0,,/R [169]

as before, demonstrating full consistency.

GENERALIZATION TO SURFACE STRAIN AND STRESS
TENSORS THAT ARE NOT DIAGONAL IN THE BASIS
OF THE PRINCIPAL CURVATURES

The tensors Us and g are mutually orthogonal but they
do not form a complete set of basis tensors. Thus, only
such tensors that are diagonal in the basis of the principa
curvatures can be expressed as a linear combination of Ug
and q. If we take the analogous case of the Pauli spin matri-
ces we know that four 2 X 2 basis matrices are required to
express an arbitrary 2 X 2 matrix. They are the 2 X 2 unit
metrix, e, and the Pauli spin matrices, oy, oy, and o,, of
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which e and o, are diagonal, which means that only diagonal
matrices can be expressed as linear combinations of e and
o, adone. Thus, it was explicitly admitted in the theory of
Gurkov and Kralchevsky (16) repeated above, that the rate
of deformation tensor

d = 2aUs + 369 [170]
was assumed to be diagonal in the basis of the principa
curvatures as follows directly from its form. This constitutes
a limitation of the admissible deformations, 6R.

A completely general deformation rate can be represented
in the basis of the principal curvatures as

SRS L VS B AL I A
_“<0 1>+5<0 —1)+ﬂl<1 0>[ ]

where the three matrices correspond to e (the unit matrix),
o5, and o. The matrix

“(1 o)
®={_1 o

proportional to oy is not included because it is antisymmetric
(the deformation tensor being, by definition, symmetric) and
because it would represent a pure rotation. In tensor form
the above equation can be written in the following way
(replacing Eq. [10])

2d = aUs + B9 + (.0, [172]
where q; is obtained from q by rotation through an angle

equal to 45° about the surface normal. Then Eq. [9] may be
extended by the following relations

Qi1 =2 Usgp =0, Qg1 =0
0:0:=02 Q'02=0y 0:1'9>2=0. [173]
Further, it can be shown that
0:°0: =0-g = Us [174]

In summary, we may say that from a qualitative point of
view, Eq. [170] describes deformations of dilation and shear
engendered by the bending and twisting of the interface.
From this viewpoint the new term with the tensor g, in
Eq. [172] describes an additional (rate of) shear which is
independent (or not coupled with) the changesin the interfa-
cia shape. Such a shear deformation may, for instance, be
due to a two-dimensional convective flow of the surface
molecules.

Since there is, in general, for completely arbitrary mem-
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branes, no reason why o should be diagona in the basis
of the normal curvatures, the definition equation, Eq. [ 34],
will now be generalized to read

os = oUs + nq + n101, [175]

where
o =3Usios n=300s m=300os. [176]

Then,
osd = od + nf + nf. [177]

Further, according to Gurkov and Kralchevsky (16), therate
of deformation work per unit surface equals

s _ poid + Ms:<a—b - b-d> . [178]

ot ot

The first term on the right-hand side has aready been evalu-
ated above. The second term obviously depends on the nature
of Ms. In the general case the calculus becomes extremely
involved. However, in the special case where Mis diagonal
in the basis of the normal curvatures, which may possibly
be aless stringent condition, at least for isotropic interfaces,
than the corresponding condition applied to s, the second
term in the above equation for 6w/ 6t will contain no contri-
bution whatever from the term %qul in the expression for
d as is easily shown using the tensor relation

A:(B-C) = (A-B):C. [179]

This, in turn, implies that Eq. [ A11] in the article by Gurkov
and Kralchevsky (16) remains valid although the tensors o5
and d are not diagonal in the basis of the principal curvatures.
We thus obtain the following dlightly modified form of Eq.
[36]

oWs = (0 + 3BH + 20D)éa + (n + 3BD + 10H) 68

+ BSH + ©6D + n,66; [180]
Thus, if Eq. [33] is modified to read
oWs = yba + C66 + (168, + B6H + ©6D  [181]
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we have the following relations

y =0 + 3BH + 10D [182]
¢ =mn+3BD + 3;0H [183]
Ci=m [184]

Returning to the minimum conditions, we note again that
ddt = Vs — yb. [185]

This means that in addition to the variations in Egs. [4] —
[ 7] we have the additional variation

661 = Qu:ddt = q;:Vss. [186]
From Eqg. [185] it dso follows that
ba = Ugiddt = Ug:Vss — 2Hys
and
6f = q:ddt = q:Vs — 2Dy,
i.e., we have recovered Egs. [4] and [5].
In the integrand of the second integral in Eq. [2] we

now have an additional term {;63,, and Eq. [12] should be
replaced by

¥s = yUs + £q + Gi01. [187]
Then, Eq. [19] should be replaced by the two equations

C=3s [188]

G = %%375 [189]

Equation [21] for AP remains unaffected, but Eq. [20]
should be replaced by

Vs*vs — BVsH — OVsD =0 [190]
or

Vsy + Vs (£q + £,91) — BVsH — OVsD = 0 [191]

from which it follows that Eq. [42] remains valid asis also
true for Eq. [44]. On the other hand, Eq. [ 43] does not hold
any longer since n = 30:0s is no longer equal to (o, —
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0,). Instead, Eq. [ 43] should be replaced by the more gen-
eral expression

AP = b:O'S - VSVS:MS [192]
whichis awaysvalid. Finally, we note that Egs. [41], [44],
and [45] remain valid, while the last membrum of Eq. [19]
no longer holds. Equation [41] may also be written in the
following way

vy =0 + 3b:Mg [193]

and Eq. [45] as follows

me. = Usi(b-Mg-b). [194]
Finally, it should be pointed out that both M and o of
surfactant-laden interfaces in a fluid state at equilibrium are
most likely to be diagonal in the basis of the principal curva-
tures, since, locally, there will be no preferential directions
in the surface except the directions of principal curvature.

CONCLUSION

In the present paper several novel forms are derived of
the Laplace equilibrium condition in the normal direction
for a flexible interface of arbitrary curvature. Additionaly,
we have treated the associated boundary conditions in some
depth. Finally, we have indicated the route along which an
even more generally valid thermodynamics can be generated
by refraining from making the assumption that the rate-of-
strain d tensor is diagonal in the basis of the principal curva-
tures.

APPENDIX

According to Kralchevsky (6), Eq. [4.19], the variation
of the Helmholtz free energy of an interface per unit surface
equals

N
Ofs = —sOT + 5 wdly — (v — ws)da

k=1

+ {68 + B6H + ©6D  [195]

where ws is the grand Q-potential of the interface per unit

surface, i.e.,
Q= ff wsdS
S

and the other quantities are those familiar from the extended
Gibbs equation for the work of deformation (2)

[196]
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SWs = yba + (68 + BSH + O6D. [197]

In the case where some of the components are insoluble in
the bulk liquid phase(s), notably if the components (i = 1,
..., M) aresoluble and at equilibrium with the environment,

whence é6u; = 0 (i =1, ..., M) and the components (j =
M + 1, ..., N) are the insoluble, which means that in the
absence of surface diffusion* we have 6T, = —TI;6«, which

in turn means that we have a mixed Helmholtz free energy
and grand Q-potential

Fo= Q.= f f &sdS [198]
S
and it follows from the above equations and
N M
(:)5 = ws + Z Fk,uk = fs - Z Fkﬂk [199]
k=M+1 k=1
which is Eq. [4.24] of Ref. (6) that
M
60s = —SOT — Y yiduk + (v — @) b
k=1
+ {68 + B6H + ©6D  [200]

which is Eq. [4.23] of Ref. (6) and where the first two terms
on the right-hand side vanish. Now,

6Fs=6 ffs 0.dS = ffs (60s + ©0)dS  [201]
where, by definition, 6dS = 6adS. Hence
oFs = ffs (60s + OHa)dS [202]
or

oF, = ” (yéa + C8B + BSH + ©sD)dS. [203]
S

“i.e,, if the chemical potentials are constant within the interface.
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Adding the contribution from the bulk phases we obtain
Eq. [2].
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