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In the present paper we discuss various forms of the gener-
The minimization of the free energy of a two-phase system with alized Laplace equation which are valid for interfaces with

an interface of arbitrary curvature leads to an extremum (Laplace) variable curvature and for an arbitrary choice of dividing
condition containing the pressure difference, DP , between the two surface between the two bulk phases. This rather complete
sides of the interface. The expression for DP is a function of the

surface-thermodynamic background is needed, especiallynormal curvatures and of the resulting bending moments which
when considering more exotic forms of surfactant aggregatesare themselves functions of the normal curvatures, the mathemati-
for which the (curvature-dependent) interfacial free energycal form of which depends on the particular model for the interfa-
plays a key role.cial bending energy that has been employed. On this basis, conclu-

On the basis of earlier works of Buff (1) , Murphy (2),sions can be drawn about the equilibrium shape and curvatures
of an interface, e.g., for bicontinuous microemulsions and vesicles. Melrose (3) , and Eliassen (4), the first rigorous treatment
In addition, the pressure difference between the inside and the of this kind was presented by Boruvka and Neumann (5) in
outside of surfactant-laden interfaces can be calculated. This pres- 1977. Later on Kralchevsky (6) formulated an even more
sure difference influences the work of formation of microemulsion general thermodynamics of curved interfaces (encompassing
droplets. A section devoted to the boundary conditions has also the effect of elastic surface shear) subsequently commented
been included where in particular the case of a liquid meniscus by the present authors (7) .
attached to a cylindrically shaped solid surface is treated. q 1997

Academic Press

Key Words: minimization, of free energy of curved interfaces; THE GENERALIZED LAPLACE EQUATION
free energy, of curved interfaces; Laplace equation, generalized
forms of; boundary conditions, in surface theermodynamics; mi- The overall free energy, F, of the interface plus the adja-
cromechanical expressions, for surface excess quantities.

cent bulk phases must, of course, have a minimum at equilib-
rium, i.e., the variation, dF, should be equal to zero when
the surface is subject to an infinitesimal deformation fromINTRODUCTION
its equilibrium shape. Let the infinitesimal deformation vec-

The reader no doubt recognizes that the proper way to tor be
proceed when deriving the equilibrium condition for an inter-
face consists in minimizing the free energy, F, of the inter-

dR Å s / cn , [1]
face and its ambient bulk phases. The exact choice of this
free energy, F, depends on the actual properties of the system

where s Å s 1a1 / s 2a2 is in the tangent plane of the surfaceand is not always equal to the Helmholtz free energy, F , as
and a1 and a2 are the corresponding basis vectors, while cnwill be discussed under the section below entitled ‘‘On the
is in the direction of the surface normal n . After a compli-Choice of the Free Energy Function.’’
cated series of deduction steps Kralchevsky (6) arrived atFor an ordinary fluid two-phase system minimization of
the following expression for the variation of the free energythe free energy results, first of all, in the well-known chemi-
of a closed interfacial system with fixed overall volume com-cal potential condition for diffusive equilibrium with respect
prising the interface and the adjacent phases, held at constantto the soluble components present. Further, the mathematical
temperature, and for an arbitrary choice of dividing surfaceminimum condition for the free energy contains the pressure

difference, DP , across the interface as a parameter. Solving
for DP , this minimum condition takes the form of a Laplace

dF Å DP **
S

cdS / **
S

(gda / zdbequation.

1 To whom correspondence should be addressed. / BdH / UdD)dS , [2]
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425MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

where the first integral represents the pV -work and where, In terms of s and c the above variations may be written
(6)apart from the term zdb, the integrand of the second integral

is identical to the expression for the infinitesimal work of
surface deformation given by Gibbs (8) . This expression

da Å US :ÇSs 0 2Hc Å ÇSrs 0 2Hc [4]for dF is valid both for the variation of the grand V-potential
of an open interfacial system equilibrated at constant chemi- db Å q :ÇSs 0 2Dc [5]
cal potentials and for the variation of the Helmholtz free

dH Å srÇSH / (H 2 / D 2)c / 1
2Ç

2
Sc [6]energy of an interface containing insoluble adsorbents pro-

vided that the chemical potentials of the components of the
dD Å srÇSD / 2HDc / 1

2q :ÇSÇSc. [7]interface are constant throughout the interface so that there
is no surface diffusion, and finally also for the mixed case, as
shown in the Appendix. For completely rigid solid surfaces,

Further, US Å a 1a1 / a 2a2 (where aa Å Ìr /Ìua are basishowever, Eq. [2] reduces to
vectors on the surface) is the surface identity tensor and q ,
the surface deviatoric tensor, is defined by the relation

dF Å **
S

(gda / zdb)dS [3]

b Å HUS / Dq . [8]

because then we have to set c, dH , and dD equal to zero
Here, by definition, b Å 0ÇSn is the curvature tensor (oreverywhere. This special case was treated earlier by Eriksson
second fundamental tensor) of the interface. Since the princi-(9) and by Rusanov (10).
pal axes of the tensor b are identical to the principal axesIn Eq. [2] above, DP is the pressure difference between
of curvature, the same must hold for the tensor q as followsthe two sides of the interface, H Å 1

2(c1 / c2) the mean
directly from its definition. These tensors obey the orthogo-

curvature, and D Å 1
2(c1 0 c2) the deviatoric curvature, c1 nality relations

and c2 being the principal curvatures of the surface. All the
variations, da, db, dH , and dD are local, i.e., they are func-
tions of the curvilinear surface coordinates (u 1 and u 2) with US :US Å 2; q :q Å 2; US :q Å 0. [9]
the following meaning: da is the relative dilatation of the
dividing surface element dS , and db is the shearing deforma-
tion, while dH and dD are the local variations of H and D , Since b is, of course, diagonal in the basis of the principal
respectively. Further, g is the ordinary (thermodynamic) curvatures (which are, in fact, the diagonal components,
surface tension, z the surface density of shearing free energy, ba

a of the curvature tensor b) , Eq. [8] tells us that the tensor
while B and U are quantities related to the local bending q is also diagonal in the basis of the principal curvatures.
moments of the interface which are defined below. This constitutes a certain limitation of the generality of Eq.

[2] , since the latter is based on the assumption that the rateThe sign conventions for the curvatures c1 and c2 , and the
of deformation tensor, d , can be written in the form2pressure difference DP between the two sides of the inter-

face are related to the direction of the surface normal, n ,
which, as a rule, is assumed to be the outward normal in

ddt å ÇSdR å ÇSs 0 cb Å 1
2daUS / 1

2dbq [10]the case of a surfactant aggregate. This means that the sur-
face normal is directed toward the phase on the (predomi-
nantly) convex side of the interface. Further, since according
to differential geometry, 2H Å 0ÇSrn , where ÇS Å aa(Ì / which, in turn, requires d to be diagonal in the basis of the

principal curvatures. For symmetry reasons, however, thisÌua) is the surface gradient operator, it follows, e.g., that H
requirement is automatically satisfied in the case of cylindri-Å 0(1/R1 / 1/R2) /2 (where R1 and R2 are curvature radii) .
cal and spherical surfactant aggregates. Further, we note thatMore generally we adopt the convention that the curvatures
Eqs. [4] and [5] follow from the definitions da Å US :ddtci are negative when the corresponding principal curves of
and db Å q :ddt . Equations [6] and [7] were derived bynormal section are convex toward the phase to which the
Eliassen (4) (Eq. [7] implicitly) .surface normal is pointing, and we define DP as the pressure

jump when crossing the interface in the direction of the
surface normal. This definition is the opposite of the more
intuitive definition of DP , as, e.g., the pressure difference 2 For a definition of d , which is more general than Eq. [10], see Eq.

[172] below.between the interior and the exterior of a droplet.
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426 LJUNGGREN, ERIKSSON, AND KRALCHEVSKY

The equilibrium condition, dF Å 0 at constant T and over- We next introduce the surface bending moment tensor
all volume V can now be written (irrespective of whether
the system is closed, partially closed or completely open) MS Å 1

2 (BUS / Uq) [15]

dF Å **
S

[gS :ÇSs / (BÇSH / UÇSD)rs]dS
which is also supposed to be diagonal in the basis of the
principal curvatures. The corresponding eigenvalues are de-

/ **
S

[DP 0 2Hg 0 2Dz / (H 2 / D 2)B noted by M1 and M2 . Using another surface divergence theo-
rem for curved surfaces, we obtain

/ 2HDU]cdS / **
S

1
2 (BUS / Uq) :ÇSÇScdS Å 0,

**
S

1
2 (BUS / Uq) :ÇSÇScdS

[11]

where we have introduced the surface tension tensor å **
S

MS :ÇSÇScdS Å **
S

cÇSÇS :MS

gS Å gUS / zq [12]
/ *

C

mrMSrÇScdl 0 *
C

c(ÇSrMS)rmdl [16]
which is likewise diagonal in the basis of the principal curva-
tures.

and finally we getAccording to the ordinary procedure of variational calcu-
lus, c andÇSÇSc (or s andÇSs) cannot be regarded as being
independent of each other. On the contrary, a procedure

dF Å **
S

[(BÇSH / UÇSD) 0 ÇSrgS]rsdS
equivalent to a partial integration has to be undertaken in
order to convert the integrals in the expression for dF into
integrals that contain only c (or s) itself. Considering c and / **

S

c[ÇSÇS :MS / DP 0 2Hg 0 2Dz
its derivatives as being independent would be similar to
setting the terms containing the factors Ì f /Ìy and Ì f /Ìy * / (H 2 / D 2)B / 2HDU]dS / *

C

mrMSrÇScdl
separately equal to zero in the expression for the variation
of I obtained when minimizing the integral I Å * f ( x , y ,

0 *
C

c(ÇSrMS)rmdl / *
C

mrgSrsdl Å 0. [17]y *)dx . For this very reason, the argument invoked by Neogi
and Friberg (11) is false and their resulting DP expression
of restricted validity. The same criticism is implicitly valid

The expression within brackets in the first integral of Eq.also for the derivation of an expression for DP by Melrose
[17] represents the tangential force acting on the surface(3) using parallell displacements.
element dS , and the expression within brackets in the secondWe now make use of a divergence theorem for curved
integral represents the corresponding normal force. Thesesurfaces due to Green, Gauss, and Ostrogradsky (cf. Weath-
expressions are, in fact, nothing else than the functionalerburn (12)) and obtain
derivatives dF /ds(r) and dF /dc(r) , respectively, with r de-
noting the coordinate of the surface element.**

S

gS :ÇSsdS Å *
C

mrgSrsdl The scalar surface tension g is related to the tensor gS in
the following way:

0 **
S

[ÇSrgS / 2HnrgS]rsdS , [13]

g Å 1
2US :gS Å 1

2Tr(gS) Å 1
2 (g1 / g2) , [18]

where C denotes the boundary curve which limits the inter-
face and where the last term in the last integral containing

where g1 and g2 (or more precisely g 1
1 and g 2

2) are the
2H vanishes because gS is a tensor in the tangent plane of

principal components of gS . In an analogue way the shearing
the surface. The unit vector m is perpendicular both to the

tension is given by the relation
tangent of the boundary curve and to the normal vector of
the surface at the boundary and it is directed outward. Thus,

z Å 1
2q :gS Å 1

2 (g1 0 g2) . [19]

**
S

gS :ÇSsdS
From Eq. [16] we directly obtain the Euler–Lagrange equa-
tions for the variational problem with respect to the varia-Å 0**

S

(ÇSrgS)rsdS / *
C

mrgSrsdl . [14]
tions s and c. First,
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427MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

following section, gS in this expression will have to be re-Ç Sg / ÇSr(zq) 0 BÇSH 0 UÇSD Å 0 [20]
placed by yet another surface tension tensor, sS .

The meaning of the bending moment expression mrMSwhich is the condition for lateral equilibrium, and, second,
is most simply understood if, for example, we assume that
the vector m is directed along the basis vector a2 in theDP Å 2Hg / 2Dz 0 (H 2 / D 2)B 0 2HDU 0 ÇSÇS :MS
surface at the boundary. The relevant components of mrMS

[21] will then be M21 and M22 of which M21 represents a torque
on the boundary about the vector m and M22 a torque about
the tangent vector of the boundary curve.which is the condition for equilibrium in the direction per-

The meaning of the term (ÇSrMS)rm for the normalpendicular to the interface.
force on the boundary can be visualized as follows. Assume,It is worth noting that the expression [21] for DP is noth-
for instance, that m points along the u 1 coordinate axising else than an extremum condition for the free energy. To
which, in turn, points in a principal direction of thecalculate the equilibrium shape of the interface under given

conditions, in addition, the numerical value of DP must be
known. Equation [21] can also be regarded as a generalized (ÇSrMS)rm Å (ÇSrMS)ra1 [23]
Laplace equation. We stress that assigning a value to DP is
an integral part of the minimization of the free energy and which is the two-dimensional analogue to the expression for
not an extra, unrelated condition. Moreover, Eq. [20] is the the shearing stress in a loaded beam in the one-dimensional
condition for the chemical potentials to be constant within case.
the interface. The above considerations are of particular importance in

Upon choosing the surface of tension as the dividing sur- connection with bicontinuous microemulsions and so-called
face for an isotropic interface with constant curvature, Eq. L3 phases with internal interfacial structures resembling in-
[21] reduces to the familiar form DP Å 2Hg. finite periodic minimal surfaces. The question about the ex-

ternal closure of such a lattice is, however, unsolved so far
(cf. Ref. (13)) .THE BOUNDARY CONDITIONS

Let us now consider the integrals over the boundary, C , ON THE CHOICE OF THE FREE ENERGY FUNCTION
occurring in Eq. [17]:

The correct thermodynamic analysis of a system consists
of two indispensable steps. First, the boundaries of the sys-*

C

mrMSrÇScdl 0 *
C

c(ÇSrMS)rmdl / *
C

mrgSrsdl . tem must be carefully defined; i.e., it must be prescribed
which parts of the universe that belong to the system and

[22] which do not. Second, the nature of the system must be
clarified and it should be clearly stated which of the (inde-
pendent) thermodynamic variables that are to be held con-These integrals will, of course, be equal to zero if ÇSc, c,

and s all vanish on the boundary. stant and which will be allowed to vary. Surprisingly, these
rather self-evident rules are often overlooked in the litera-The coefficients in front of these variables in the integrals

over the boundary represent the forces or bending moments ture.
For a interface with components that are soluble in theacting on the boundary. Thus, mrgS in principle yields the

stretching force acting on the boundary in the tangent plane adjacent bulk phases (as is often the case) , the interface has
to be treated as a completely open system, for which, atof the surface (not necessarily directed along m) , while

(ÇSrMS)rm yields the force in the direction of the surface equilibrium, the chemical potentials are kept constant. Fur-
ther, if the pressure on the two sides of the interface are notnormal at the boundary, and, finally, mrMS yields the bend-

ing moment acting on the boundary. equal, a small displacement of the interface will always be
accompanied by mechanical PV -work. In order to accountIf any of these forces (moments) is equal to zero on the

whole boundary (or part of it ) this means that the corre- for this, the system definition cannot be limited to the inter-
face itself but portions of the bulk phases on both sides ofsponding variation can be let free on the same part of the

boundary. This is what is referred to in variational calculus the interface must also be included. Assuming the entire
system to be an open one such that matter can pass throughas natural boundary conditions.

The expression mrgS for the stretching force is a two- its borders, we can, without limitation, claim that it has a
constant volume. It now follows that the variables to bedimensional analogue to the expression srn Å nrs in the

three-dimensional case for the force acting at a planar surface held constant are mi , T , and V which are the characteristic
variables of the grand canonical ensemble. The appropriatewith the unit normal vector n , and s being the bulk stress

tensor. However, for reasons to be further discussed in a potential is thus the grand potential, V å F 0 (i Nimi , of
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428 LJUNGGREN, ERIKSSON, AND KRALCHEVSKY

the interface plus those parts of the bulk phases that belong Ç Sg 0 C1ÇSH 0 C2ÇSK / ÇSr(zq) Å 0 [31]
to the system.

On the other hand, if there is no exchange at all of matter and
between the interfacial system and the adjacent bulk phases,
the appropriate free energy to invoke is the overall Helm-

DP Å 2Hg / 2
√

H 2 0 Kz 0 C1(2H 2 0 K)holtz free energy, F . In this case the appropriate variables
are Ni , T , and V . 0 2C2HK 0 1

2Ç
2
SC1 0 2HÇ2

SC2 / b :ÇSÇSC2 . [32]
For partially open interfacial systems the appropriate free

energy to consider is a mixed V-potential /Helmholtz free
This is just another way of writing the minimum free energyenergy where the V-potential part refers to the soluble and
condition for the interface. It is easily shown (7) that Eq.the Helmholtz free energy part to the insoluble components.
[32] agrees with the corresponding generalized Laplace
equation derived by Boruvka and Neumann (5) taking intoTHE GENERAL LAPLACE EQUATION IN THE FORM
account their differing definition of the (isotropic, z Å 0)DUE TO BORUVKA AND NEUMANN
interfacial tension.3 It is also in agreement with a somewhat
less general expression, more recently derived by Ou-YangFor a interface with components that are soluble in the
and Helfrich (15) by a variational method, for the Laplacebulk phases one can easily derive a generalized Gibbs sur-
pressure of a closed (in the geometrical sense) vesicle mem-face tension equation (at constant temperature):
brane.

dg Å 0 ∑
i

Gi dmi / BdH / UdD [24]
DIFFERENT KINDS OF SURFACE TENSIONS

showing that the surface tension g generally depends on the The local work of deformation per unit surface may be
mean and deviatoric curvatures, H and D . Accordingly, by written (2)
way of definition

dwS Å gda / zdb / BdH / UdD . [33]B Å (Ìg /ÌH)T ,mi,D [25]

Apart from the term zdb, this expression was already pro-and
posed by Gibbs (8) . Gibbs tacitly assumed that g1 Å g2

which yields z Å 0, that probably holds for most ordinaryU Å (Ìg /ÌD)T ,mi,H [26]
surfactant interfaces in the liquid state (as opposed to the
gel state) but not necessarily for interfaces of a more compli-

Switching to the Gaussian curvature K Å c1c2 Å H 2 0 D 2

cated structure such as biological membranes or, for that
as independent variable instead of the deviatoric curvature, part, rubber membranes and solid surfaces. Here, g is the
D , we can write Eq. [24] in the form employed by Markin usual ( thermodynamic) surface tension.
et al. (14) When the dividing surface is chosen to be coincident with

the surface of tension (s.o.t.) , the tensor gS will actually
dg Å 0 ∑

i

Gi dmi / C1dH / C2dK [27] yield the ‘‘hydrostatic’’ mechanical tensions in the tangential
plane of the surface. However, especially with the compara-
tively thick interfaces encountered in surfactant aggregates,where
the use of the s.o.t. is mostly nonfeasible. The reason for
this is that for these thick interfaces the s.o.t. is usually

C1 Å (Ìg /ÌH)T ,mi,K C2 Å (Ìg /ÌK)T ,mi,H . [28]
located far away from any natural choice of the dividing
surface such as the hydrocarbon/water interface, and some-

The coefficients B , U and C1 , C2 are interrelated through times even the calculation of the position of the s.o.t. repre-
the relationships sents a complicated mathematical problem in its own right.

Under such circumstances the s.o.t. concept is rather useless
B Å C1 / 2C2H [29] for practical purposes.

At other dividing surfaces than the s.o.t. the ‘‘hydrostatic’’U Å 02C2D . [30]
tensions in the tangential plane of the surface at a given

In terms of the Gaussian curvature, K , and the new variables
C1 and C2 , the Euler–Lagrange Eqs. [20] and [21] can be 3 The Boruvka and Neumann surface tension, gBN, is related to the g

we use by gBN Å g 0 BH 0 UD (6).written in the following alternative way
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429MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

point of the surface are given by a surface tensor, sS , differ- that accompanies the dilatation under conditions of constant
ent from gS . The tensor sS can be written H and D .

In terms of s and h the generalized Laplace equation can
now be written assS Å sUS / hq [34]

with DP Å 2Hs / 2Dh 0 ÇSÇS :MS [42]

s Å 1
2US :sS Å 1

2 (s1 / s2) h Å 1
2q :sS Å 1

2 (s1 0 s2) [35] or, since s Å (s1 / s2) /2 and h Å (s1 0 s2) /2, even more
simply as

s1 and s2 (or more exactly s 1
1 and s 2

2) being the principal
components of the surface tensor sS , assuming, of course, DP Å c1s1 / c2s2 0 ÇSÇS :MS , [43]
that the tensor sS is diagonal in the basis of the principal
curvatures. where c1 and c2 are the two principal curvatures of the sur-

The relation between s and g has been worked out by face. Thus, even if s1 and s2 were both equal to zero, the
Gurkov and Kralchevsky (16). The result is that the infini- bending moment alone might give rise to a DP different
tesimal work of surface deformation amounts to from zero, just as a construction beam can accept a distrib-

uted load although there is no longitudinal tension in the
dwS Å (s / 1

2BH / 1
2UD)da beam. On the other hand, if s1 Å s2 , and if MS is constant

we recover the usual Laplace equation./ (h / 1
2BD / 1

2UH)db / BdH / UdD [36] From the argument above it should be clear that the pure
stretching force acting on the boundary should equal mrsS

and not mrgS .A comparison with the previous expression [33] for dwS

Finally, we note that Eq. [21] can also be writtenthen shows that

g Å s / 1
2BH / 1

2UD [37] DP Å 2Hg / 2Dz 0 (M1c 2
1 / M2c 2

2) 0 ÇSÇS :MS , [44]

z Å h / 1
2BD / 1

2UH [38]
where

with pc Å 0(M1c 2
1 / M2c 2

2) [45]

B Å US :MS Å M1 / M2 [39]
may be termed the curvature pressure, and we have

U Å q :MS Å M1 0 M2 , [40]

DP Å 2Hg / 2Dz / pc 0 ÇSÇS :MS . [46]
where M1 and M2 (or more exactly M 1

1 and M 2
2) are the

principal values of the bending moment tensor MS which is
The curvature pressure is zero at the surface of tension wherediagonal in the basis of the principal curvatures, i.e., in the
the tensor components M1 and M2 vanish. However, as wasprincipal axes of the curvature tensor, b .
pointed out above, to employ the surface of tension as divid-The basic reason for the difference between gS and sS is
ing surface is generally inconvenient for surfactant aggre-apparent already from the expression [33] for dwS above
gates and surfactant-laden interfaces.which shows that dwS Å gda only holds if db, dH , and dD

are equal to zero, i.e., if H and D are kept constant. This
FURTHER DIGRESSIONmeans that a curved surface should result from the dilatation,

ON THE BOUNDARY CONDITIONSwhich implies that the different layers of the interface paral-
lel to the dividing surface will be stretched to different de-

Variational Derivation of the Young Equationgrees, or differently stated, a dilatation is always accompa-
nied by bending which gives rise to the extra terms in the

When deriving Eqs. [20] and [21] we used variations atexpression for s, which may also be written
fixed boundaries, i.e., we set s Å 0, c Å 0, and ÇSc Å 0 at
the contour C in Eq. [17]. The next step is to derive the

g Å s / 1
2 (M1c1 / M2c2) . [41] respective boundary conditions by using variations at mov-

able boundaries.
This time we start by considering a meniscus attached toIt is obvious that 1

2(M1c1 / M2c2)da is the work of bending
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430 LJUNGGREN, ERIKSSON, AND KRALCHEVSKY

variations ÇSc, 1, and l must be equal to zero. As ÇSc
represents the change of meniscus slope at the contact line
at a fixed position of the contact line, one has

trÇSc Å 0, mrÇSc x 0. [52]

Then from Eqs. [49], [51], and [52] we have the following
conditions for equilibrium at the contact line

mrMrm Å 0 [53]

mrgSrez 0 mr(ÇSrM)(nrez) / vI 0 vII Å 0 [54]

mrgSrt Å 0. [55]
FIG. 1. A liquid meniscus which is attached to a solid cylindrical nee-

dle. vI is the excess free energy of the solid/phase I interface, and, vII , The left-hand sides of Eqs. [53], [54], and [55] are the
correspondingly, of the solid/phase II interface. coefficients multiplying the independent variations ÇSc, 1,

and l, respectively. Below, we analyze the implications of
these equations.a vertical solid cylinder (Fig. 1) . (Later we will consider

Let us start with Eq. [55]. In keeping with Eqs. [8] andthe general case.) The variation of points on the contact line,
[12] we derive from Eq. [55] thatC , can be presented in the form

mrbrt Å 0 [56]dR Å 1ez / lt (R √ C) , [47]

showing that the curvature tensor, b , must be diagonal inwhere ez is the unit vector along the vertical and t is the
the basis formed by the vectors m and t at the contact line.running tangent to the contact line; 1 and l denote two
In other words, we can writeindependent infinitesimal displacements. dR has a zero pro-

jection along the normal to the cylinder. Note also that
b Å c1mm / c2tt for R √ C . [57]

mrt Å 0 nrt Å 0. [48]
Besides, from Eqs. [8] and [57] we can derive

From Eqs. [1] , [47], and [48] one obtains
mrqrm Å 1 for R √ C . [58]

sÉR√C Å 1ezrUS / lt , cÉR√C Å 1ezrn . [49]
Next we consider Eq. [53]. In accordance with Eqs. [15]

The expression for the variation, dF, Eq. [17], now contains and [58] we get from Eq. [53]
an additional term, viz.

B / U Å 0 for R √ C . [59]

*
C

(vI 0 vII )1dl , [50]
To elucidate the physical meaning of this equation we recall
that according to Eqs. [39] and [40],

where vI and vII are the surface densities of the grand ther-
modynamic potential for the solid–fluid I and solid–fluid B Å M1 / M2 , U Å M1 0 M2 , [60]
II interfaces, respectively. In fact, Eq. [50] expresses the
variation of the energy of wetting of the solid due to the where M1 and M2 are eigenvalues of the tensor M . By anal-
variation in the position of the contact line. Since Eqs. [20] ogy with Eq. [57] one can write
and [21] hold, the surface integrals disappear and from Eqs.
[17] and [50] we get M Å M1mm / M2tt , R √ C . [61]

Substitution of Eq. [60] into Eq. [59] yieldsdF Å *
C

[mrMrÇSc 0 mr(ÇSrM)c

M1 Å 0, R √ C . [62]/ mrgSrs / (vI 0 vII )1]dl Å 0. [51]

To have dF Å 0, the expressions multiplying the independent For the mechanical meaning of the components of M , see
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431MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

Eq. [60] and Fig. 4c in Ref. (16). Equation [62] implies is the bending moment of a flat interface, which is related
to the spontaneous curvature, H0 :that the interfacial bending moment around the tangent t

must be zero at the contact line.
Finally we consider Eq. [54]. Since trez Å 0, one obtains B0 Å 04kcH0 . [72]

Substitution of Eq. [71] in Eq. [59] yieldsmrgSrez Å mrgSrm(mrez) . [63]

B0 / 2kcc1 / 2(kc / kU c)c2 Å 0, R √ C . [73]Besides, mrez Å cos a, where a is the contact angle (see
Fig. 1) . Then, from Eqs. [12], [54], [58], and [63] we

For the special case of axial symmetry, like the one depictedderive
in Fig. 1, we can write

(g / z)cos a 0 mr(ÇSrM)sin a Å vII 0 vI . [64]

c1 Å
u 9

[1 / (u *)2] 3/2 c2 Å
u *

r[1 / (u *)2] 1/2 , [74]
If the stresses in the liquid interface are laterally isotropic,
i.e., h Å 0 in Eq. [34], then from Eqs. [37] and [38] we
get where z Å u(r) determines the meniscus shape. Hence, Eq.

[73] is a boundary condition relating the derivatives u * and
u 9. It is interesting to note that the boundary condition, Eq.g / z Å s / 1

2 (B / U)(H / D) Å s R √ C . [65]
[73] contains kU c . Yet, kU c does not enter the generalized La-
place equation, cf. Ref. (17).

At the last step we have utilized Eq. [59]. Moreover, it is In addition, for a Helfrich interface (17), we have,
known that

Ç SrM Å 2kcÇSH . [75]
sa(n ) Å 0aa

r(ÇSrM) , [66]

Then, in accordance with Eqs. [59], [64], and [65] one
where sa(n ) is the transversal component of the surface stress obtains the generalized Young equation for a Helfrich inter-
tensor: face such that h Å 0:

s Å sS / aansa(n ) . [67]
s cos a / 2kc

ÌH

Ìm
sin a Å vII 0 vI , [76]

In view of Eqs. [65] – [67], Eq. [64] can be represented in
the form where ÌH /Ìm denotes the directional derivative along m .

mrsrez Å vII 0 vI . [68] Balances of the Linear and Angular Momenta at a
Contact Line

This equation will be useful when comparing with the me-
Stresses and moments. Next we present a hydrostaticchanical approach to the boundary conditions treated below.

derivation of the balances of the linear and angular momentaIn the simplest case when the interfacial shearing and
at a three-phase contact line. This derivation is made afterbending effects are negligible, one has z Å 0, g Å s, and M
Podstrigach and Povstenko (18). In spite of being purelyÅ 0, and Eq. [64] reduces to the classical Young equation:
phenomenological, the hydrostatic approach is conceptually
transparent and yields results in quite a general form.

s cos a Å vII 0 vI . [69] Let us consider a volume, V, containing a part of the
contact line, C , and portions of the adjacent three phases

For a Helfrich interface with curvature-dependent interfacial (see Fig. 2) . V1 , V2 , and V3 are the portions of phases 1, 2,
tension and 3 confined in the volume V ; L12 , L13 , and L23 are the

intersection lines of the surface of volume V with the inter-
g Å g0 / 2kc(H 0 H0) 2 / kU cK [70] faces S12 , S13 , and S23 , respectively. The lines L12 , L13 , and

L23 divide the surface of the volume V into three portions,
we have called A1 , A2 , and A3 , whose outer normals are denoted by

n1 , n2 , and n3 , respectively (see Fig. 2) .
B Å B0 / 2(2kc / kU c)H , U Å 02kU cD , [71] Further, by s1 , s2 , and s3 we denote the bulk stress

tensors in the phases 1, 2, and 3. Similarly, let s12 , s13 , and
s23 be the surface stress tensors of the interfaces S12 , S13 ,where kc and kU c are the two curvature elastic moduli and B0
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V, interfacial stress exerted at the lines L12 , L13 , and L23 ,
and linear stresses exerted at the points P and Q in Fig. 2:

0 Å ∑
3

kÅ1
*

Vk

dVrkfk / ∑
1£iõj£3

*
Sij

dSrijfij

/ *
C

dlrLfL / ∑
3

kÅ1
*

Ak

dAnkrsk

/ ∑
1£iõj£3

*
Lij

d lmijrsij / (lrsL){ . [79]

Here r1 , r2 , and r3 are the mass densities of phases 1, 2,
and 3; f1 , f2 , and f3 are the respective body forces per unit
mass; rij and fij are the respective mass density and body
force for the interface Sij ; likewise, rL and fL are mass density
and body force for the contact line C ; mij is a unit vector
which is simultaneously tangential to the surface Sij and

FIG. 2. Sketch of the volume V which entails a portion of the three- normal to the contour encircling Sij ; finally
phase contact line, C , and is composeed of the volumes V1 , V2 , and V3 of
phases 1, 2, and 3, respectively. For additional information, see text.

(lrsL){ Å lrsLÉP 0 lrsLÉQ

is the contribution of the linear stress to the net force exerted
and S23 , respectively. Note that each of the tensors s12 , s13 ,

on the volume V . Similarly, the net force exerted on the
and s23 has both lateral and transversal components with

volume V1 reads
respect to the interface, cf. Eq. [67]. Finally, by sL we
denote the linear stress tensor at the contact line C .

The tensors of the interfacial moments in the surfaces S12 , 0 Å *
V1

dVr1f1 / *
A1

dSn1rs1
S13 , and S23 are denoted by M12 , M13 , and M23 ; they are
analogues of the symmetric tensor M defined by Eq. [15].
We will also use the tensors N12 , N13 , and N23 defined as / *

S12

dSn12rs1 / *
S13

dSn13rs1 , [80]
follows (15):

where n12 and n13 are the unit normals to the surfaces S12N12 Å 0M12r1 , N13 Å 0M13r1 , N23 Å 0M23r1 , [77]
and S13 . The balance of the forces exerted at the surface S12

yields
where the components of 1 Å 1abaaab are alternators in the
respective surfaces. The mechanical meaning of the compo-

0 Å *
S12

dSr12f12 0 *
S12

dSn12r(s1 0 s2)nents of the M- and N-type tensors is illustrated in Fig. 4
of Ref. (16). In addition we also introduce the linear tensor
of moments exerted at the contact line, NL . In general, the

/ *
L12<C

dlm12rs12 . [81]linear tensors sL and NL can be represented in the form (3)

sL Å s (g )k
L lek NL Å N (g )k

L lek , [78] By using Eqs. [80] and [81] and analogous expressions for
V2 , V3 , S13 , and S23 from Eq. [79] we get

where e1 å ex , e2 å ey , and e3 å ez are the unit vectors of
the Cartesian axes; l is the running unit tangent to the con-

0 Å *
C

dlrLfL 0 *
C

dl(m12rs12 / m13rs13tact line C .

Balance of the linear momentum. At hydrostatic equilib-
/ m23rs23) / (lrsL){ . [82]rium the net force and the net moment exerted at the volume

V must be equal to zero. Let us start with the force balance.
The force exerted on the volume V is a superposition of Finally, by making use of the Newton–Leibnitz theorem,

viz.body force, bulk stresses exerted at the surface of the volume
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0 Å *
V1

dVr1f1 1 r / *
A1

dS(n1rs1) 1 r*
C

dlÇLrsL Å (lrsL){ , ÇL å l
Ì
Ìl

[83]

/ *
S12

dS(n12rs1) 1 r / *
S13

dS(n13rs1) 1 r [89]we derive

ÇLrsL / rLfL Å m12rs12 / m13rs13 / m23rs23 . [84]
0 Å *

S12

dS[r12f12 / n12r(s1 0 s2)] 1 r
Hence, for the system depicted in Fig. 1 one derives from
Eq. [82] (linear effects negligible) / *

L<C

dlm12r(s12 1 r / N12) . [90]

0 Å ezrs12rez 0 ezrs13rez / mrs23rez [85]
By using Eqs. [89] and [90] and similar expressions for V2 ,
V3 , S13 , and S23 from Eqs. [88], [83], and [84] one deriveswhere we have substituted m12 Å 0m13 Å ez , m23 Å /m ;

further, setting ezrs12rez Å vI ; ezrs13rez Å vII and s23 Å
ÇLrNL / lrsL 1 ls one recovers the Young equation, Eq. [69].

If the linear body force term in Eq. [84] is negligible and Å m12rN12 / m13rN13 / m23rN23 [91]
if

where we have used the identity
s12 Å s12U12 , s13 Å s13U13 ,

ÇLr(sL 1 r) Å (ÇLrsL) 1 r / lrsL 1 l . [92]s23 Å s23U23 , sL Å sLll [86]

Equation [91] expresses the local balance of the linear mo-with Uij being the unit tensor of the surface Sij , then Eq.
mentum. Let 1ij be the alternator in the surface Sij . Then[82] reduces to a generalized form of a Neumann triangle

(16):
1ijrl Å mij (R √ C) [93]

m12rs12 / m13rs13 / m23rs23 Å ksLm /
ÌsL

Ìl
l . [87] Upon neglecting the line tension effects in Eq. [89] and

multiplying by l one obtains

Here m is the unit normal vector of the contact line, C , and
m12rM12rm12 / m13rM13rm13 / m23rM23rm23 Å 0

k is the geodesic curvature of C ; we have used the Frenet
formula Ìl/Ìl Å km . Various special cases of Eq. [87] [94]
(with line tension terms) were derived and/or used by Vese-
lovsky and Pertzov (19), Pethica (20), Torza and Mason where Eqs. [77] and [88] have been used. In fact, Eq. [92]
(21), Pujado and Scriven (22), Lane (23), Ivanov et al. is a more general form of Eq. [53].
(24), etc. Note that in the general case Eq. [82] also contains

Discussiona contribution from the interfacial bending moments hidden
in the transversal components of sij , cf. Eq. [66]. It is instructive to illustrate the application of the derived

Balance of the angular momentum. The net moment equations as boundary conditions for a specified problem.
(torque) exerted on the volume V is Let us consider the ‘‘meniscus on a needle’’ depicted in Fig.

1 for a small meniscus slope when the Laplace equation can
be linearized:0 Å ∑

3

kÅ1
*

Vk

dVrkfk 1 r / ∑
1£iõj£3

*
Sij

dSrijfij 1 r

sÇ2
IIu 0 kcÇ

2
IIÇ

2
IIu Å guDr

/ *
C

dlrLfL 1 r / ∑
3

kÅ1
*

Ak

dA(nkrsk) 1 r SÇ 2
II å ex

Ì
Ìx
/ ey

Ì
Ìy D . [95]

/ ∑
1£iõj£3

*
Lij

d l[(mijrsij) 1 r / mijrNij]

Here Dr is the difference in density between the lower and
/ (lrsL 1 r){ / (lrNL){ . [88] upper phases and g is the gravity acceleration. To obtain Eq.

[95] we have used that DP Å guDr (flat interface at infin-
ity) and we have assumed a Helfrich interface. In fact, thisIn a similar way one can write expressions for the net mo-

ment exerted at the volume V1 and the surface S12 : equation is a fourth-order ordinary differential equation (u
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Å u(r)) and four boundary conditions are needed. One of k01
1 Å 2.7 1 1003 m k01

2 Å 2.4 1 10010 m [105]
them is

showing that k01
2 is extremely small (molecular length

scale) . The physical meaning of the solutions of the macro-lim
rr`

u(r) Å 0. [96]
scopic Laplace equation with a microscopic decay length is,
of course, problematic.

The second one stems from Eq. [76] where the term with If one disregards all solutions of Eq. [102] having a mo-
sin a is negligible in a linear approximation: lecular decay length, it reduces to

(du /dr) rÅrC
Å 0cot a; cos a Å (vII 0 vI ) /s. [97] (Ç 2

II 0 k 2
1)u Å 0. [106]

The third boundary condition originates from Eq. [56]. In This is a second-order differential equation which is to be
a linear approximation one has solved in conjunction with the boundary conditions, Eqs.

[96] and [97].
The bending moment effects, and the boundary conditions

n Å ez 0 ÇIIu

(1 / ÉÇIIuÉ
2) 1/2 É ez 0 ÇIIu [98] [100] and [101], can become important when the interfacial

tension is very low and k01
2 is comparable to k01

1 , viz.,
b Å 0ÇSn É ÇIIÇIIu [99]

s É (gkcDr)1/2 É 6 1 1006 mN/m. [107]
and consequently

Such low interfacial tensions may exist in critical emulsions
and microemulsions.0 Å brw Å

Ì 2u

ÌrÌw
0 1

r

Ìu

Ìw
(R √ C) , [100]

MICROMECHANICAL EXPRESSIONS FOR SURFACE
EXCESS QUANTITIESwhere (r , w) are polar coordinates in the plane xy . This

boundary condition is automatically satisfied in view of the
All the relevant interfacial quantities can be expressed asaxial symmetry. The last boundary condition stems from

integrals over the three-dimensional pressure tensor, P , ofEqs. [72] – [74]:
the interface regarded as a three-dimensional body. The pres-
sure tensor is simply the negative of the three-dimensional

B0 / 2kc
d 2u

dr 2 / 2(kc / kU c)
1
r

du

dr
Å 0 (R √ C) [101] mechanical stress tensor s ( to be distinguished from the

two-dimensional mechanical stress tensor, sS) . The pressure
tensor must, of course, satisfy the mechanical equilibrium

where again the linear approximation was used. condition
Next, let us consider the problem from another point of

view. One can represent Eq. [95] in the form
ÇrP Å 0 [108]

(Ç 2
II 0 k 2

1)(Ç 2
II 0 k 2

2)u Å 0, [102] which for a spherical aggregate can be written

where d(r 2PN) /d(r 2) Å PT [109]

ork 2
1,2 Å

s

2kc

[1 { (1 0 4kcgDr /s 2) 1/2 ] . [103]

r 2[dPN /d(r 2)] Å PT 0 PN . [110]
In a first approximation to Eq. [103] one obtains

The corresponding equation for a cylindrical aggregate has
the following formk 2

1 É gDr /s; k 2
2 É s /kc . [104]

d(rPrr) /dr Å Pww . [111]k01
1 and k01

2 determine two characteristic decay lengths,
which, in fact, are the decay lengths of the solutions of the

Next we introduce the excess pressure tensorequations (Ç 2
II 0 k 2

1)u Å 0 and (Ç 2
II 0 k 2

2)u Å 0. For a
water/air interface we have s Å 72 mN/m, Dr Å 1000 kg/
m3, kc Å 4 1 10021 J and one calculates P s Å P 0 PabU [112]

AID JCIS 4961 / 6g2c$$$426 07-22-97 11:06:32 coida



435MINIMIZATION OF FREE ENERGY OF CURVED INTERFACES

where U is the three-dimensional (or bulk) identity tensor,
g Å 01

2 *
l2

l1

US :P sxdl; z Å 01
2 *

l2

l1

q :P sxdl [121]
related to US in the following way

andU Å US / nn [113]

bearing in mind that US Å a 1a1 / a 2a2 . Further, s Å 01
2 *

l2

l1

L :P sdl; h Å 01
2 *

l2

l1

(qrL) :P sdl. [122]

Pab Å HPa if l õ 0

Pb if l ú 0
Further

M Å 1
2 *

l2

l1

LrP sldl [123]
where l is a coordinate along the surface normal and equal
to zero at the dividing surface, and Pa is the homogeneous

which is a tensor in three dimensions. The correspondingisotropic pressure ‘‘below’’ the interface and Pb the corre-
two-dimensional surface tensor equalssponding pressure ‘‘above’’ the interface. We then have the

following micromechanical definitions of the surface tension
MS Å 1

2 (USUS / qq) :M Å 1
2 (BUS / Uq) [124]tensors:

as was already anticipated above. Since B Å 1
2US :M and U

g Å 0 *
l2

l1

P sxdl s Å 0 *
l2

l1

LrP sdl [114]
Å 1

2q :M it follows that

The tensor L is defined as
B Å *

l2

l1

L :P sldl; U Å *
l2

l1

(qrL) :P sldl. [125]

L Å (1 0 2lH)US / lb [115]

In the equations for g and z above, the variable
It serves the following purpose. In order to calculate the
tangential tensions and the bending moments we need to x Å (1 0 lH)2 0 l 2D 2 Å 1 0 2lH / l 2K [126]
know the forces acting upon a vectorial surface element,
dSorth , of a sectorial strip that is perpendicular to the dividing is recognized as the local dilatation factor for the area of a
surface. Then, according to Eliassen (4) parallel surface compared to that of the dividing surface.

In connection with the work of formation of the interface
dSorth Å nrLdldl , [116] at constant chemical potentials we define another quantity

where n is a vector in the tangent plane of the dividing dwf /da Å 01
2 *

l2

l1

US : (P 0 PbU)xdl
surface, normal to the above-mentioned perpendicular secto-
rial strip at values of l different from zero. Then nrL is a
vector perpendicular to the sectorial strip. Å g 0 *

0

l1

(Pa 0 Pb)xdl Å g 0 DP *
0

l1

xdl
Further, since

[127]
s Å 1

2US :s; g Å 1
2US :g [117]

Then, per unit surface,
h Å 1

2q :s; z Å 1
2q :g [118]

dwf Å gda 0 daDP *
0

l1

xdl. [128]
which, due to the orthogonality of US and q , is consistent
with Eqs. [12] and [34], i.e.,

Thus, the work of formation at constant chemical potentials
is closely related to the deformation work for pure dilatation.gS Å gUS / zq [119]
As was pointed out above, the infinitesimal deformation

sS Å sUS / hq [120] work is the same in an open and in a closed system (in the
thermodynamic sense) . Finally, we note that if DP Å 0 it
follows that dwf Å gda. As to the interpretation of l1 weit follows that
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remark that for a closed spherical or cylindrical aggregate h is, of course, equal to zero for a spherical surface implying
that g and s are equal at the s.o.t. where M Å 0. The workl Å l1 corresponds to r Å 0.

Below, we treat the special cases of spherical and cylindri- of formation of a spherical aggregate at constant chemical
potentials amounts tocal interfaces. Some of the formulas quoted have been pub-

lished earlier, cf. Ref. (16).
Finally, it should be mentioned that Eqs. [121] and [125]

wf Å 4p *
`

0

(Pb 0 PT )r 2dr Å 4pR 2gwere first published in Ref. (25).

The Spherical Interface 0 4p *
R

0

(Pa 0 Pb)r 2dr
As an example of the application of the above relations

Å (4pR 2 /3)(g / BH 2 /R)we will take the case of a spherical interface. If the radius
of the dividing surface is denoted by R , the following rela- Å (4pR 2 /3)(g / B /R)
tions ensue

Å (4pR 2 /3)(g / pcR) [135]

g Å 1
R 2 *

`

0

(Pab 0 PT )r 2dr; s Å 1
R *

`

0

(Pab 0 PT )rdr
This work may be written in several different ways

[129]

wf Å 4p *
`

0

(Pb 0 PT )r 2dr Å (4p /3) *
`

0

(PN 0 PT )r 2drwhere, now,

Å 2p *
`

0

(PN 0 Pb)r 2dr . [136]
Pab Å HPa if r õ R

Pb if r ú R

The radius of the surface of tension, Rsot , is obtained by
setting B and pc equal to zero. We obtainFurther,

R 3
sot Å

6
Pa 0 Pb

*
`

0

(Pb 0 PT )r(r 0 R)drB Å 0 2
R *

`

0

(Pab 0 PT )r(r 0 R)dr [130]

Å 6
Pa 0 Pb

*
`

0

(Pb 0 PT )r 2drThus,

g Å s / 1
2BH . [131] Å 2

Pa 0 Pb
*

`

0

(PN 0 PT )r 2dr

The Laplace equation reads
Å 3

Pa 0 Pb
*

`

0

(PN 0 Pb)r 2dr [137]

DP Å 2Hg 0 BH 2 Å 2Hs [132]

where we have also used the condition of mechanical equi-
with H Å 01/R . The negative of curvature pressure, 0pc , librium
equals BH 2 Å B /R 2 . The condition of lateral mechanical
equilibrium requires that ÇSg and BÇSH should both be
equal to zero, which is obviously satisfied on a sphere. Fi- *

`

0

(Pb 0 PT )rdr Å 0. [138]
nally

Equation [138] can be obtained by substituting the LaplaceM Å M1 Å M2 Å 0
1
R *

`

0

(Pab 0 PT )r(r 0 R)dr Å B /2
equation s Å (Pa 0 Pb)Rs.o.t. /2 in Eq. [129].

[133]
The Cylindrical Interface

whence For a cylindrical surface we have quite generally H Å D
Å 01/2R and l Å r 0 R where R is the radius of the
dividing surface, andg Å s / BH /2 Å s / Mc . [134]
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L Å (1 0 2lH)US / lb . [139] z Å h / 1
2 (B / U)H Å h 0 Mww /2R . [150]

We then have Thus, for a cylindrical surface

g 0 z Å s 0 h. [151]g Å 01
2 *

`

0

(Ps
ww / Ps

zz)
r

R
dr [140]

Cylindrical Micelles
and

Simple mechanical equilibrium considerations show that
a freely floating cylindrical object must satisfy the condition

z Å 01
2 *

`

0

(Ps
ww 0 Ps

zz)
r

R
dr [141] sww Å 2szz as is shown in Eq. [155] below. On the other

hand, a perfectly fluid interface must be isotropic in the
tangent plan of the interface, i.e., sww Å szz . We conclude

and further that aggregates with a perfectly fluid surface cannot have a
cylindrical shape.

A completely different case is presented by solid elasticsww Å 0 *
`

0

Ps
wwdr; szz Å 0 *

`

0

Ps
zz

r

R
dr [142]

interfaces, e.g., rubber membranes. Another interesting case
is that of rod-shaped micelles which are considered to have at

Mww Å *
`

0

Ps
ww(r 0 R)dr; Mzz Å *

`

0

Ps
zz

r

R
(r 0 R)dr least an approximately cylindrical shape. We must, therefore,

conclude that the entanglement of the hydrocarbon chains
endows the interface (which comprises the whole of the[143]
micelle) with sufficient rigidity to support anisotropic ten-
sions in the tangent plane of the dividing surface so thatand
the condition sww Å 2szz is satisfied. Such interfaces are
sometimes said to be fluid since the surfactant molecules are

s Å 01
2 *

`

0
SPs

ww /
r

R
Ps

zzDdr Å 1
2 (sww / szz) [144] able to exchange places, but then mainly by reptation. In

the following we exclusively treat the idealized case where
this condition (i.e., sww Å 2szz) is satisfied exactly.

Mechanical equilibrium with respect to two sections, oneand
at right angles to the cylinder axis and another containing
the axis, requires that

h Å 01
2 *

`

0
SPs

ww 0
r

R
Ps

zzDdr Å 1
2 (sww 0 szz) [145]

*
`

0

(Pzz 0 Pb)rdr Å 0 [152]

and

*
`

0

(Pww 0 Pb)dr Å 0 [153]

B Å *
`

0
SPs

ww /
r

R
Ps

zzD(r 0 R)dr Å Mww / Mzz [146]
The micromechanical definitions of sww and szz , Eq. [142],
then yield, after simple calculations,

and
sww Å R(Pa 0 Pb) ; szz Å 1

2R(Pa 0 Pb) [154]

UÅ*
`

0
SPs

ww0
r

R
Ps

zzD(r0 R)drÅMww0Mzz . [147] whence

szz Å 1
2sww . [155]

It follows that

Thus, according to Eq. [142]Mww Å 1
2 (B / U) ; Mzz Å 1

2 (B 0 U) . [148]

*
`

0

Ps
wwdr Å 2 *

`

0

Ps
zz

r

R
dr . [156]Then Eqs. [37] and [38] reduce to

g Å s / 1
2 (B / U)H Å s 0 Mww /2R [149] Finally, according to Eq. [141] we have
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Finally, Eq. [157] may be written
z Å 0 1

2R *
`

0

Ps
ww(r 0 R /2)dr . [157]

02Rz Å *
`

0

Ps
ww(r 0 R /2)dr [165]

An important quantity in the thermodynamics of micelle
solutions is the work of formation at chemical equilibrium,

from which we conclude that the integral on the right-handi.e., when the chemical potential of surfactant monomers in
side must be independent of R and equal to zero, althoughthe solution is the same as for the surfactant molecules in
this may not be immediately apparent. However,the micelles. The work of formation of a cylindrical micelle

can be written in two different ways corresponding to two
different modes of formation at constant chemical potentials. *

`

0

Ps
ww(r 0 R /2)dr Å *

`

0

(Pww 0 Pab)(r 0 R /2)dr
In the first mode, the cylindrical part is stretched very

slowly in the z-direction so that chemical equilibrium is
Å *

`

0

(Pww 0 Pb)(r 0 R /2)dr / *
R

0

(Pb 0 Pa)maintained all the time. Then,

1 (r 0 R /2)drÅ *
`

0

(Pww 0 Pb)rdrwf (z) Å 02pDL *
`

0

(Pzz 0 Pb)rdr . [158]

0 (R /2) *
`

0

(Pww 0 Pb)dr / 0
From Eq. [152] it follows directly that

Å wf (w) /2pDL 0 0 / 0 Å 0. [166]
wf (z) Å 0 [159]

which implies that the right-hand side of Eq. [165] is inde-
In the second mode the cylindrical part is formed by letting pendent of R and equal to zero.
a wedge-shaped cylindrical sector ( like a piece of cake) According to Eq. [43]
grow from w Å 0 to w Å 2p in analogy with the growing
spherical cone generally used to calculate the work of forma- DP Å 0sww /R [167]
tion of a spherical droplet. Thus,

while according to Eq. [46]

wf (w) Å 02pDL *
`

0

(Pww 0 Pb)rdr . [160]
DP Å 0g /R 0 z /R / pc Å 0g1 /R / pc [168]

From Eqs. [157], [158], and [160] it follows directly that where, according to Eq. [45] and the micromechanical equa-
tions, it is easy to show that

Rz Å 1
4pDL

[wf (w) 0 wf (z)] . [161]
pc Å 0Mww /R 2 Å g1 /R 0 sww /R .

Hence,However, the right-hand side of Eq. [161] is manifestly inde-
pendent of the radius R of the dividing surface. It follows

DP Å 0g1 /R / g1 /R 0 sww /R Å 0sww /R [169]that Rz is invariant with respect to R . Further, since, for
physical reasons, the work of formation must be the same

as before, demonstrating full consistency.in the two modes of formation, we must have wf (w)Å wf (z)
Å 0, and consequently

GENERALIZATION TO SURFACE STRAIN AND STRESS
TENSORS THAT ARE NOT DIAGONAL IN THE BASISz Å 0. [162]

OF THE PRINCIPAL CURVATURES

From Eqs. [18] and [19] it follows that g / z Å g1 and g The tensors US and q are mutually orthogonal but they
0 z Å g2 . Hence, do not form a complete set of basis tensors. Thus, only

such tensors that are diagonal in the basis of the principal
g1 Å g2 Å g [163] curvatures can be expressed as a linear combination of US

and q . If we take the analogous case of the Pauli spin matri-
Further, from Eqs. [140] – [142] we deduce that ces we know that four 2 1 2 basis matrices are required to

express an arbitrary 2 1 2 matrix. They are the 2 1 2 unit
matrix, e , and the Pauli spin matrices, sx , sy , and sz , ofg1 Å g2 Å g Å szz [164]
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which e and sz are diagonal, which means that only diagonal branes, no reason why sS should be diagonal in the basis
of the normal curvatures, the definition equation, Eq. [34],matrices can be expressed as linear combinations of e and

sz alone. Thus, it was explicitly admitted in the theory of will now be generalized to read
Gurkov and Kralchevsky (16) repeated above, that the rate
of deformation tensor

sS Å sUS / hq / h1q1 , [175]

d Å 1
2ah US / 1

2bg q [170]
where

was assumed to be diagonal in the basis of the principal
curvatures as follows directly from its form. This constitutes s Å 1

2US :sS; h Å 1
2q :sS; h1 Å 1

2q1 :sS . [176]
a limitation of the admissible deformations, dR .

A completely general deformation rate can be represented
Then,in the basis of the principal curvatures as

sS :d Å sa
h
/ hbg / h1bg 1 . [177]2d Å a

h S1 0

0 1D / bg S1 0

0 01D / bg 1S0 1

1 0D [171]

Further, according to Gurkov and Kralchevsky (16), the rate
where the three matrices correspond to e ( the unit matrix) ,

of deformation work per unit surface equals
sz , and sx . The matrix

dws

dt
Å sS :d / MS :S Ìb

Ìt
0 brdD . [178]q2 Å S 0 1

01 0D
proportional to sy is not included because it is antisymmetric

The first term on the right-hand side has already been evalu-( the deformation tensor being, by definition, symmetric) and
ated above. The second term obviously depends on the naturebecause it would represent a pure rotation. In tensor form
of MS . In the general case the calculus becomes extremelythe above equation can be written in the following way
involved. However, in the special case where MS is diagonal(replacing Eq. [10])
in the basis of the normal curvatures, which may possibly
be a less stringent condition, at least for isotropic interfaces,2d Å a

h
US / bg q / bg 1q1 , [172]

than the corresponding condition applied to sS , the second
term in the above equation for dws /dt will contain no contri-where q1 is obtained from q by rotation through an angle
bution whatever from the term 1

2bg 1q1 in the expression forequal to 457 about the surface normal. Then Eq. [9] may be
extended by the following relations d as is easily shown using the tensor relation

q1 :q1 Å 2; US :q1 Å 0; q :q1 Å 0 A : (BrC) Å (ArB) :C . [179]
qrq1 Å q2; qrq2 Å q1; q1rq2 Å q . [173]

This, in turn, implies that Eq. [A11] in the article by Gurkov
Further, it can be shown that and Kralchevsky (16) remains valid although the tensors sS

and d are not diagonal in the basis of the principal curvatures.
q1rq1 Å qrq Å US [174] We thus obtain the following slightly modified form of Eq.

[36]
In summary, we may say that from a qualitative point of

view, Eq. [170] describes deformations of dilation and shear
dwS Å (s / 1

2BH / 1
2UD)da / (h / 1

2BD / 1
2UH)dbengendered by the bending and twisting of the interface.

From this viewpoint the new term with the tensor q1 in
Eq. [172] describes an additional (rate of) shear which is / BdH / UdD / h1db1 [180]
independent (or not coupled with) the changes in the interfa-
cial shape. Such a shear deformation may, for instance, be

Thus, if Eq. [33] is modified to read
due to a two-dimensional convective flow of the surface
molecules.

Since there is, in general, for completely arbitrary mem- dwS Å gda / zdb / z1db1 / BdH / UdD [181]
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we have the following relations s2) . Instead, Eq. [43] should be replaced by the more gen-
eral expression

g Å s / 1
2BH / 1

2UD [182]
DP Å b :sS 0 ÇSÇS :MS [192]

z Å h / 1
2BD / 1

2UH [183]
which is always valid. Finally, we note that Eqs. [41], [44],

z1 Å h1 [184] and [45] remain valid, while the last membrum of Eq. [19]
no longer holds. Equation [41] may also be written in the

Returning to the minimum conditions, we note again that following way

g Å s / 1
2b :MS [193]ddt Å ÇSs 0 cb . [185]

This means that in addition to the variations in Eqs. [4] – and Eq. [45] as follows
[7] we have the additional variation

pc Å US : (brMSrb) . [194]
db1 Å q1 :ddt Å q1 :ÇSs . [186]

Finally, it should be pointed out that both M and s of
surfactant-laden interfaces in a fluid state at equilibrium areFrom Eq. [185] it also follows that
most likely to be diagonal in the basis of the principal curva-
tures, since, locally, there will be no preferential directionsda Å US :ddt Å US :ÇSs 0 2Hc
in the surface except the directions of principal curvature.

and
CONCLUSION

db Å q :ddt Å q :ÇSs 0 2Dc, In the present paper several novel forms are derived of
the Laplace equilibrium condition in the normal direction

i.e., we have recovered Eqs. [4] and [5]. for a flexible interface of arbitrary curvature. Additionally,
In the integrand of the second integral in Eq. [2] we we have treated the associated boundary conditions in some

now have an additional term z1db1 , and Eq. [12] should be depth. Finally, we have indicated the route along which an
replaced by even more generally valid thermodynamics can be generated

by refraining from making the assumption that the rate-of-
strain d tensor is diagonal in the basis of the principal curva-gS Å gUS / zq / z1q1 . [187]
tures.

Then, Eq. [19] should be replaced by the two equations
APPENDIX

z Å 1
2q :gS [188] According to Kralchevsky (6), Eq. [4.19], the variation

of the Helmholtz free energy of an interface per unit surface
z1 Å 1

2q1 :gS [189] equals

Equation [21] for DP remains unaffected, but Eq. [20] dfs Å 0ssdT / ∑
N

kÅ1

mkdGk 0 (g 0 vs)da
should be replaced by

/ zdb / BdH / UdD [195]
Ç SrgS 0 BÇSH 0 UÇSD Å 0 [190]

where vs is the grand V-potential of the interface per unit
or surface, i.e.,

Ç Sg / ÇSr(zq / z1q1) 0 BÇSH 0 UÇSD Å 0 [191]
Vs Å **

S

vsdS [196]

from which it follows that Eq. [42] remains valid as is also
true for Eq. [44]. On the other hand, Eq. [43] does not hold and the other quantities are those familiar from the extended

Gibbs equation for the work of deformation (2)any longer since h Å 1
2q :sS is no longer equal to 1

2(s1 0
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Adding the contribution from the bulk phases we obtaindws Å gda / zdb / BdH / UdD . [197]
Eq. [2] .
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