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Abstract 

A semiempirical expression is proposed to describe the dependence of the oscillatory surface force on both film thickness 
and particle volume fraction for a hard sphere fluid between hard walls. The expression is tested successfully against the 
predictions of integral equations, computer simulations and experimental data for liquid films containing ionic and nonionic 
surfactant micelles. The proposed expression can be used to interpret experimental data for stability of liquid films and 
colloidal dispersions, or can be incorporated in complex theoretical models of dynamics of liquid film drainage, or kinetics 
of flocculation in emulsions and suspensions. 

1. Introduction 

For the last 15 years a number of non-DLVO 
surface forces have been discovered experimentally 
[1]. One of them is the oscillatory structural force, 
which is the subject of the present Letter. It appears 
in two cases: (i) in thin liquid films between two 
smooth solid surfaces and (ii) in liquid films contain- 
ing colloidal particles, e.g. surfactant micelles or 
macromolecules. In the first case the oscillatory 
forces are called the 'solvation forces' [2] as the 
period of oscillations is of the order of the diameter 
of a solvent molecule; they contribute to the short- 
range interaction between molecularly smooth solid 
surfaces. In the second case the structural forces 
affect the stability of foam and emulsion films as 
well as the flocculation processes in various colloids. 
At higher particle concentrations these colloid struc- 
tural forces stabilize the liquid films and dispersions 
[3-5]. At lower particle concentrations the structural 
force degenerates into the so-called depletion force, 

which is found to destabilize various dispersions 
[1,6]. 

It all cases the oscillatory structural forces appear 
when spherical particles are confined in the gap 
between two surfaces. As shown in many theoretical 
works, even one planar wall induces ordering among 
the neighbouring particles which propagates at some 
distance in the depth of the liquid. The oscillatory 
structural force is a result of the overlap of the 
structural zones at two approaching surfaces, see 
Refs. [1,7,8] and the literature quoted therein. 

The oscillatory structural forces can be directly 
measured by means of the surface force apparatus 
[2]. This method is successfully applied to detect 
solvation oscillatory forces [1,2], depletion forces [9], 
and colloid structural forces due to surfactant mi- 
celles [10] or mieroemulsion droplets [11]. Another 
experimental tool for studying tl~e colloid structural 
forces is provided by the phenomenon stratification, 
i.e. step-wise thinning of a foam or emulsion type 
liquid film containing colloidal particles. Nikolov et 
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al. [3-5,12,13] and Bergeron and Radke [14,15], 
demonstrated that the step-wise transitions represent 
a manifestation of structural forces. It is worthwhile 
noting the universality of stratification: it is observed 
with particle diameters varying between 5 nm and 2 
~xm [13]. This is an indication for size invariancy of 
the volume exclusion effect due to particles involved 
in Brownian motion. 

The oscillatory structural force can be accounted 
for by adding an extra term, Hos, in the DLVO 
expression for the disjoining pressure [12,15], 

n ( h )  = n v w ( h )  + no (h) + nos(h). (1) 

Here Hvw is the van der Waals disjoining pressure 
[16,17], 

An 
Hvw = 67rh 3 (2) 

(h is film thickness, A a is Hamaker constant) and 
//~1 is the electrostatic disjoining pressure [18] 

H¢l = 64nokT t a n h 2 ~  exp( - xh) ,  (3) 

where k is Boltzmann constant, T is the temperature, 
n o and Ze are the bulk concentration and charge of 
the ions of a symmetrical Z : Z  electrolyte, K is the 
Debye screening parameter, O~ is the surface electro- 
static potential. Both Eqs. (2) and (3) have an ap- 
proximative character, but nevertheless they have a 
wide range of validity and are very convenient for 
application; the reason is that Eqs. (2) and (3) give 
the zeroth-order effect and the more rigorous (and 
complicated) theories yield only higher-order correc- 
tions. 

Until now such a convenient zeroth-order expres- 
sion for //o~ is missing. The integral equations of 
statistical mechanics lead to sophisticated computa- 
tional procedures for Ho~ [7,8,19,20]. Our aim in the 
present study is to construct a simpler expression for 
Hos which is to represent correctly the dependence 
of Hos on both film thickness (slit width), h, and 
particle volume fraction, q~. Being stimulated by the 
utilizability of such an expression, we pursue our 
goal even at the cost of some empiricism. Below we 
propose a formula for Ho~, which is further tested 
against the predictions of integral equations, com- 
puter simulations and experimental data for stratify- 
ing films. 

2. Expression for the oscillatory structural force 

2.1. Period and decay length 

For the sake of estimates Israelachvili [1] used an 
approximated expression 

[ 2~rh 1 e x p ( - h ) ,  (4) 
nos(h)  --- - k ps( ) cos I - -2 - -  J 

where p~(~) is the particle concentration in the sub- 
surface layer for h ~ 0% both the oscillatory period 
and the characteristic decay length are set equal to 
the particle diameter, d [21]. On the other hand, the 
works on stratifying films quoted above indicate that 
the period can depend on the particle volume frac- 
tion. To elucidate this point we examined the predic- 
tions of the theory by Henderson [20]. The latter 
theory is based on an inversion of the Laplace 
transforms of the radial correlation functions deter- 
mined by Lebowitz [22] for a mixture of larger and 
smaller hard spheres in the framework of the Per- 
cus-Yevick closure. At a certain point of the deriva- 
tion the radius of the larger spheres is set infinitely 
large and thus the interaction between two walls is 
determined. 

By using Henderson theory [20] we calculated 
Hos for various volume fractions of the (smaller) 
hard spheres, ~. The results confirm that in a first 
approximation Ho~ is a periodical function of h 
with an exponential decay (for h > d). The oscilla- 
tory period, dl, and the decay length, d2, calculated 
by averaging over many consecutive maxima and 
minima, are listed in Table 1 for five different values 
of ~. The data show that d 1 --- d z ~ d only around 
q~ --- 0.4. For smaller volume fractions (~p -- 0.1) d 1 

increases with -~ 20%, whereas d e decreases more 
than three times. The latter fact, coupled with the 

Table 1 
Period dl and decay length d 2 (scaled by the particle diameter d) 
for various hard sphere volume fractions, ~p, as predicted by 
Henderson theory [20] 

~p d 1 /d  d 2 / d  

0.1 1.234 0.317 
0.2 1.124 0.476 
0.3 1.040 0.696 
0.4 0.973 1.053 
0.5 0.910 1.583 
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circumstance that d 2 takes place under the sign of an 
exponent, implies a strong concentration dependence 
of Hos. (Roughly speaking, for a given h the oscilla- 
tory disjoining pressure //os increases five times 
when ~o is increased with 10% - see Fig. 3 below.) 

We obtained interpolation formulas for the data in 
Table 1 by using the following heuristic considera- 
tions. When q~ tends to the concentration of close 
packing, ~Oma x = H/(3v~- ) ,  the dimensionless period, 
d~/d, should tend to ~ - ,  whereas the decay length 
d 2 should tend to infinity in so far as we deal with a 
densely packed fcc lattice. Then we seek dl and d 2 
in the form of (truncated) series expansions with 
respect to A ~o = ~max - ~, 

d_l] = f~- + alAq~ + a2(AqQ2, (5)  
d 

d 2 b] 'rr 
7 = Aq~ b2, Aq~= 3 ~ -  ~0. (6)  

From the linear plots shown in Figs. l a  and lb  we 
determined 

a 1 = 0.23728, a 2 = 0.63300, 

b I = 0.48663, b 2 = 0.42032. (7)  

The correlation coefficients 0.996 and 0.999 for the 
lines in Figs. l a  and lb, respectively, show that the 
data are in a good agreement with Eqs. (5) and (6). 

For volume fraction q~ = 0.419 and d = 0.74 nm 
Attard and Parker [8] calculated theoretically d 1 = 
0.74 nm and d 2 = 0.78 nm, which are to be com- 
pared with the predictions of  Eqs. (5)-(7),  viz. d 1 = 
0.71 nm and d 2 = 0.81 nm. For volume fraction 
q~ = 0.357 Kjellander and Sarman [7] determined 
dl /d  = 1, d2/d= 0.89, which compares well with 
the outputs of  Eqs. (5)-(7):  d l /d  = 1.00 and d2/d 
= 0.85. The lack of perfect numerical agreement 
between the different theories is not surprising in 
view of the different approximations and model as- 
sumptions used. 

2.2. Disjoining pressure and interaction free energy 

0.7 

9- 
,< 0.6 

¢u 0.5 
| 

0.4 

al/d = ~2/3 + 8,Aq) + 8= ( A ( O ) ~ ~  

/ ~ "  (a) 

. ~  91 = 0.23728 
~ -  az = 0.63300 

J cot. coeff. = 0.996 
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Fig. 1. Plots of the data for the period (a) and the decay length (b) 
from Table 1 (the circles) in accordance with Eqs. (5) and (6), 
respectively. The coefficients a], a2, b 1 and b 2 are determined 
from the slopes and intercepts of the corresponding lines. 

Next we analyzed numerical data for the positions 
and magnitudes of  the minima and maxima of Hos 
calculated by means of Henderson theory [20]. We 
concluded that the data for various h and q~ are 
fitted well by means of the following formula: 

d2 

2"rrh ) ( d 3 
Ilos=Pocos ~ exp d~d2 

for h > d, 

Hos = - e  0, for 0 < h < d ,  (8) 
where d 1 and d 2 are given by Eqs. (5)-(7),  and P0 
is the particle osmotic pressure determined by means 
of Carnahan-Starl ing formula [23], 

1 + q~+ q~2_ ~#3 

(1 - ( ~ ) 3  (9)  Po = pkT 

Here 

6~  

P - -  ,lrd 3 (10) 

is the particles number density. It is clear that for 
h < d, when the particles are expelled from the slit 
into the neighbouring bulk suspension, Eq. (8) de- 
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scribes the depletion attraction in accordance with 
the theory of Asakura and Oosawa [6]. On the other 
hand, for h > d the structural disjoining pressure 
oscillates around P0 as given by the Carnahan-Star- 
ling formula in agreement with the finding of Kjel- 
lander and Sarman [7]. The finite discontinuity of 
Hos at h = d is not surprising as at this point the 
interaction is switched over from oscillatory to de- 
pletion regime. 

It is interesting to note that in oscillatory regime 
the concentration dependence of /-/o~ is dominated 
by the decay length d 2 in the exponent. We estab- 
lished the presence of the term d3/d~d2 empirically, 
by fitting numerical data from the Henderson theory 
[20]; the physical origin of this term is still unclear. 

The interaction free energy due to the oscillatory 
structural forces can be obtained by integrating Ho~ 
[171, 

oo 

f°s(h) = f h  II°s(h') dh'. (11) 

From Eqs. (8) and (11) one obtains 

fos(h)=F(h) ,  for h>~d, 

f o s ( h ) = F ( d ) - P o ( d - h ) ,  for O<~h<~d, 

where 

F(h) - 

(12) 

Pod1 e x p ( d 3 / d 2 d 2 -  h/d2) 

4~r 2 + (dl/d2) 2 

d t [2~rh~ sm( 2 - ~ h / ] .  c°st-g/)-2  " t - 4 - - ,  sj 

It should be noted that Eqs. (8) and (12) refer to 
hard spheres of diameter d. In practice, however, the 
interparticle potential can be 'soft' because of the 
action of some long range forces. If such is the case, 
one can obtain an estimate of the structural force by 
introducing an effective hard core diameter [5], 

3 ~1/3 
d(T) = ( ~-~B2(T) ) , (13) 

where B 2 is the second virial coefficient in the virial 
expansion of the particle osmotic pressure, 

Po~ 
= 1 + B 2 p + . . . .  (14)  

pkT 

3. Numerical test and discussion 

3.1. Comparison with the theoretical predictions 

In Fig. 2 Eq. (12) is tested against the theories of 
Henderson [20] and Mitchell et al. [19]; in particular, 
the broken line in Fig. 2 is taken from Fig. 4 in Ref. 
[19], whereas the dotted line is calculated from the 
equations in Ref. [20] for the same volume fraction, 
q~ = 0.39. It is seen that the three curves are in a very 
good quantitative agreement for h >/1.5d. We can 
be sure that Eq. (12) is correct for h < d  as it 
expresses the depletion interaction. The repulsive 
nonlinear branches exhibited by curves (2) and (3) in 
the region of depletion attraction, 0 < h < d, where 
los should be a linear function of h, are most proba- 
bly artefacts due to some used approximations. For 
instance, the approximation In go: ~ gcc - 1 is used 
for the radial distribution function of a pair of larger 
spheres [20]; in fact the larger deviations of g~ from 
unity are expected around h = d, where the lineariza- 
tion of the logarithm could fail. The HNC closure 
used in Ref. [19] might be also a source of some 
artefacts. 

The inset in Fig. 2 compares Eq. (12) with the 
theory of Henderson [20] for a lower volume frac- 
tion, tp = 0.15. The two curves behave similarly, 
however the curve stemming from Ref. [20] again 
deviates from linearity in the depletion region, 0 < h 
<d .  

, - - . . .  

3 / / . ~  q) = 0.39 
//2 

I -  0 . . . . .  

~$ -1 
-0.3 . ,~" j 

0.0 0.4 0.8 1.2 1.6 2.0 

"20 2 3 4 
h/d 

Fig. 2. Comparison of the oscillatory interaction energy calculated 
from Eq. (12), curve (I), with the results from Ref. [19], curve (2), 
and from Ref. [20], curve (3). The inset represents the shapes of 
curves (1) and (3) for lower volume fraction of the particles, 
~o = 0.15. 
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In Figs. 3a-3d the effect of particle volume frac- 
tion, ~, on the oscillatory disjoining pressure is 
examined. The curves calculated from Eq. (8) com- 
pare well with the predictions of Henderson theory 
[20], except in the region around h = d, where the 
Henderson theory predicts about three times larger 
values of Hos. The situation in the depletion region, 
0 < h < d, where one is to expect the trivial result 
//os = - P 0  = const. (not shown in Fig. 3), is the 
same as discussed above. In Fig. 3c the theoretical 
curve calculated by Kjellander and Sarman [7] for 
q0 = 0.357 and h > 2 by using the anisotropic Per- 
cus-Yevick approximation is also shown; the crosses 
represent grand canonical Monte Carlo simulation 
results due to Kadstr6m [24]. (To avoid misunder- 
standings we note that the slit width used in Ref. [7] 
corresponds to h - d in our notation.) One sees that 
the prediction of Eq. (8) is in good agreement with 
the results of the other authors. 

A glance at Figs. 3a-3d shows that the oscillatory 
character is more pronounced for the higher volume 
fractions which is correlated with the increase of the 
decay length, cf. Eq. (6). 

3.2. Comparison with experiment 

In the experiments with stratifying liquid films 
[3-5,14,15] the plane-parallel film is encircled by a 
Plateau border. The capillary pressure, Pc, in the 
Plateau border can be controlled and measured. Equi- 
librium films can be formed only when the condition 
for mechanical equilibrium of the film surfaces [25], 

t / ( h )  =Pc ,  (15) 

is satisfied. If Pc is kept constant during an experi- 
ment, the states of stable equilibrium (with d l I / d h  
< 0) are given by the intersection points of the 
disjoining pressure isotherm / /  versus h with the 
horizontal line I I = P  c = const., see Fig. 4. Below 
we compare the number of the metastable states 
observed experimentally with the number of the 
intersection points predicted by Eq. (15) in conjunc- 
tion with Eqs. (1) and (8). 

Table 2 contains data for stratifying films from 
aqueous solutions of an anionic surfactant, sodium 
dodecyl sulfate (SDS), studied in Refs. [4,12]. The 
diameter of the micelles is d o = 4.8 nm and the 
capillary pressure is Pc = 50 Pa. As suggested in 
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Fig. 3. Comparison of the oscillatory disjoining pressure, Eq. (8), 
the solid curves, with the results from Henderson theory [20], the 
dotted curves, for different particle volume fractions, ¢. Numeri- 
cal results from Refs. [7,24] are shown in Fig. 3c with a dashed 
curve and crosses, respectively. 
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Fig. 4. Plot of the oscillatory disjoining pressure versus film 
thickness for stratifying foam film from 0.06 M aqueous solution 
of SDS (see also Table 2). 

Ref. [4] we used d = d o + 2 / r  as an effective diam- 
eter of the micelles taking into account the thickness 
of the counterion atmosphere. The first column in 
Table 2 presents the total surfactant concentration, 
C; the second column gives the volume fraction of 
the micelles calculated by using the effective diame- 
ter, d, listed in the third column. The next two 
columns compare the experimentally measured pe- 
riod characterised by the magnitude of the step-wise 
changes in the film thickness, A h (see Table III in 
Ref. [4]), with the period of oscillations d 1 calcu- 
lated from Eq. (5). In spite of the fact that d~ is 
slightly smaller than h h, these two quantities exhibit 
the same tendency of decreasing with the increase of 
~p. The last two columns in Table 2 compare the 
observed and predicted numbers of the film 
metastable states, nob s and npred , the final stable state 
being excluded. The agreement between nob ~ and 
npr~a is satisfactory in view of the fact that the 
softness of the double layer repulsion between the 
micelles and the possible role of dynamic factors are 
not accounted for when calculating npred. Fig. 4 
illustrates the II(h) isotherm calculated with the 

Table 2 
Test of the predictions of Eq. (8) against data from Refs. [4,12] for 
stratifying films from aqueous solutions of SDS 

C (M) ~p d o + 2 / r  A h d 1 nob s npred 
(rim) (nm) (nm) 

0.03 0.20 11.2 15.3 12.7 3 2 
0.06 0.32 10.4 11.8 10.8 4 4 
0.08 0.39 10.1 10.8 9.9 4 6 
0.10 0.43 9.7 10.4 9.2 5 8 

Table 3 
Test of the predictions of Eq. (8) against data from Ref. [5] for 
stratifying films from aqueous solutions of Enordet AE 1215-30 

C (M) ~p Ah (rim) d I (nm) nob s nprea 

0.026 0.11 11.2 9.9 1 1 
0.052 0.22 10.8 9.0 5 3 
0.100 0.41 9.9 7.8 6 8 

data for C = 0.06 M SDS in Table 2 by using Eq. 
(8). 

Table 3 contains data for stratifying films from 
aqueous solutions of the nonionic surfactant Enordet 
AE 1215-30 (Shell Co.) reported in Ref. [5]. We 
carried out additional light-scattering experiments to 
determine the aggreagation number and to charac- 
terise the interaction between the micelles of this 
surfactant. We conducted both static and dynamic 
laser light scattering measurements with the appara- 
tus Malvern 4700 C (Malvern Instruments, Ltd.). 
The static light scattering yielded B 2 and then from 
Eq. (13) we calculated the thermodynamical diame- 
ter of a micelle, d = 8.2 5:0.4 nm. The aggregation 
number was determined to be 42 __+ 3 surfactant 
molecules per micelle. In addition, the dynamic light 
scattering yielded the micellar diffusion coefficient 
from which we calculated the hydrodynamical diam- 
eter of a micelle, d=8 .4+_0 .2  nm. As the two 
methods give close values for d, one can conclude 
that these nonionic micelles can be really treated as 
hard spheres. They would be an ideal system for 
experimental tests of the theories of hard sphere 
fluids, if they were perfectly monodisperse; however 
the dynamic light scattering measurements show a 
polydispersity of about 15%. 

As in the case of anionic micelles the measured 
Ah and the calculated d 1 decrease with the increase 
of the micellar concentration, with dl being slightly 
less than Ah. In addition, nob s and npred a re  in 
satisfactory agreement; better agreement should not 
be expected in view of the polydispersity of the 
micelles and the dynamic character of the step-wise 
thinning. 

A general conclusion is that the observed step-wise 
changes in the film thinning are really transitions 
between metastable states, rather than temporary de- 
celeration in the film thinning due to the decreased 
driving pressure. In other words, the oscillatory max- 
ima are high enough to intersect the line H =  Pc = 
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const (Fig. 4) and to satisfy the mechanical equilib- 
rium condition, Eq. (15). Two alternative mecha- 
nisms have been proposed for explanation of the 
transitions between the consecutive metastable states. 
The diffusion mechanism [26] attributes the appear- 
ance and growth of spots of less thickness to the 
condensation and diffusion of vacancies in the parti- 
cle structure inside the film. The convection mecha- 
nism [15] interprets the spots as instabilities engen- 
dered by the deep minima of Ho~. The former 
mechanism seems appropriate when the maxima are 
much higher than Pc, the latter mechanism is appli- 
cable when the maxima are not too high, and both 
mechanisms could be operative in the intermediate 
region. 

of experimental data for thin liquid films and stabil- 
ity of dispersions and will be utilised as an ingredi- 
ent of theoretical models of dynamics of film 
drainage, kinetics of flocculation in dispersions of 
nondeformable and deformable colloidal particles, 
etc. 
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4. Concluding remarks 

In the present Letter, we propose an analytical 
semiempirical expression for the dependence of the 
oscillatory structural force, Hos, on the film thick- 
ness, h, and particle volume fraction, q~, see Eq. (8). 
This expression is tested against the numerical pre- 
dictions of the theories by Mitchell et al. [19], Hen- 
derson [20], Kjellander and Sarman [7] and the Monte 
Carlo simulations by KarlstriSm [24]. In all cases a 
good numerical agreement is established except in a 
vicinity of the point h = d, where some of the 
theories based on integral equations disagree with 
the law of the depletion attraction. 

The predictions of the proposed formula are com- 
pared also with the experimental data for stratifying 
films containing anionic [4,12] and nonionic [5] mi- 
celles. We carried out some auxiliary light scattering 
experiments to determine the aggregation number, 
the diameter and the polydispersity of the nonionic 
micelles. A satisfactory agreement between the pre- 
dicted and observed values is established. 

Finally, we point out to two problems for further 
investigation. The first one concerns the behaviour of 
Hos around h = d (see above). The second one is 
related to the possible effect of the bulk Kirkwood- 
Alder phase transition on the appearance of the 
oscillatory forces, which is not accounted for in Eq. 
(9). 

We hope the proposed expression for the oscilla- 
tory structural force will be useful for interpretation 
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