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Abstract

The mechanical and thermodynamical approaches to the theory of the general curved
interfaces are presented and compared. In the mechanical approach a curved interface or
membrane is characterized by the tensors of surface stresses and moments. They are
connected by the surface balances of the linear and angular momentum. On the other hand,
in the thermodynamical approach the surface is characterized by the scalar dilation and shear
tensions as well as by the bending and torsion moments. In this review we investigate the
problem about the relationships connecting the mechanical and thermodynamical approaches.
We find that these two approaches are in a good agreement, that they are complementary to
each other and represent the two parts of a self-consistent theory. The latter can be applied
to any system where curved interfaces, thin films or membranes are present: microemulsions,
lamellar and sponge phases, lipid vesicles and cell membranes, capillary waves at interfaces,
undulation and peristaltic surface forces, lateral capillary forces between particles in thin
liquid films, etc.

1. Introduction

Various experimental studies in the fields of colloid science and biophysics show that
the classical Young-Laplace theory [1] where a curved interface or membrane is described as
a two-dimensional continuum in a state of position-independent, isotropic tension, is
insufficient in several cases. The famous theory of a capillarity derived by Gibbs [2]is
likewise founded on this Young-Laplace concept but, in addition, Gibbs introduced the notion
of a surface of tension in order to be able to retain a simple formal scheme even when
curvature effects are of importance. To account explicitly for the bending properties of
monolayers, lipid bilayers and biomembranes with vanishing tension Helfrich [3] introduced
additional mechanical parameters for a curved interface, viz., bending and torsion moduli and
spontaneous curvature. These parameters were soon recognized to be crucial also for
understanding microemuisions [4-6].

Evans and Shalak [7] demonstrated that even such a complex entity as a biomembrane
can be treated mechanically as a two-dimensional continuum characterized by dilational and
shearing membrane tensions as well as by bending and torsion surface moments. For
example, the special biconcave disk shape of erythrocytes was found to correspond to a
minimum flexural interfacial energy of the system [7,8). Other examples of systems where the
interfacial flexural properties have been shown to play important roles are microemulsions
[9,10] and surfactant micelles [11,12). Moreover, the interfacial bending moment affects the
amplitude of the fluctuation capillary waves on surfaces of low enough tension [13] and
determines the magnitude of the repulsive "undulation" forces between two approaching fluid
interfaces in solution [14,15].
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In essence, there are two approaches to the theoretical description of a general curved
interface which, however, at first sight may seem diametrally opposite. The first of them is
the mechanical approach originating from the Kirchhoff-Love theory of plates and shells
[16,17], which is standard in the mechanical sciences and which is sometimes applied to
biomembranes and lipid bilayers. A main advantage of this approach is its powerful
mathematical framework, which is basis of continuum mechanics in two dimensions, tensor
analysis and differential geometry. Moreover it can be applied to both quasistatic and dynamic
processes.

The second approach is founded on thermodynamics which is encompassed by the
Gibbs theory of capillarity [2] and is frequently referred to in physical chemistry and surface
science. The main advantage of this latter approach lies in its close relation with chemical
thermodynamics. Hence, it provides a valid description of the variations of surface tensions,
moments and deformations due to composition changes and, moreover, it establishes a link
to the molecular theory which is based on statistical mechanics.

Considering these rather different approaches to the theory of curved surfaces which
are taken in mechanics and surface thermodynamics, it is obvious that widely different notions
and basic equations are being employed to account for the same phenomena. Ultimately, the
two approaches have to be equivalent or at least complementary, since the same physical
reality is actually being described.

Our aim with the present review article is, hence, to establish the connecting links
between the mechanical and thermodynamical approaches to the theory of general, curved
interfaces. We believe that the combined power of these two main routes will facilitate
solving some pending theoretical problems in the field of interfaces and membranes.

2. The Mechanical Approach

The mechanical theory of the extensional and flexural deformations of a two-
dimensional continuum originates from the classical theory of shells and plates developed in
1850 by Kirchhoff [16] and extended in 1888 by Love [17]. A comprehensive review of this
theory is given in the monograph by Naghdi [18].

Historically the derivation of the Kirchhoff-Love theory had the practical purpose to
treat vibrations of plates and shells in order to predict the tones of vibrating bells [17,18].
However, the underlying mathematical formalism can be applied to describe the deformations
of any two-dimensional continuum, including fluid interfaces and biomembranes. Since our
ultimate aim is to compare the Kirchhoff-Love theory with the Gibbs theory of capillarity, we

will first focus our attention on some general equations of the theory of shells and plates.
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(a) Surface balance of the linear momentum

1t is appropriate to start with a three-dimensional continuum and then to proceed with
a two-dimensional continuum.

Let us consider a material volume ¥ enclosed by a surface § with running outer unit
normal #. Then, in conformity with the Newton's second law it is postulated (see e.g. Ref.

(19)):

‘_;’;depv = §dsn.T + [aVes @n
v H 4

Here ¢ is time, p is mass density, v is velocity field, T is the stress tensor, ds is a scalar
surface element and f is the body force per unit mass (if the body force is due to gravity,
then f coincides with the gravitational acceleration g). Eqn (2.1) states that the rate of increase
of the linear momentum of material volume V is equal to the sum of the surface and body
forces exerted on the volume V. In other words, Eqn (2.1) expresses the integral balance of
linear momentum for the volume V. Since volume V is arbitrarily chosen, one can obtain the
known local form of the linear momentum balance, which is valid at each point of a three-
dimensional continuum [19,20]

dv
LA 22
P +pf 22)

Eqn (2.2) is derived from Eqn (2.1) by using the Gauss-Ostrogradsky theorem along with the
following known hydrodynamic relations:

d - d(pv) 23)
E{dev j;dV{ 7 + va.v]
dp 24)
apP V.v =0,
de *pV.v=0

We next continue with the derivation of a two-dimensional analogue of Eqn (2.2).
Following Podstrigach and Povstenko [21] we consider a material volume ¥ confining a
portion, 4, of an interface (membrane) together with volumes ¥; and ¥, of the adjacent bulk
phases I and II - see Fig. 1.
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Fig. 1 Sketch of material volume ¥ confining a portion 4 of an interface. V;, ¥}, and S|, S, are the
parts of volume V and its surface situated on the two sides of the interface 4.

A counterpart of Eqn (2.1) is postulated [21]:

dit ( dep,,vy fdsI‘v ]

Y=-LIO Vy

@.5)

- (fdsn T+ dep,f,] + [dsTf, + §div.o
Y-1,010 A L

Sy

Here the subscript s refers to the interface between the bulk phases I and II; §; and S, are the

parts of the surface of volume ¥, which are situated on the two sides of the dividing surface

A; T is the mass density per unit area of this surface; ¢ is the surface stress tensor; L is

the contour encompassing the interfacial portion 4; v is a unit vector which is simultaneously
normal to contour L and tangential to surface A - see Fig. 1.
It should be noted that the surface stress tensor can be represented in the form [16,21]:

o=a,a,0% +a no® 26

where a, and a, are the vectors of a local basis in the surface 4 and n is the running unit
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normal to this surface; 6®® and ™™ are tangential and transversal shear stress components,
respectively. Here and hereafter the Greek indices take the values 1 and 2, and summation is
assumed over the repeated indices.

For the sake of simplicity we assume continuity of the normal component of the
velocity field at the interface:

(Vi ~ Vs)em = (Vg ~ V,)em =0 (at surface A) @7

]

(The more general case, when Eqn (2.7) is not satisfied, is considered in Ref. {21]). Eqn (2.1)
holds for each of the volumes ¥, (¥ = LII):

%dep V= f dsn,T, + depr,, 28)
{ Vy

SyU4 Vy

In addition, from Eqn (2.6) and the Green-Gauss-Ostrogradsky theorem [22] one derives the
relationship

fdlv.e = [dsV,.a 2.9
L A

where V, is two-dimensional gradient operator in the surface 4:

K @.10)

where 4% o = 1,2, are curvilinear coordinates in the surface 4. The surface counterparts of
Eqns (2.3) and (2.4) read {23]:

d d(I'v (2.11)
-d—t{dsr‘v, - ;(ds --(~2-t-5) +Tv, V,.v,

dr 2.12)
i Pv,.v,=0

The last equation is valid when there is no exchange of mass between the bulk and the
surface. Finally, by means of Eqns (2.8), (2.9), (2.11) and (2.12) the integral linear momentum
balance, Eqn (2.5), can be transformed into a local form [21,23]
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dv, (2.13)
FT = Vo +Tf, +n(T; - T))
which is the sought-for two-dimensional analogue of Eqn (2.2). The last term in Eqn (2.13)
accounts for the interaction between the surface and the two adjacent bulk phases; this term
has no counterpart in Eqn (2.2). The components of the stress tensors T} and T}, in Eqn (2.13)
are to be evaluated at the surface 4.

Differential geometry [23-25] provides the following expression for the surface
divergence of the surface stress tensor ¢ given by Eqn (2.6):

V.o= (g‘”p“ - b; (.!N’l))aql + (bup %P + 0,:("))n 2.19)

5
where b,; are the components of the surface curvature tensor and the commas denote

covariant derivatives. Then the projections of Eqn (2.13) along vectors a, and # become
[18,21]

2.15)
Li® = oﬂa,p - b;‘o'“"’ + I‘f: + (Tlin)tl - Tl(n)a) . «=1,2 (

(2.16)
Ti® = g*®, + b, 0% + T (Tu("""’ - )

where i* and i" are components of the acceleration vector dvg/d:. Equations (2.15) and (2.16)
coincide with the first three basic equations of the theory of shells due to Kirchhoff and Love
- see Refs. [18,21].

Eqns (2.15) and (2.16) are quite general; they can be specified when the rheological
properties of the bulk phases and the surface are known, i.e. when constitutive relations
connecting stress and strain are available (see Section 5 below).

As an example let us consider a quasistatic deformation (v =~ 0) of a fluid interface
between two fluid bulk phases. In this case the bulk and surface stress tensors are isotropic:

2.17
T,= -P,U, Y =11 @17

2.18
c=ol, 218)

Here o is the scalar surface tension, P, and Py, are the pressures in the bulk phases, U and U,
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are the bulk and surfaces unit tensors (idemfactors) respectively. By substituting Eqns (2.17)
and (2.18) into Eqns (2.15) and (2.16) for the case of a quasistatic process one derives
(assuming negligible surface weight I'f;):

2.19
P @2.19)
2Ho = P, - P, @20
where
2.21
2H = a""bw 221

is the surface mean curvature with a°® being the surface metric tensor - see e.g. [23-25]. Eqns
(2.19) and (2.20) represent the basis of the classical theory of capillarity developed by Young
[26] and Laplace [1], which presumes the the surface tension, o, is constant throughout the
interface (membrane) and that the surface shape is determined by Eqn (2.20) frequently
referred to as the Laplace equation. In particular, if the equation of the surface shape in
Cartesian coordinates is

2.22
z=uxy), @)

the mean curvature can be expressed as a surface divergence [27]

2H -V, __2___1 2.23)
(1+1V,uf)?

and Eqn (2.20) reduces to a second order nonlinear differential equation for determining the
function wu.

In the case of strongly curved surfaces (microemulsions, biomembranes) the role of
surface bending moments becomes significant and the surface (membrane) tension is generally
neither isotropic nor constant. Then Eqns (2.18) and (2.19) are no longer valid. The
contribution of the surface moments is discussed below.

(b) Surface balance of angular momentum

In mechanics, rotational motion can be treated analogously to translational motion. In
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particular, angular velocity and force moments (torques) are considered instead of linear
velocity and forces. Three- and two-dimensional balances of the angular momentum, i.e.
counterparts of Eqns (2.1) and (2.5), can be postulated - for details see Refs. [18,21]. A local
form of the surface angular momentum balance

ar%‘! -V,.N+Tm +n.fl:e)U, + o.¢]

(2.24)
can be deduced, which constitutes a counterpart of Eqn {2.13). Here o is a coefﬁcxem
accounting for the moment of inertia; w is the vector of angular velocity;

2.25
N=a,a,N*? + anN°® @)

is the tensor of surface moments, which is an analogue of the surface stress tensor, ¢ ; m

is a surface director couple per unit mass due to external body force; m is a counterpart of
S5 in Eqn (2.13);

2.26
e=a*de,, = a"a’fae,, @26

is surface aliernator; a is the determinant of the surface metric tensor and

@270
€= e =1, ey =ey=0

- cf. e.g. Ref. [24]; the symbol ":" denotes double scalar product of two dyadics see e.g. Refs.
[23,28). When deriving Eqn (2.24) it is assumed that there are no bulk torques (bulk
counterpart of the surface tensorial field IV}; such bulk couples would appear if the bulk phase
is a liquid crystal.

The last term in Eqn {2.24) expresses the force moments due to the interaction of the
surface with the adjacent bulk phases.

Sometimes {cf. Refs. {7,18,21,28]) the surface moments are characterized by another
tensor, viz.,

(2.28)
Mg = N,"

The meaning of the components of the tensors N,y and M, is illustrated in Figs. 2b and 2c.
One realizes that N,, and N., represent normal moments (they cause torsion of the surface
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element), whereas N,, and N,, represent tangential moments causing bending of the surface
element. Hence, the mechanical interpretation of Ny is similar to that of o,, (cf. Figs. 2a and
2b). On the other hand, the diagonal components of M, represent bending moments and the
nondiagonal ones - torsion moments - Fig. 2c.

(a,) n (b) n
~— / u? IS

/ ’
\ f
W' [Top ‘n om ul & RN
1 N 22
o5y ‘f Ny, 2

)

Fig. 2 Components of the surface stress tensor g (a); of the surface moment tensor N (b); and of

the surface moment tensor M (c).

By using Eqn (2.14) (with N instead of ¢), along with Eqns (2.6), (2.25) and (2.26),
one can find the projections of the surface angular momentum balance, Eqn (2.27), along
vectors &, and n [21]:

2.29
alje = NP, - by NP® + Tm® + ePgy, o'® @29

(2.30)

«Tj® = N°®, + b NP +Tm® - ¢ g aP®

where j* and j* are components of angular acceleration vector dw/dr. Eqns (2.29) and (2.30)
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represent the second group of three basic equations in the theory of Kirchhoff and Love - see
e.g. Refs. [18,21]

As an example for application of Eqns (2.29) and (2.30) let us consider the case of
quasistatic process (j* ~ j* =~ 0) with a negligible effect of surface director couples, Im. In

addition, let us assume that (i) o,y and M,; are symmetric surface tensors:

@31)
Oup ™ Opa > M,y = My,

(i) M,, diagonalizes in the basis of the principle curvatures, which is equivalent to
commutativity of the tensorial product

(2.32)
bag My = by, My

and that (iii) the transverse components of N are zero, i.e.

] (2.33)
N=a,aN°? =a a,M" "

- cf. Eqns (2.25) and (2.28). Then in view of Eqns (2.31) - (2.33) one can verify that the
normal projection of the angular momentum balance, Eqn (2.30), is identically satisfied. In
addition, the tangential projection, Eqn (2.29), can be transformed to read [7,18]:

Ry (2.34)

Eqn (2.34) shows that in the case of quasistatic precesses the very existence of surface
moments, M*?, gives rise to the transverse shear stress resultants ™. (When the process is
not quasistatic, e.g. capillary waves, there is also a viscous contribution to ™™ - cf. Eqn (5.3)
below.)

Substitution of Eqns (2.17) and (2.34) into Eqn (2.16) results in a generalization of the
Laplace equation, Eqn (2.20), for the case, when surface moments are present [7,18]

by ot - MO, (2.35)

5= Py - P

Under the same assumption Eqn (2.15) reduces to
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(2.36)
c"‘p,p + b;M”,Y -0

Eqns (2.35) and (2.36) were utilized in the mechanics of biomembranes developed by Evans
and Skalak [7]. In Section 3 below we compare Eqns (2.35) and (2.36) with the corresponding
results from the Gibbs theory of capillarity,

(¢) Micromechanical expressions for g ,Nand M

So far we have been dealing with an idealized system, composed of two bulk phases
separated with a mathematical (infinitely thin) surface. This is obviously an idealization since
the real transition region between two bulk phases has always some finite physical thickness.
This transition region is characterized by a nonuniform density and nonisotropic pressure even
at equilibrium conditions [29,30]. There is a micromechanical approach originating from the
work of Bakker [31] which identifies the surface tension with an integral of the excess
pressure (difference between the pressure tensors in the real and idealized systems) across the
transition region. In the original work of Bakker this approach was applied to planar
interfaces. Later on it was extended to spherical interfaces in Refs. [29,32] and to arbitrary
curved interfaces in Refs. {33-36]. Below, following Ref. [34], we derive micromechanical

expressions for the surface stress tensor g and the surface moment tensors N and M. The

micromechanical expressions elucidate the physical meaning of these tensors and make
possible their calculation by means of statistical mechanics.

Consider an interface separating two bulk phases I and 1. Following the tradition [31-
33] we will make use of the pressure tensor, which is in fact the stress tensor with opposite
sign:

2.37
Pe_T 2.37)

As mentioned above, even under equilibrium conditions the pressure tensor P is non-isotropic
in the interfacial zone; its components can be calculated by using some statistical mechanical
model like that of Irving and Kirkwood [37] or the model of Kirkwood and Buff [38], later
on extended by Harasima [39]. These models are not equivalent [29,40]. However, their
adequacy has not yet been fully checked against experimental data, because of the difficulties
connected with a realistic estimate of the molecular pair correlation function in the interfacial
transition zone.

The tensor P represents the actual pressure in the real system. On the other hand, the
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idealized system consists of two homogeneous phases, which preserve their bulk properties
right up to a mathematical dividing surface. The pressure tensors P, and P, are ascribed to

these two phases. In addition, tensors of surface tension, g , and surface moments, N, are

attributed to the dividing surface. At equilibrium conditions the pressure in the idealized
system is isotropic everywhere, i.e.

238
P =PU and P, =P U @39

However. it is worthwhile noting that the considerations below are valid even for non-
equilibrium conditions in the system.

Let (¢', #*) be curvilinear coordinates in the dividing surface and A be the distance
from a point in the space to the dividing surface. Then (u', 1%, A) represent curvilinear
coordinates in space and

2.39
r=R(u'u?)+ An(u',u? @3

is the position vector of a point in space with R being the position vector of a point on the
dividing surface whose running unit normal is n. Obviously, the surface with A = 0 is the
dividing surface, and any surface with A = const = 0 is parallel to it [23,33]. The pressure
tensor in the idealized system can be represented in the form

N (2.40)
P =Po(-1) + P,O(A)

where 0 is the Heaviside step-wise function:

2.41)
=0 for A<90 and =1 for 1>0

Next, following Ref. [34] we consider a perpendicular sectorial strip Ad; for each
element d/ of a curve C lying on the dividing surface - see the hatched area in Fig. 3, where
v is unit normal to curve C and the surfaces A = A, and A = A, are supposed to be located
inside the bulk of the two adjacent phases.
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A=22 //

Fig. 3 A sectorial strip (hatched) associated with an clement dl of curve C lying in the surface; n is
the running unit normal to the surface.

The force exerted on the strip Ad; in the real system is

fdsn.P

AAg

The corresponding force in the idealized system is

i dsn.T’] -v.adl

Adg

Setting the forces in the real and idealized systems equal one can derive [34]

3,
v.o = -v.fdu..P' (2.42)
A
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where

pPP=pP-P (2.43)

is the excess pressure tensor and Eliassen's [23] finding

nds = v.Ldidl, L=(1-2AH)U, +Ab (2.49)

is being used, where
b =a,a,b"P (2.45)

is the surface curvature tensor.
Similarly, the condition for equivalence of the real and idealized systems with respect

to the force moments yields

5
v.N-v.oxR-v.fdAL.P‘xr (2.46)
ll

Because of the arbitrariness of v, from Eqns (2.39), (2.42) and (2.46) one finds:

ll
¢- -fdAL.P‘ (2.47)
%
X
N=[dAAL.P* xn (2.48)
4

Eqns (2.47) and (2.48) are the sought-for micromechanical expressions for o and N. By
making use of the identity [23]

3
=
a,{xn 0851

one can derive an alternative expression for IV:

12
N-= —fdA.JLL.P‘.z (2.49)
A

In addition, having in mind that
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M=N.e, e.e= -U, 2.50)

(cf. Eqn (2.28)) from Eqn (2.49) one obtains

Ay
M- [araL.p.u, (251)
Ay

It is worth noting that unlike the tensor g , given by Eqn (2.47), the surface moment tensors

M and N, as given by Eqns (2.49) and (2.51), do not have transverse components (resultants
along n) is agreement with Eqn (2.33).

As an illustrative example let us consider a cylindrical interface (membrane) between
phases I and 1I. (We are aware of the fact that a cylindrical surface is not ever stable,
nevertheless we choose it as the simplest example for a geometrically non-isotropic surface.)
It is natural to introduce cylindrical coordinates (r, ¢, z) with z-axis directed along the
cylinder axis. At static conditions the excess pressure tensor can be represented in the form

s Plee 2.52)

L2 2 4

L 4 s
P - P"erer + PQOeQe‘P
where e,, €, and e, are unit vectors along the respective axes of the local basis. In addition,

b=2Hee, @53)

Then from Eqns (2.44), (2.47) and (2.51) - (2.53) one obtains expressions for the components

of ¢ and M:

Ay A

254

04y = - [dAPg, o, = -[dr(l - 2AH)P;

A A
L X,

2.55)

M,, = [drdpg, M, = [dar(1 - 20H)P;

Al Al

Here the boundaries A, and A, are to be specified in an appropriate way. Alternatively the
radial coordinate r and cylinder radius R can be used instead of distance A and mean

curvature H:
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1
-2 +R, He= -2 (2.56)
oA 2R

Then Eqns (2.54) and (2.55) can be represented in the form:

- . @57
Opp ™ —fder g, " —fdrﬁPu
0 1]
y . . (2.58)
M,, = [dr(r - R)P,, M, - fdr}%(r - R)P},
0 0

Eqns (2.57) - (2.58) will be compared below with micromechanical expressions resulting from

the thermodynamical approach to the theory of curved interfaces and membranes.

3. The Thermodynamical Approach

a) Basic equations

In the thermodynamical approach of Gibbs {2], which was later on extended by
Boruvka and Neumann [41], a multiphase system is treated as a set of bulk, surface and linear
phases, each of them characterized by a fundamental equation.

The logical scheme of the Gibbs approach is the following:

(1) The extensive parameters (internal energy U, entropy S, number of molecules N,
of the i-th component, etc.) and their densities in all phases far away from the phase
boundaries are in principle regarded as known,

(2) An idealized hypothetica system is introduced in which all the phases (bulk,
interface or linear) are considered as being homogeneous, the interfacial regions are replaced
by sharp boundaries (geometrical surfaces or lines), and the resulting excesses of the extensive
parameters in the idealized system with respect to the real one are ascribed to these
boundaries. A detailed description of this procedure can be found in the following references:
Hill [42] Ono and Kondo [29], Boruvka and Neumann [41], Rusanov [43], Rowlinson and
Widom [30], Ivanov and Kralchevsky [34].

(3) Next, fundamental equations of the various phases in the idealized system are
formulated. In so far as our attention in the present review is focused on surfaces, it is
appropriate to consider in detail the fundamental equation of a curved surface (membrane).

Since the curvature of such a surface varies from point to point, a local formulation is
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required. In accordance with Refs. [28,35] the local form of the surface fundamental equation
is
N
8f, = -5,0T + Y p, 8T, - 0,8 + dw, G-
k-1

where f,, s,, o, and T, are the surface densities of excess free energy, entropy, grand
thermodynamic potential and number of molecules of components %, respectively; T is
temperature, |, is chemical potential. Further,

da = 5(AA)/AA G2

is the local relative dilation of a surface element A4 and
dw, = ybda + (3B + BOH + 63D 3.3
is the work of surface deformation per unit area; da, 6B, 6H and 8D characterize the four

independent modes of elementary surface deformation, dilation, shear, bending and torsion -
see Fig. 4.

Dilation Reference Shear
State
D C a c
A Q c
D B
A B
. . B
Bending Reference Torsion
State

Fig. 4 Independent modes of surface deformation.
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In particular, H and D are the mean and deviatoric curvatures:

1
H=- %(cl v 6), D= 2(c - ) (G4

with ¢, and c, being the two principle curvatures at a certain point in the surface. The shear
parameter § is discussed in more detail in Ref. [35]. The coefficients y and £ in Eqn (3.3)
have the meaning of thermodynamic surface tension and shearing tension, respectively
whereas B and © are interfacial bending and torsion moments [44]. Note that the
thermodynamical surface tension y is a scalar quantity, whereas the mechanical surface

tension, g (see Eqn (2.6)), is a tensorial quantity.

By combining Eqns (3.1) and (3.3) and making use of the thermodynamic definition

relation
N
o, =f, - kEl (R

we obtain the expression

N 3.5
dw, = -58T - EI‘kbpk+(y—ms)6a+C6[3 + BOH + 88D @-3)
k=1

For fluid interface such that all of its constituents are soluble in (and equilibrated with) the
adjacent bulk phases we have that a quasistatic stretching madi in an arbitrary manner, is
equivalent to forming more of the interface already present, see e.g. Refs. [28,35,45,46]. If
so is actually the case, one realizes that the work of formation per unit area is independent
of both of the strain variables o and B, i.e. 0 /00 = S0 /3B = { = 0, implying that the
thermodynamic interfacial tension y can be identified with ©,. Accordingly, for this common

case we can easily recover the Gibbs surface tension equation in the form
N
8y = -s,8T - Y T,bp, + BOH + 83D (3-6)
k=1

which is implicit in a general version of the Gibbs theory of interfaces where an arbitrary
dividing surface is being employed. As a matter of fact, by comparing with Eqn (494) in the
original text of Gibbs [2], one finds that B = C§ + C5 and © = C% - C¢ where the coefficients
C} and C5 used by Gibbs are defined by 8y/5c, and 8y/Sc,, respectively, ¢, and ¢, denoting
the principal curvatures. In Section 4 below we will show that C$ and C3 correspond
mechantcally to the eigen-values of the surface moment tensor M.
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What concerns the work of flexural deformation, dw, it can be represented in two
alternative forms [36,47]:

Ow, = BOH + 88D = C,8H + C,8K 3.7

is the Gaussian curvature. Since X = H* - D?, from Eqn (3.7) it follows [48]

B=C, +2CH, 6 = -2C,D 3.8

The values of B and © for an interface depend on the choice of the Gibbsean dividing
surface. In particular, a special surface of tension exists for which B = © = 0 by definition
[34]. However, there is no guarantee that this surface of tension will be located close to the
real phase boundary, especially in the case of highly curved interfaces [4,11,28,47,49]. This
is the main reason why different kind of equimolecular dividing surfaces or midsurfaces are
used instead of the surface of tension [47,50].

Model calculation of the contribution of the van der Waals [51,52] and electrostatic
[53,54] interactions to the surface bending moment B have been carried out for spherical
interfaces (microemulsion type of systems). It should be noted also that in the limiting case
of planar interface [32,54]

B ~ 2y,8, fo H-0 (3.9)

where 8, is the Tolman parameter, which by definition is equal to the distance between the
equimolecular dividing surface and the surface of tension [29,30,55); the subscript "0" in Eqn
(3.9) symbolizes limiting value for H — 0.

The final step of the Gibbs [2] thermodynamic approach is to impose conditions for
equilibrium. The system is in complete thermodynamic equilibrium when there are no
macroscopic convective fluxes (mechanical equilibrium), no diffusion fluxes (chemical
equilibrium) and no heat transfer (thermal equilibrium). As it is well known, the conditions
for thermal and cheniical equilibrium imply uniformity of temperature and chemical potentials
throughout the thermodynamic system.

The condition for mechanical equilibrium at each point of the dividing surface between
two bulk phases, I and I, is the Laplace equation of capillarity. It can be derived by means
of a variational method, i.e. by setting the first variation of the overall free energy of the
system equal to zero [35]
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0=08F=-P3V, - PidV; + 8F, (3.10)
where

8F, = & [f,dA = [(3f, + f,8a)dA @.11)
A A

and constancy of temperature and chemical potentials is assumed. Then by using the
thermodynamic identity

N
fs""s*kE Bl
-1

along with Eqns (3.1), (3.3) and (3.10) we can derive the following conditions for surface
mechanical equilibrium [35]

(va®? + {q°*), = BH* + 8D, «=1,2 (3.12)

2Hy +2D{ - (H? + D*)B - 2HD® - %(a“’B + q*%@),, =Py - B, (.13
where

%P = %(baa - Ha"?) (3.14)

is the definition of the deviatoric curvature tensor. (A slight difference between Eqns (3.12)
and (3.13) and the respective equations in Ref. [35] is due to the fact that ¢*® is incorrectly
treated there as a constant surface tensor, i.e. the terms q“"(-)‘up and 9™ should read
(9°%@),,p and (£g°"),p; the remaining equations in Ref. [35] are not affected by this change.)
Eqns (3.12) - (3.13) in fact represent the three equations resulting from the three independent
translational variations of the position of a point on the dividing surface (two tangential and
one normal with respect to the surface). The physical meaning of Eqns (3.12) and (3.13)
suggests that they should be equivalent to Eqns (2.35) and (2.36). This point is discussed in
Section 4 below.

Finally, we note that by means of Eqns (3.7) and (3.8) Eqns (3.12) and (3.13) can be
transformed in the following equivalent form [48]
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VY - C,V,H - C,V,K + V.({q) = 0 (3.152)

) 2 g2,
2HY + 2D - C(2H* - K) + 2C,HK - - V/C, (3.15b)

- 2HV!C, + b:V,V,C, = Py - P, .

Eqns (3.15a) and (3.15b) are equivalent to the corresponding expressions derived by Boruvka
and Neumann [41] for the case when the shearing tension { = 0.

b) Bending moment due (o steric interactions

As mentioned earlier, the electrostatic and van der Waals contributions to the
interfacial bending moment, B, are studied in Refs. [51-54]. Here we will briefly consider the
contribution due to the sreric interactions as an illustration of the applicability of the basic
equations in the previous section to phospholipid monolayers and bilayers. We will make use
of the Helfrich [3] expression for the energy of flexural deformation, w,; per unit area of the
curved surface:

w, =2k (H - Hp} (3.16)

where H, is the spontaneous curvature and k, is coefficient of bending elasticity. The
contribution due to the torston (Gaussian) elasticity is neglected in the present context.
Typically k., = 10"° J for bilayers of phospholipids [56,57]. Unlike k,, the spontaneous
curvature H, depends strongly on the composition of the monolayer. For a two-component

monolayer an expression due to Markin [8] may be used:

3.17
Hy=e¢ I +eT, G170

Here I', and I'; express the number of molecules per unit area of the monolayer (in half of
a lipid bilayer); e, and e, are coefficients. Depending on their shape the molecules in the
bilayer can be characterized as "boys" or "girls" - see Fig. 5. The coefficients e, (k = 1,2) in
Eqn (3.17) are positive for "girls" and negative for "boys". (Sometimes ¢, are called in jest
"erotic coefficients".) If / is the length of a molecule and a, and v, are the molecular area and
volume, then [58,59]:
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A/SPRNY S U N (3.18)
al Ry 3R,
where R, is the curvature radius. Usually / « R,, and thus
\/
;E -1 (3.19)
1 &l
H. 35~ =
ok R“ 1

see also Ref. [60]. H,, is the spontaneous curvature per molecule. The coefficients ¢, can be

expressed in the form

\\\\\\\ \\\\\\\\\ A - "girl”

Fig. 5 Schemalic presentation of a lipid bilayer composed of two components of different molecular
shape: “boys" and "girls".

For numerical estimates one can use the following data for lipids from egg yolk [58]:
(1 = phosphatidyl choline; 2 = phosphatidyl ethanolamine):

a,=72A%, v, =1060A>, I=17A, H;'=-850A, ¢ =-85x107" cm



42
a,=42A% ,  v,=700A%, [=17A, Hy=-1308A, ¢=-32x10"cm

We note that both these lipids behave like "boys". On the contrary, the cholesterol in a
membrane behaves like a "girl".

From Eqn (3.16) one derives

B- (ﬂ] = 4k (H - Hy) @.21)
LETI 5

By integrating the thermodynamic relation (cf. Eqns (3.1) and (3.3))

(Ev_] (95] k= 1,2 622)
oH ), \OT:), o

along with Eqns (3.17) and (3.21) one obtains [61]

0 (3.23)
By = W + kTlnx, - 4k e H , (k=1,2)

where x, is the area fraction; the difference in the molecular interactions between the adsorbed
species is neglected. At chemical equilibrium (1, = const) Eqn (3.23) yields Boltzmann
distribution of the species:

dk.e H (.24)

Ty = exp—— (k=1,2)

Accordingly, the concentration of "girls" (e, > 0) will be larger in the concave (H > 0) parts
of the surface, whereas the "boys" (e, < 0) will prefer the convex parts (H < 0). Such an
effect can be observed for curvatures of the order of H = kT/(4k.,) and greater; for
phosphatidyl choline this estimate yields H” < 2 nm. Hence, curvature induced variations in
the concentration of the adsorbed species can appear only on interfaces of high and
nonuniform curvature.

Usually e, H < 1 and the exponent in Eqn (3.24) can be linearized, whereby Eqn (3.17)
takes the form

3.25
Hy=HY + @H + ... €2

where
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4k 1 2 0 2 10 (3.26)
= ﬁc‘[elr(l) M ezr(z)]
3.27
Héo’ -e, l..(lo) ‘e 1.,;0) )
Substitution of Eqn (3.25) into Eqn (3.21) yields [61]
(3.28)

B = -4k H® + 4k (1 - ¥)H + O(H?)

An estimate of B may be based on the first term in Eqn (3.28), because usually H® > H:
(3.29)
B = —4kcHé°) = const

For example, by using the data given after Eqn (3.20) for phosphatidy! ethanolamine above
we obtain B =3 x 10" N.

¢} Micromechanical expressions

Similarly to the surface stress and moment tensors, g and M, the coefficients in Eqn

(3.3) (v, §. B and @) are surface excess quantities and can be expressed as integrals over the
excess pressure tensor P° - of Eqn (2.43). As shown in Refs. [34,35] the respective
expressions read:

- -1fu,: ; --Lrg: 330
Y g{U,'deA, 4 E!q.l"xdl (330
! 1

A Ay
B = [L:Prdd; 0= [(g.L): P2 da @31

3 %

where

g =a,a,q°%, x = (1 - AHY - A2D? (3.32)

L is given by Eqn (2.44) and ¢*® - by Eqn [3.14]. Just like in Eqns (2.47) and (2.48), the
integration is carried along the normal to the surface at the respective point. The symbol ":*
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denotes the double scalar product of two dyadics - see e.g. [23,28].
For illustration let us apply Eqns (3.30) and (3.31) to a cylindrical interface, when P°
is given by Eqn (2.52). In this special case one obtains

U’:P’ - P:’ + PZ.: , q:P‘ - P;Q - P;l (3.33)
L=(1-AH)U, + AHq, g.L=(1-AH)q + AHU, (339
x=1-2AH (3.35)

Substitution of Eqns (3.33) - (3.34) into Eqns (3.30) and (3.31), and using Eqn (2.56), yields

1 s s\ r 1 s r
Y- —5£(1°W ¢ Py)zdr,  C- ~§{(P” - Py)zdr (3.36)
P P . (337
B~ f(p;v + %P},)(r - Rydr, e - f(P;, - %Pu)(r - Rydr
0 (4]

Coming back to the case of a general curved interface we note, that the interfacial
bending and torsion moments, B and ©, as determined by Eqn (3.31), represent the trace and
the deviator of the tensor of the interfacial moments, M, given by Eqn (2.51):

B=U:M, 0=q:M (3.38)
As demonstrated in Ref. [28], the halved trace and deviator of the interfacial stress tensor,

a=_-U:g and n -%q:o, (3.39)

are the mechanical dilation and shear tensions. By substituting g from Eqn (2.47) into Eqn

(3.29) one derives micromechanical expressions for ¢ and n;
1 Ay
g=-=[L:Pdx, = -— [(q:L):PdA (3.40)
2] n = -5 fla:L)
1

The relationships between the thermodynaniical dilation and shear tensions, y and , and their

mechanical counterparts, ¢ and 1, read [28]:
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1 1
- ~BH + —0D (341
Y=g+ > + 20
1 1
- 2BD + —OH (3.42)
¢=1+ 2 *3

One can directly verify the validity of Eqns (3.41) and (3.42) by substituting the
micromechanical expressions for v, , B, ©, ¢ and n given by Eqns (3.30), (3.31) and (3.40).
It will be shown in the next Section that Eqns (3.41) and (3.42) can be derived in an
alternative way by using purely macroscopic considerations.

The fact that the mechanical and thermodynamical tensions of a curved interface are
different (y # o, { # n) makes possible two alternative definitions of flnid interface to be
given [48]. Indeed, from a thermodynamical viewpoint one can state that the work of local
interfacial shear deformation of a fluid interface must be zero. i.e. { = 0. Eqn (3.42) shows
that even if { = 0, the mechanical shearing tension 7 is not zero, i.e. the surface stress tensor
is not isotropic for such a fluid interface at quasistatic conditions.

Alternatively, one can define fluid interface by means of a two-dimensional version
of the Pascal law, that is the surface stress tensor to be isotropic at quasistatic conditions, i.e.
1 = 0. However, in such a case the work of shear is not zero and it is determined by the
bending and torsion moments: { = (BD + ©H)/2(cf. Eqn (3.42)). One realizes that the two
alternative definitions of fluid interface are not equivalent for a general curved interface. The
above complications originate from the fact that a flexural deformation of a surface is usually
coupled with a shear deformation and vice versa. Of course, it is a matter of convention what
is called "fluid" interface. What makes physical since it is whether the real curved boundaries
between fluid phases comply with { = 0 or with 1} = 0. This is a problem for a future study

based on comparison between experimental data and theoretical predictions.

4. Relating between the Mechanical and Thermodynamical Approaches
In order to establish connection between the mechanical and thermodynamical
approaches we note, that mechanics provides an expression for the work of surface
deformation per unit area and unit time [21,28],;
ow

at: = a:(V,v+ U xw)+N:Vw @1

where v and w are linear and angular velocities and 7 is time. Eqn (4.1), multiplied by ¢,

should reduce to Eqn (3.3) for a quasistatic process. Comparing the coefficients at the
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independent differential in Eqn (3.3) with those resulting from Eqn (4.1) we can obtain the
desired connections between the mechanical and thermodynamical surface tensions and
moments.

The velocity of a surface point can be represented in the form

v=a,yv"+nv® @2)

According to Eliassen [23], the rate-of-strain tensor of the interface is defined by the
expression

(Va,p * Voo = 2545v®) @3

23|
Qo
ey,
PO e

In spite of the fact that we will eventually arrive at some quasistatic relationships, it
is convenient to the begin with considering the rates of change. It is easy to obtain the
corresponding infinitesimal increments during an elementary quasistatic process, For example
with 8¢ as the time increment, d|,,87 are the components of the surface strain tensor. Similarly,
if H is the time derivative if the mean curvature, then 8H = H8t is the differential of H,
which enters into Eqn (3.3).

As shown in Ref. [35] the scalar quantities
& = a*'d, and B =q*d, “4.5)

characterize the local rates of dilation and shear, respectively. The corresponding differentials
are, of course,

do = &bt and 5p = por (4.6)

which take place in Eqn (3.3).

As mentioned above, we restrict our considerations to quasistatic processes for which
the motion of a surface material point is caused by the deformation of the surface (zero fluxes
of surface convection or diffusion are assumed). In this case, having in mind Eqn (4.5), one
can write [28]

b - Laa, + La, @

Similarly we can represent the surface stress tensor in the form [28]:
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o,, = oa, *ng, 48
If o, and o, are the eigenvalues of the tensor ,, (in our case they are the tensions acting
along the lines of curvature), then it follows from Egns (3.39) and (4.8)
o= l(u, + 0y and n= l(ol - 0,) 4.9)
2 2

Similarly, the tensorial field of the surface moments can be represented in the form:

My = = (M, + My)a,, + = (M, - My)q,, (4.10)

|
N[ o=

where M, and M, are the eigenvalues of tensor M. We recall that the connection between
tensors M and JV is given by Eqn (1.28). Moreover, the angular velocity of a surface point is
related to the running unit normal, n, by means of the expression [28]:

wenx 98 @11
dt

It is shown in Ref. [28] that by substituting Eqns (4.8), (4.10) and {4.11) into Eqn (4.1) one
can derives Eqn (3.3) with y and £ being determined by Eqns {3.41) and (3.42), and with

B=M +M,, 0=M - M, @.12)

(In fact, Eqn (4.12) is a special case of Eqn (3.38); M, and M, can be identified with the
Gibbs coefficients C5 and C§ as discussed after Eqn (3.6) above.) In this way the general
validity of Eqns (3.41) - (3.42) is established. These equations form a bridge between the
mechanical and thermodynamical approaches to the theory of curved interfaces. Indeed, by
substituting Eqns {4.8) and {4.10) into the mechanical version of Laplace equation, Eqn
{2.35), and by using Eqns (3.14), (3.41), (3.42) and (4.12), one arrives at the thermodynamical
version of Laplace equation, Eqn (3.13). In particular, substitution of y and n from Eqns
(3.41) and (3.42) into Eqn (3.13) results in a more elegant and compact form of the
generalized Laplace equation, viz.,

2Ho + 2Dy - %(a““B +q*P@), 4 = Py - P, “4.13)

In addition, by means of Eqns (3.14), (3.41), (3.42), (4.10) and (4.12) one can
transform Eqn (4.8) to obtain



48
b = Yaaﬂ + chﬂ _ b“YMyﬂ 4.14)
Then by using Eqns (4.10), (4.12), (4.14) and the mathematical identities
a"”b:'ﬁ = 2H" and q”’b?_a = 2D (4.15)

it is possible to transform the mechanical expression for the lateral surface balance of
momentum, Eqn (2.36), into its thermodynamical counterpart, Eqn (3.12).

In summary, in this section we have demonstrated the general agreement between the
mechanical and thermodynamical approaches. It should be noted, however, that the
mechanical approach is somewhat more general, because Eqns (2.35) and (2.36) can be

employed with constitutive equations for g and M, other than Eqns (4.8) and (4.10), which

are appropriate for quasistatic processes only. Such constitutive equations, which take into
account also viscous effects, are considered in the next section.

At the end of this section we consider some special forms of Eqn (4.13) useful for
application. If Eqn (3.16) holds, then © = 0 and B is determined by means of Eqn (3.21). In
this case, assuming constant spontaneous curvature, H,, we transform Eqn (4.13) to obtain

2Ho +2Dn - 2k, V.H = Py - P, (4.16)

Let us now consider the special case of an axisymmetric interface. Such a symmetry
is often observed in the experiment, e.g. when the so called micropipet technique [7] is used.
We choose z-axis be the axis of revolution and we introduce polar coordinates (7,¢) in the
plane xy. Let z(r) be the equation of the surface generatrix. Then one has (see Ref. 24,
Chapter XIV, Eqn 66)

-1 -1
VH = _{(1 + 2% 2 d (1 + 2?2 dH “.17)
§ r dr dr
where
o/ = 9 o une @.18)
dar

with 6 being the running slope angle. Besides, for an axisymmetric surface (see e.g. Ref. 62)
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2 f - 4sind *s_'nﬁ’ 2p - 4sin® _ sin6 4.19)

dr r dr r

Then by means of Eqns (4.17) - (4.19) one can transform Eqn (4.16) to read

a(dsine . sine) R n(dsina _ sine) -

dr r dr r

(4.20)

k
=P, -~ P+ L cos0 4 {reose 2|1 i(rsin(i)
r dr drir dr
The last term in Eqn (4.20) represents the contribution of the interfacial bending

moment in the Laplace equation of capillarity for an axisymmetric surface.

5. Constitutive Relations

To solve any mechanical problem we need explicit expressions for the stress and
moment tensors. These expressions usually have the form of constitutive relations between
stress and strain characterizing the rheological behavior of the continuous medium: elastic,
viscous, plastic [18,63). It is important to note that a constitutive relation represents a
theoretical model of the rheological properties of the medium, whose applicability to a given
system is tested by experiment. Below we consider briefly some simple constitutive relations

for curved interfaces.

a) Surface stress tensor ¢

According to Scriven a liquid interface can be treated as a two-dimensional viscous
fluid [23,64,65]:

Oup = 08,p + Ey8,pd] + 2n2(d¢a - %a,,d{) 6.1)

where d,; is the surface rate-of-strain tensor defined by Eqn (4.3) d] represents the trace of
this tensor; €, and 1, are the coefficients of surface dilational and shear viscosity. Note that
in Eqn (5.1) £, and m, multiply the isotropic and deviatoric parts of the tensor d,,.

The elastic (nonviscous) part in Eqn (5.1), oa,,, is isotropic. Hence, it is postulated
that there are no shear clastic effects in a two-dimensional viscous fluid, i.e. n= 0 - cf. Eqn
(4.9). In other words, the surface shear stresses in the Scriven's rheological model have only
a viscous origin.
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Since the surface stress tensor g has also transverse components, cf. Eqn (2.6), a
constitutive equation is needed for 6** too. In analogy with Eqn (5.1) one can represent g®"
as a superposition of a viscous and a nonviscous term:

a(n) a(n)
a®® = Oy *+ O 5.2)

The viscous term, o}y, can be expressed in accordance with Newton's law of viscosity [66]:

Gl oy, vl ¢3)

l lateral friction between
/ surface molecules

N

N

i

Fig. 6 Sketch of the relative displacement between the surface molecules (the rectangles) during the
capillary wave motion; u is the local deviation from planarity,

As illustrated in Fig. 6, Eqn (5.3) accounts for the lateral friction between the molecules in
the interfacial zone. x, is the coefficient of transverse shear viscosity. For quasistatic
processes, when v ~> 0 and 6§}’ — 0, the transversal stress resultants reduce to o%5}. Then
in accordance with Eqns (2.34), (4.10), (4.12), (5.2) and (5.3) one obtains

PO xzv(n).a - —(Ba®P + @qdﬂ)'p (5.4)

N =

The surface rheological model based on Eqns (5.1) and (5.4) contains 3 coefficients
of surface viscosity: &,, n, and y,. In addition, two coefficients of flexural elasticity enter the

theory through B and © as discussed below.
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b) The Tensor of surface moments, M

According to Helfrich [2] the energy of flexural deformation, w, can be written in the
form:

wp = 2k (H ~H} + kK (.3)

Here k, and Ec are coefficients of bending and torsion elasticity, H, is the spontaneous

curvature, and X is the Gaussian curvature of the surface. Since K = H* - D? from Eqns (3.7)
and (5.5) one obtains

3 -
B - (ﬁ} - 4k (H - H,) + 2k H 66
3H ),
Q= ivf{ - -2%.D 6.7
aD ), ¢

For the case of a small mean curvature from Eqn (5.6) we obtain

B - -4k H, for H-~0 R

A comparison between Eqns (3.9) and (5.8) yields a relationship between the Tolman length,
8y, and the spontaneous curvature Hy;
2k
Hj' = -2 (5.9
(Yodo)

With &, ~ 5 x 10 J, 8, 3 x 10" m, y, * 70 mN/m from Eqn {5.9) one estimates H,' = 5
A as the order of magnitude of the spontaneous curvature of an aqueous drop.

By means of Eqns (4.10), (4.12}, (5.6) and (5.7) one obtains an expression for the non-
viscous part of the tensor of surface moments:

- - 5.10
Mg = -%(Ba“ﬁ + 0q°%) = [(2k, + k) H - 2k Hy]a®? - k Dq*? ¢10

Thus in accordance with Eqns (2.34), (3.14), (5.4) and (5.10) for the total tensor of the surface
moments we can write:
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MeP = 2[(k +k)H - kHj|a®® - kb°P - x,v®acP .11

In fact, Eqn (5.11) represents a constitutive equation for the tensor M stemming from the
Helfrich's formula, Eqn (5.5). By using the Codazzi equation, 5** = 5P see Ref. [24], we
get

baﬂ,a = a”baﬂ.r - ahb“"‘ = 2 ¢ (5.12)
The above Eqns (5.11) and (5.12) yield

MePy = 2k H® - yv@e (G.13)

Here we treated the spontaneous curvature H, as a constant; this assumption can be violated
when the distribution of the species is not uniform throughout the surface - c¢f. Eqns (3.17)

and (3.24) above. Besides, its worthwhile noting that the torsion elasticity, k . is not

involved in the right-hand side of Eqn (5.13). Hence, Ec , does not enter into the transversal

and tangential surface balances of the linear momentum, Eqns (2.15) and (2.16), which (at
negligible surface inertial and body-force terms) take the form

5.14
b poup - (2k;H.aﬁ _ xzv(n).cﬂ)a‘xp - Tl(n)(n) _ Tn(n)(n) ( )

o

5.15
0%P,y + by (2kHP - v P) = O - T ¢4
Here 6*° is to be substituted from Eqn (5.1). It should be noted that Eqn (5.14) represents a

generalized version of the Laplace equation of capillarity for dynamic processes.

¢} Application to fluctuation capillary waves

We consider capillary waves of amplitude # on a horizontal fluid interface - ¢f. Eqn
(1.22). Usually it is supposed that the amplitude v is small enough [20] and that Eqns (5.14)
and (5.15) can be linearized:
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aViu - kVIVu + xzvf% - 7O (.16)

V,0 + &V, vy + 1, Vv = (T, - Ty). U, (.17
where we have used the relationships

2H =Viu, v®= %% and v =aq.v°® (.18)

We note that the dependent variables, ¥ and vy, are separated in linear approximation: the
generalized Laplace equation (5.16) contains the normal displacement u, whereas the two-
dimensional Navier-Stokes equation (5.17) contains the lateral surface velocity v,

"Eqn (5.16) can be utilized to analyze interfacial fluctuation - dissipation processes.
Since the fluctuation capillary waves originate from the Brownian motion of the surface
molecules, a Brownian force term it to be introduced in Eqn (5.16):

aViu - k,ViVeu + x,vj%% +5°W ¢ = P - P .19

where 5% are the random transverse shear stress resultants (s are the random counterparts
of 6*®), The correlations of s*™, determined by means of the general theory of hydrodynamic
fluctuations [20], read [66]:

(54O (r, 1) s (r/, ) = 2k, Tx,a"P8(r - r')8 (e - t') (520

where k; is Boltzmann constant, T' is temperature and & is the Dirac function,
By using Fourier transformation, from Eqns (5.19) and (5.20) one derives the mean-
square amplitude of the thermal corrugations with wave number q:

k, T -
(u:) - —%—(Apg +ag?+ kcq") ! 521

where A4 is surface area, g is gravity acceleration, Ap = p, - py is the difference in density
between the two neighboring phases. Eqn (5.21) is widely used to interpret data for light
scattering from fluid interfaces [5,12].

Similarly, we can determine the averaged mean-square amplitude of the fluctuation
capillary waves [30,66-68]:
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(the contribution of k_ - neglected) as well as the relative dilation of the surface area, o =
AA/A, due to the thermal corrugations [66]:

1 T kBT 1
= {|Vu) == 2|1 - —In(1 + (5.23)
o« = (| Vel 8 oa PR
Here
._®o . (5.24)
(8pga?)

a is a cutoff parameter, accounting for the fact, that the wavelength can not be shorter than

one molecular diameter. One can expect that
a= ‘/,_4: (5.25)

where A, is the area per one surface molecule. For instance, the experiment [69] yields 4, =
52 A%, Then by using typical values, k,7 = 4.1 x 10%' J, 6 = 32 mN/m, and Ap = 1 g/em’,
from Eqns (5.22) - (5.25) one estimates (#*)'? = 5.7 A and a = 0.10. The latter Figure means
that the surface area is increased with 10 % due to the fluctuation surface corrugations. For
surfaces of low surface tension (¢ — 0), like lipid bilayers, biomembranes, microemulsion
droplets, the bending elasticity, &, determines the magnitude of the fluctuation capillary waves
- c¢f. Eqn (5.21). When two such surfaces approach each other at a mean distance h, the
overlap of the surface corrugations gives rise to a repulsive force known as the "undulation”
surface force, first introduced by Helfrich and coworkers [14,70). The theoretical
considerations [14,15,70] show that this force (per unit area of the surfaces) must be

proportional to h:

3n’(k,T)

(5.26)
64k h*

O () =

The undulation component of the disjoining pressure, IT,, has been measured [66-68] and the
inverse third power dependence of the film thickness # has been confirmed experimentally.

It should be noted that, in general, the shapes of two approaching fluid interfaces are
affected by the surface forces, which can be due to van der Waals, electrostatic, steric, etc.
interactions [74,75]. An implication of this fact is that a disjoining pressure term enters the
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interfacial balances of the linear and angular momenta - see Refs. 34,76}

6. Conclusions

Qur aim in this review was to compare the mechanical and thermodynamical
approaches to the theory of an arbitrarily curved interface, to find the connections between
them and to demonstrate their self-consistency.

Basic quantities of the mechanical approach are the tensors of surface stress and

momenis, ¢ and M. From a micromechanical viewpoint these are surface excesses with

respect to the bulk stress {pressure} tensor - see Eqns (2.47) and (2.51). The basic equations
of the mechanical approach, represent the vectorial balances of linrear and angular momenta,
Eqns (2.15) - {2.16) and (2.29) - (2.30). These equations are known from the theory of shells
and plates by Kirchhoff and Love, Their implications for a fluid-liquid interface or membrane
are discussed in Section 2 above - see Eqns (2.19) - (2.20) and (2.34) - (2.36), In particular,
the known Laplace equation of capillarity is a special case of the interfacial balance of linear
momentum,

The thermodynamic approach originates from the Gibbs theory of capillarity. The
Gibbs fundamental equation of an interface includes a term accounting for the mechanical
work of surface deformation. The lfatter consists of the works of interfacial dilation, shear,
bending and torsion, characterized by the dilation and shear tensions, ¥ and £, and by the
bending and torsion moments, B and @ - see Eqn (3.3). These quantities are interrelated by
the conditions for thermodynamic equilibrium corresponding to minimum free energy of the
system, The thermodynamics provides expressions enabling one to calculate the dependencies
of the surface tensions and moments on temperature and composition; an illustrative example
for a mixed lipid monolayer is given in Section 3b.

To find the connection between the mechanical and thermodynamical approaches one
should answer the following two questions:

(i) How the scalar hermodynamical quantities v, {, B and © are related to the

mechanical stress and moment tensors, g and M?

(i) What is the relation between the thermodynamical equilibrium conditions, and the
mechanical balances of linear and angular momentum?

The replies to these questions are given in Section 4 above. In particular, the
thermodynamic bending and torsion moments, B and ©, turn out to be equal to the trace and
the deviator of the tensor of surface moments, M - ¢f. Eqn (3.38). Similarly, the trace and the

deviator of the surface stress tensor, g , determine the mechanical dilational and shear
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tensions, ¢ and 1, respectively - see Eqn (3.39). 0 and n are related to their thermodynamical
counterparts, vy and £, by means of Eqns (3.41) and (3.42).

By using the aforementioned relationships between the thermodynamical and
mechanical tensions and moments, in Section 4 demonstrate that the thermodynamical
conditions for equilibrium, Eqns (3.12) and (3.13), are corollaries from the mechanical
balances of linear and angular momentum in the special case of quasistatic processes. The
mechanical approach can be applied also for dynamic processes, when viscous effects have
to be taken into account - see Section 5.

To solve any mechanical problem, one needs constitutive relations between stress and
strain. Such a relation represents a theoretical model of the rheological properties of an
interface. In Section 5 we discuss a rheological model based on the constitutive relations due
to Scriven [64] and Helfrich [3]. This model contains 6 surface rheological parameters: the
viscous behavior is characterized by the surface dilational viscosity, &,, and by the surface
lateral and transversal shear viscosities, n, and x.; the surface flexural elastic behavior is

characterized by the bending and torsion moduli, &, and ‘Ec , and by the spontaneous

curvature, H,. This rheological model represents the basis of the theory of fluctuation capillary
waves and undulation surface forces.

In conclusion, we found out that the mechanical and thermodynamical approaches are
in a good agreement. Moreover, they are complementary to each other and represent the two
parts of a self-consistent theory of the general curved interfaces. We hope that the
interconnecting between these two approaches, considered in the present review, will be
helpful for a further advance in this field.

Acknowedgement: The authors are indebted to Miss Mariana Paraskova for for careful wotk
of manuscript typing and figures preparation.
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