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Abstract 

The mechanical and thermodynamical approaches to the theory of the general curved 

interfaces are presented and compared. In the mechanical approach a curved interface or 

membrane is characterized by the tensors of surface stresses and moments. They are 

connected by the surface balances of the linear and angular momentum. On the other hand, 

in the thermodynamical approach the surface is characterized by the scalar dilation and shear 

tensions as well as by the bending and torsion moments. In this review we investigate the 

problem about the relationships connecting the mechanical and thermodynamical approaches. 

We find that these two approaches are in a good agreement, that they are complementary to 

each other and represent the two parts of a self-consistent theory. The latter can be applied 

to any system where curved interfaces, thin films or membranes are present: microemulsions, 

lamellar and sponge phases, lipid vesicles and cell membranes, capillary waves at interfaces, 

undulation and peristaltic surface forces, lateral capillary forces between particles in thin 

liquid films, etc. 

1. Introduction 

Various experimental studies in the fields of colloid science and biophysics show that 

the classical Young-Laplace theory [I] where a curved interface or membrane is described as 

a two-dimensional continuum in a state of position-independent, isotropic tension, is 

insufficient in several cases. The famous theory of a capillarity derived by Gibbs [2]is 

likewise founded on this Young-Laplace concept but, in addition, Gibbs introduced the notion 

of a surface of tension in order to be able to retain a simple formal scheme even when 

curvature effects are of importance. To account explicitly for the bending properties of 

monolayers, lipid bilayers and biomembranes with vanishing tension Helfrich [3] introduced 

additional mechanical parameters for a curved interface, viz., bending and torsion moduli and 

spontaneous curvature. These parameters were soon recognized to be crucial also for 

understanding microemulsions [4-61. 

Evans and Shalak [7] demonstrated that even such a complex entity as a biomembrane 

can be treated mechanically as a two-dimensional continuum characterized by dilational and 

shearing membrane tensions as well as by bending and torsion surface moments. For 

example, the special biconcave disk shape of erythrocytes was found to correspond to a 

minimum flexural interfacial energy of the system [7,8]. Other examples of systems where the 

interfacial flexural properties have been shown to play important roles are microemulsions 

[9,10] and surfactant micelles [I 1,121. Moreover, the interfacial bending moment affects the 

amplitude of the fluctuation capillary waves on surfaces of low enough tension [13] and 

determines the magnitude of the repulsive “undulation” forces between two approaching fluid 

interfaces in solution [14.15]. 
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In essence, there are two approaches to the theoretical description of a general curved 

interface which, however, at first sight may seem diametrally opposite. The first of them is 

the nrechanical approach originating from the Kirchhoff-Love theory of plates and shells 

[16,17], which is standard in the mechanical sciences and which is sometimes applied to 

biomembranes and lipid bilayers. A main advantage of this approach is its powerful 

mathematical framework, which is basis of continuum mechanics in two dimensions, tensor 

analysis and differential geometry. Moreover it can be applied to both quasistatic and dynamic 

processes. 

The second approach is founded on rhernrodynanrics which is encompassed by the 

Gibbs theory of capillarity [2] and is frequently referred to in physical chemistry and surface 

science. The main advantage of this latter approach lies in its close relation with chemical 

thermodynamics. Hence, it provides a valid description of the variations of surface tensions, 

moments and deformations due to composition changes and, moreover, it establishes a link 

to the molecular theory which is based on statistical mechanics. 

Considering these rather different approaches to the theory of curved surfaces which 

are taken in mechanics and surface thermodynamics, it is obvious that widely different notions 

and basic equations are being employed to account for the same phenomena. Ultimately, the 

two approaches have to be equivalent or at least complementary, since the same physical 

reality is actually being described. 

Our aim with the present review article is, hence, to establish the connecting links 

between the mechanical and thermodynamical approaches to the theory of general, curved 

interfaces. We believe that the combined power of these two main routes will facilitate 

solving some pending theoretical problems in the field of interfaces and membranes. 

2. The Mechanical Approach 

The mechanical theory of the extensional and flexural deformations of a two- 

dimensional continuum originates from the classical theory of shells and plates developed in 

1850 by Kirchhoff [ 161 and extended in 1888 by Love [ 171. A comprehensive review of this 

theory is given in the monograph by Naghdi [ 181. 

Historically the derivation of the Kirchhoff-Love theory had the practical purpose to 

treat vibrations of plates and shells in order to predict the tones of vibrating bells [17,18]. 

However, the underlying mathematical formalism can be applied to describe the deformations 

of any two-dimensional continuum, including fluid interfaces and biomembranes. Since our 

ultimate aim is to compare the Kirchhoff-Love theory with the Gibbs theory of capillarity, we 

will first focus our attention on some general equations of the theory of shells and plates. 
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(a) Surface balance of the linear ~~o~len?ll~I 

It is appropriate to start with a three-dimer~sional continuum and then to proceed with 

a two-dimensional continuum. 

Let us consider a material volume V enclosed by a surface S with running outer unit 

normal n. Then, in conformity with the Newton’s second law it is postulated (see e.g. Ref. 

[191X 

(2.1) 

Here I is time, p is mass density, v is velocity field, T is the stress tensor, ds is a scalar 

surface element and f is the body force per unit mass (if the body force is due to gravity, 

then f coincides with the gravitational acceleration 6). Eqn (2.1) states that the rate of increase 

of the linear momentum of material volume V is equal to the sum of the surface and body 

forces exerted on the volume V. In other words, Eqn (2.1) expresses the integral balance of 

linear momentum for the volume V. Since volume V is arbitrarily chosen, one can obtain the 

known local form of the linear momentum balance, which is valid at each point of a three- 

dimensional continuum [ 19,201 

dv 
Pdt - V.T + pf (2.2) 

Eqn (2.2) is derived from Eqn (2.1) by using the Gauss-Ostrogradsky theorem along with the 

following known hydrodynamic relations: 

d IdYpv - (dV d(pv) 
t v 

dt + pvV.v 
V I 

dp 
dt 

+ pv,v - 0, 

(2.3) 

(2.4) 

We next continue with the derivation of a two-dimensional analogue of Eqn (2.2). 

Following Podstrigach and Povstenko 1211 we consider a material volume V confining a 

portion, A, of an interface (membr~e) together with volumes V, and V,, of the adjacent bulk 

phases I and II - see Fig. 1. 
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Fig. 1 Sketch of material volume V confining a portion A of an interface. V,, V,, and S,, S,, are the 
parts of volume V and its surface situated on the two sides of the interface A. 

A counterpart of Eqn (2.1) is postulated [21]: 

Here the subscript s refers to the interface between the bulk phases I and II; S, and S,, are the 

parts of the surface of volume V, which are situated on the two sides of the dividing surface 

A; r is the mass density per unit area of this surface; Q is the surface stress tensor; L is 

the contour encompassing the interfacial portion A; v is a unit vector which is simultaneously 

normal to contour L and tangential to surface A - see Fig. 1. 

It should be noted that the surface stress tensor can be represented in the form [ 16.211: 

u - (I, up cJ=b + a, II cP(“) (2.6) 

where a, and a2 are the vectors of a local basis in the surface A and n is the running unit 



normal to this surface; oar? and &“) are tangential and transversal shear stress components, 

respectively. Were and hereafter the Greek indices take the values 1 and 2, and summation is 

assumed over the repeated indices. 

For the sake of simplicity we assume continuity of the normal component of the 

velocity field at the’interface: 

(VI - v,).n - (vu - v&n - 0 (at surface A) (2.7) 

(The more general case, when Eqn (2.7) is not satisfied, is considered in Ref. &!I 1). Eqn (2.1) 

holds for each of the volumes Vr (Y = I$): 

dsn,T, + 
f dVp,f, 

“, 

(2.8) 

In addition, from Eqn (2.6) and the Green-Gauss-Ostrogradsky theorem [22] one derives the 

relationship 

(2.9) 

where VS is two-dimensional gradient operator in the surface A: 

(2.10) 

where u”, a = 1,2, are curvilinear coordinates in the surface A. The surface counterparts of 

Eqns (2.3) and (2.4) read [23]: 

+ rv,vs.v, I 
dl? 
dt + rv,,v, - 0 

(2.11) 

(2.12) 

The last equation is valid when there is no exchange of mass between the bulk and the 

surface. Finally, by means of Eqns (2.8), (2.9), (2. I 1) and (2.12) the integral linear momentum 

balance, Eqn (2.5), can be transformed into a local form 121,231 



dv 
I-L-V,.cJ+rf,+n 

dc q-n - T,) 
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(2.13) 

which is the sought-for two-dimensional analogue of Eqn (2.2). The last term in Eqn (2.13) 

accounts for the interaction between the surface and the two adjacent bulk phases; this term 

has no counterpart in Eqn (2.2). The components of the stress tensors T, and T,, in Eqn (2.13) 

are to be evaluated at the surface A. 

Differential geometry [23-251 provides the following expression for the surface 

divergence of the surface stress tensor 0 given by Eqn (2.6): 

(2.14) 

where b,, are the components of the surface curvature tensor and the commas denote 

covariant derivatives. Then the projections of Eqn (2.13) along vectors a, and n become 

[18,211 

_ ba” (I bfn) + rf + (,,. - @)=) , u I 1,s (2-15) 

where ia and if”) are components of the acceleration vector dvJdt. Equations (2.15) and (2.16) 

coincide with the first three basic equations of the theory of shells due to Kirchhoff and Love 

- see Refs. [18,21]. 

Eqns (2.15) and (2.16) are quite general; they can be specified when the rheological 

properties of the bulk phases and the surface are known, i.e. when constitrctive relations 

connecting stress and strain are available (see Section 5 below). 

As an example let us consider a quasistatic deformation (vs = 0) of a fluid interface 

between two fluid bulk phases. In this case the bulk and surface stress tensors are isotropic: 

T, - -P,U, Y=I,II 
(2.17) 

a-au, 
(2.18) 

Here cr is the scalar surface tension, P, and P,, are the pressures in the bulk phases, U and Us 



are the bulk and surfaces unit tensors (idemfactors) respectively. By substituting Eqns (2.17) 

and (2.18) into Eqns (2.15) and (2.16) for the case of a quasistatic process one derives 

(assuming negligible surface weight I-f,): 

a’ - 0 
(2. I !I) 

2Ho-Pn-P, 

where 

2H-a”@b aB 

(2.20) 

(2.21) 

is the surface mean curvature with #a being the surface metric tensor - see e.g. [23-251. Eqns 

(2.19) and (2.20) represent the basis of the classical theory of capillarity developed by Young 

[26] and Laplace [l], which presumes the the surface tension, 0, is constant throughout the 

interface (membrane) and that the surface shape is determined by Eqn (2.20) frequently 

referred to as the Laplace equation. In particular, if the equation of the surface shape in 

Cartesian coordinates is 

z - W,Y) 9 
(2.22) 

the mean curvature can be expressed as a surface divergence [27] 

(2.23) 

and Eqn (2.20) reduces to a second order nonlinear differential equation for determining the 

function u. 

In the case of strongly curved surfaces (microemulsions, biomembranes) the role of 

surface bending moments becomes significant and the surface (membrane) tension is generally 

neither isotropic nor constant. Then Eqns (2.18) and (2.19) are no longer valid. The 

contribution of the surface moments is discussed below. 

(b) Surface balance of angular monlentm 

In mechanics, rotational motion can be treated analogously to translational motion. In 
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particular, angular velocity and force moments (torques) are considered instead of linear 

velocity and forces. Three- and two-dimensional balances of the atIgUiaF momentum, i.e. 

counterparts of Eqns (2.1) and (2.5), can be postulated - for details see Refs. [ 18,211. A local 

form of the surface angular momentum balance 

(2.24) 

can be deduced, which constitutes a counterpart of Eqn f2.13). Here u is a coefficient 

accounting for the moment of inertia; w is the vector of angular v=eIocity; 

(2.25) 

is the tensor of surface moments, which is an analogue of the surface stress tensor, 0 ; m 

is a surface director couple per unit mass due to external body force; nr is a counterpart of 

f, in Eqn (2.13); 

0.26) 

is surface attemator; d is the determinant of the surface metric tensor and 

e12 = -621 “1, %I = %2 -0 
(2.27) 

- cf. e.g. Ref. [24]; the symbol “:1’ denates double scalar product of two dyadics see e.g. Refs. 

123,281. When deriving Eqn (2.24) it is assumed that there are no bulk torques (bulk 

counterpart of the surface tensorial field IV); such bulk couples would appear if the bulk phase 

is a liquid crystal. 

The last term in Eqn (2.24) expresses the force moments due to the interaction of the 

surface with the adjacent bulk phases. 

Sometimes (cf. Refs. [?,i8,21,28]) the surface moments are characterized by another 

tensor, viz., 

(2.28) 

The meaning of the components of the tensors NGp and A.& is illustrated in Figs. 2b and 2~. 

One realizes that N,, and X2 represent normal moments (they cause torsion of the surface 



element), whereas N,, and N?, represent tangential moments causing bending of the surface 

element. Hence, the mechanical interpretation of Nap is similar to that of cr,s (cf. Figs. 2a and 

2b). On the other hand, the diagonal components of Maa represent bending moments and the 

nondiagonal ones - torsion moments - Fig. 2c. 

4n 

Fig. 2 Components of the surface stress tensor (I (a); of the surface moment tensor N(b); and of 

the surface moment tensor M (c). 

By using Eqn (2.14) (with N instead of (T), along with Eqns (2.6), (2.25) and (2.26), 

one can find the projections of the surface angular momentum balance, Eqn (2.27), along 

vectors II, and n [21]: 

(2.29) 

(2.30) 

wherej” andj<“’ are components of angular acceleration vector dwldt. Eqns (2.29) and (2.30) 
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represent the second group of three basic equations in the theory of Kirchhoff and Love - see 

e.g. Refs. [l&21] 

As an example for application of Eqns (2.29) and (2.30) let us consider the case of 

quasistatic process 0” %P,) = 0) with a negligible effect of surface director couples, mr. In 

addition, let us assume that (i) cr,a and IMap are symmetric surface tensors: 

(2.3 1) 

(ii) MOP diagonalizes in the basis of the principle curvatures, which is equivalent to 

commutativity of the tensorial product 

b&r - b,,% 
(2.32) 

and that (iii) the transverse components of N are zero, i.e 

N - a,agNa~ - a,upMayeY~ 
(2.33) 

- cf. Eqns (2.25) and (2.28). Then in view of Eqns (2.31) - (2.33) one can verify that the 

normal projection of the angular momentum balance, Eqn (2.30), is identically satisfied. In 

addition, the tangential projection, Eqn (2.29), can be transformed to read [7,18]: 

(2.34) 

Eqn (2.34) shows that in the case of quasistatic precesses the very existence of surface 

moments, M”a, gives rise to the transverse shear stress resultants &“). (When the process is 

not quasistatic, e.g. capillary waves, there is also a viscous contribution to &“) - cf. Eqn (5.3) 

below.) 

Substitution of Eqns (2.17) and (2.34) into Eqn (2.16) results in a generalization of the 

Laplace equation, Eqn (2.20), for the case, when surface moments are present [7,18] 

(2.35) 

Under the same assumption Eqn (2.15) reduces to 
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a=@ ,@ +b;M”7 -0 
‘7 

Eqns (2.35) and (2.36) were utilized in the mechanics of biomembranes developed by Evans 

and Skalak [7]. In Section 3 below we compare Eqns (2.35) and (2.36) with the corresponding 

results from the Gibbs theory of capillarity. 

So far we have been dealing with an idealized system, composed of two bulk phases 

separated with a mathematical (infinitely thin) surface. This is obviously an idealization since 

the real transition region between two hulk phases has always some finite physical thickness. 

This transition region is characterized by a nonuniform density and nonisotropic pressure even 

at equilibrium conditions [29,30]. There is a micromechanical approach originating from the 

work of Bakker [31] which identifies the surface tension with an integral of the excess 

pressure (difference between the pressure tensors in the real and idealized systems) across the 

transition region. In the original work of Bakker this approach was applied to planar 

interfaces. Later on it was extended to spherical interfaces in Refs. 129,321 and to arbitrary 

curved interfaces in Refs. f33-361. Below, following Ref. [34], we derive micromech~jc~ 

expressions for the surface stress tensor a and the surface moment tensors N and M. The 

micromechanical expressions elucidate the physical meaning of these tensors and make 

possible their calculation by means of statistical mechanics. 

Consider an interface separating two bulk phases I and II. Following the tradition [31- 

331 we will make use of the pressure tensor, which is in fact the stress tensor with opposite 

sign: 

P- -T 
(2.37) 

As mentioned above, even under equilibrjum conditions the pressure tensor Pis non-isotropic 

in the interfacial zone; its components can be calculated by using some statistical mechanical 

model like that of Irving and Kirkwood [37] or the model of Kirkwood and Buff [38], later 

on extended by Harasima [39]. These models are not equivalent [29,40]. However, their 

adequacy has not yet been fully checked against experimental data, because of the difftculties 

connected with a realistic estimate of the molecular pair correlation function in the interfacial 

transition zone. 

The tensor P represents the actual pressure in the real system. On the other hand, the 
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idealized system consists of two homogeneous phases, which preserve their bulk properties 

right up to a mathematical dividing surface. The pressure tensors Pr and P,, are ascribed to 

these two phases. In addition, tensors of surface tension, (I , and surface moments, N, are 

attributed to the dividing surface. At equilibrium conditions the pressure in the idealized 

system is isotropic everywhere, i.e. 

(2.38) 

However. it is worthwhile noting that the considerations below are valid even for non- 

equilibrium conditions in the system. 

Let (a’, n*) be curvilinear coordinates in the dividing surface and h be the distance 

from a point in the space to the dividing surface. Then (a’, u*, X) represent curvilinear 

coordinates in space and 

r - R(u’,uZ) + bn(u’,f2) 
(2.39) 

is the position vector of a point in space with R being the position vector of a point on the 

dividing surface whose running unit normal is n. Obviously, the surface with h - 0 is the 

dividing surface, and any surface with h = const f 0 is parallel to it 123,331. The pressure 

tensor in the idealized system can be represented in the form 

B - P,tl(-A) + Pne(l) 
(2.40) 

where 0 is the Heaviside step-wise function: 

%=O for A<O and e-i for I>0 
(2.41) 

Next, following Ref. [34] we consider a pe~endicular sectorial strip A& for each 

element dl of a curve C lying on the dividing surface - see the hatched area in Fig. 3, where 

v is unit normal to curve C and the surfaces h = k., and h = & are supposed to be located 

inside the bulk of the two adjacent phases. 
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Fig. 3 A sectorial strip (hatclled) associated with an element (II of curve C lying in the surface; n is 
the running unit normal to the surface. 

The force exerted on the strip AA, in the real system is 

i 
dsn.P 

AA, 

The corresponding force in the idealized system is 

- v.adl 

Setting the forces in the real and idealized systems equal one can derive [34] 

11 

v.0 - -v. 
J 

dlL.F 

4 

(2.42) 
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where 

PI-P-2 

is the excess pressure tensor and Eliassen’s [23] finding 

nds = v.LdXdl , L = (1 - 2AH)U, + Ab 

is being used, where 

b - a,aaba~ 

is the surface curvature tensor. 

(2.43) 

(2.44) 

(2.45) 

Similarly, the condition for equivalence of the real and idealized systems with respect 

to the force moments yields 

v.N - v.a x R - v. diL.P x r 
s 
Al 

Because of the arbitrariness of v, from Eqns (2.39). (2.42) and (2.46) one finds: 

(2.46) 

(2.47) 

(2.48) 

Eqns (2.47) and (2.48) are the sought-for micromechanical expressions for IJ and N. By 

making use of the identity [23] 

ar x n = a’ ebT 

one can derive an alternative expression for N: 

*a 

NW - 
s 

dA AL.F.e 

*r 

(2.49) 

In addition, having in mind that 
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M-Net, c.c - -us 

(cf. Eqn (2.28)) from Eqn (2.49) one obtains 

M - idl AL.Iy. U * 
Al 

(2.50) 

(2.5 1) 

It is worth noting that unlike the tensor a , given by Eqn (2.47), the surface moment tensors 

M and N, as given by Eqns (2.49) and (2.51), do not have transverse components (resultants 

along n) is agreement with Eqn (2.33). 

As an illustrative example let us consider a cylindrical interface (membrane) between 

phases I and II. (We are aware of the fact that a cylindrical surface is not ever stable, 

nevertheless we choose it as the simplest example for a geometrically non-isotropic surface.) 

It is natural to introduce cylindrical coordinates (r, cp, z) with z-axis directed along the 

cylinder axis. At static conditions the excess pressure tensor can be represented in the form 

P - Pr+e,e, + Pf,e,e, + P:eze, (2.52) 

where e,, eV and e, are unit vectors along the respective axes of the local basis. In addition, 

b - 2He,e, (2.53) 

Then from Eqns (2.44) (2.47) and (2.5 I) - (2.53) one obtains expressions for the components 

of a andM 

11 4 (2.54) 
a - - vv / 

dAP,s, a 7.7. - - dA(1 - 2AH)P,S, 
$ 

A1 11 

h 12 

M VP - dlAP,S, 
$ %z - J 

dll(1 - 2AH)P,: 
(2.55) 

AI AI 

Here the boundaries 7c, and & are to be specified in an appropriate way. Alternatively the 

radial coordinate r and cylinder radius R can be used instead of distance h and mean 

curvature H: 



r-A +R, 1 HI -- 
2R 

Then Eqns (2.54) and (2.55) can be represented in the form: 

_ _ 

a - - 99 s 
drP,s, a - - LL J 

0 0 

drip: 

35 

(2.56) 

(2.57) 

m 

M - 
99 f 

dt(r - R)P:, 
0 

. 

% - s dr;(r - R)P; 
(2.58) 

0 

Eqns (2.57) - (2.58) will be compared below with micromechanical expressions resulting from 

the thermodynamical approach to the theory of curved interfaces and membranes. 

3. The Thermodynamical Approach 

a) Basic equations 

In the thermodynamical approach of Gibbs [2], which was later on extended by 

Boruvka and Neumann [41], a multiphase system is treated as a set of bulk, surface and linear 

phases, each of them characterized by a fundamental equation. 

The logical scheme of the Gibbs approach is the following: 

(1) The extensive parameters (internal energy U, entropy S, number of molecules Ni 

of the i-th component, etc.) and their densities in all phases far away from the phase 

boundaries are in principle regarded as known. 

(2) An idealized hypothetica system is introduced in which all the phases (bulk, 

interface or linear) are considered as being homogeneous, the interfacial regions are replaced 

by sharp boundaries (geometrical surfaces or lines), and the resulting excesses of the extensive 

parameters in the idealized system with respect to the real one are ascribed to these 

boundaries. A detailed description of this procedure can be found in the following references: 

Hill [42] Ono and Kondo [29], Boruvka and Neumann [4iJ, Rusanov [43], Rowlinson and 

Widom [30], Ivanov and Kralchevsky [34]. 

(3) Next, fundamental equations of the various phases in the idealized system are 

formulated. In so far as our attention in the present review is focused on surfaces, it is 

appropriate to consider in detail the fundamental equation of a curved surface (membrane). 

Since the curvature of such a surface varies from point to point, a local formulation is 



required. In accordance with Refs. 128,351 the local form of the surface fundamental equation 

is 

sf, - -s,8T + i pk81-‘, - w,8a + 8w, (3.1) 
k-l 

where f,, s,, o, and I-, are the surface densities of excess free energy, entropy, grand 

thermodynamic potential and number of molecules of components k, respectively; T is 

temperature, t.tr is chemical potential. Further, 

8a - 6(AA)/AA (3.2) 

is the local relative dilation of a surface element AA and 

aw* -yaa+Cbp +B6H+BbD (3.3) 

is the work of surface deformation per unit area; 6s SD, 6H and 6D characterize the four 

independent modes of elementary surface deformation; dilation, shear, bending and torsion - 

see Fig. 4. 

00 D 
Dila tim Referewe 

State 
Shear 

Bending Reference 
State 

B 
Torsion 

Fig. 4 Independent modes of surface deformation. 
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In particular, H and D are the mean and deviatoric curvatures: 

D = ;(q - c2) 

with c, and c2 being the two principle curvatures at a certain point in the surface. The shear 

parameter j3 is discussed in more detail in Ref. [35]. The coefficients y and t; in Eqn (3.3) 

have the meaning of thermodynamic surface tension and shearing tension, respectively 

whereas B and 0 are interfacial bending and torsion moments [44]. Note that the 

thermodynamical surface tension y is a scalar quantity, whereas the mechanical surface 

tension, 0 (see Eqn (2.6)), is a tensorid quantity. 

By combining Eqns (3.1) and (3.3) and making use of the thermodynamic definition 

relation 

k- 1 

we obtain the expression 

8 % - -s,ST - 5 rk8pk + (y - 0,)8a + CSp + B8H + 88D 
(3.5) 

k- I 

For&id interface such that all of its constituents are soluble in (and equilibrated with) the 

adjacent bulk phases we have that a quasistatic stretching madi in an arbitrary manner, is 

equivalent to forming more of the interface already present, see e.g. Refs. [28,35,45,46]. If 

so is actually the case, one realizes that the work of formation per unit area is independent 

of both of the strain variables a and p, i.e. 8o,/8a = SwJSB = < = 0, implying that the 

thermodynamic interfacial tension y can be identified with ce,. Accordingly, for this common 

case we can easily recover the Gibbs surface tension equation in the form 

8~ - -s,BT - c rk8pk + B8H + 88D 
kc- 1 

(3.6) 

which is implicit in a general version of the Gibbs theory of interfaces where an arbitrary 

dividing surface is being employed. As a matter of fact, by comparing with Eqn (494) in the 

original text of Gibbs [2], one finds that B = Cf + q and 0 = c - c where the coefficients 

c and c used by Gibbs are defined by 8y/8c, and 8y/&,, respectively, c, and c2 denoting 

the principal curvatures. In Section 4 below we will show that c and c correspond 

mechanically to the eigen-values of the surface moment tensor M. 



What concerns the work of flexural deformation, 6ru, it can be represented in two 

alternative forms [36,47]: 

COWS = B6H + 8&D = C,bH + C,8K (3.7) 

is the Gaussian curvature. Since K = Hz - D*, from Eqn (3.7) it follows [48] 

B-C, +2C,H, e- -2C,D (3.8) 

The values of B and 0 for an interface depend on the choice of the Gibbsean dividing 

surface. In particular, a special surface of /ension exists for which B = 0 = 0 by definition 

[34]. However, there is no guarantee that this surface of tension will be located close to the 

real phase boundary, especially in the case of highly curved interfaces [4,11,28,47,49]. This 

is the main reason why different kind of eqrrinlolecrtlar dividing surfaces or midsurfaces are 

used instead of the surface of tension [47,50]. 

Model calculation of the contribution of the van der Waals [51,52] and electrostatic 

[53,54] interactions to the surface bending moment B have been carried out for spherical 

interfaces (microemulsion type of systems). It should be noted also that in the limiting case 

of planar interface [32,54] 

B - 2~,,4, for H-O (3.9) 

where S, is the Tolman parameter, which by definition is equal to the distance between the 

equimolecular dividing surface and the surface of tension [29,30,55]; the subscript “0” in Eqn 

(3.9) symbolizes limiting value for H -+ 0. 

The final step of the Gibbs [2] thermodynamic approach is to impose conditions for 

equilibrium. The system is in complete thermodynamic equilibrium when there are no 

macroscopic convective fluxes (mechanical equilibrium), no diffusion fluxes (chemical 

equilibrium) and no heat transfer (thermal equilibrium). As it is well known, the conditions 

for rhernlal and chenricul equilibrium imply uniformity of temperature and chemical potentials 

throughout the thermodynamic system. 

The condition for nrechonical equilibrium at each point of the dividing surface between 

two bulk phases, I and II, is the Laplace equation of capillarity. It can be derived by means 

of a variational method, i.e. by setting the first variation of the overall free energy of the 

system equal to zero [35] 
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(3.10) 

and constancy of temperature and chemical potentials is assumed. 

thermodynamic identity 

N 

(3.11) 

Then by using the 

L- 0, + c pkrk 
kc- 1 

along with Eqns (3.1), (3.3) and (3.10) we can derive the following conditions for surface 

mechanical equilibrium [35] 

2Hy + 2DC -(Hz + D2)B - 2HD0 - ;(&B + q”h&, - P, - PI (3.13) 

where 

4 aa I +“a - Ha’!) (3.14) 

is the definition of the deviatoric curvature tensor. (A slight difference between Eqns (3.12) 

and (3.13) and the respective equations in Ref. [35] is due to the fact that qap is incorrectly 

treated there as a constant surface tensor, i.e. the terms qapO,, and &qaB should read 

(P@)>,, and (C;q”P),a; the remaining equations in Ref. [35] are not affected by this change.) 

Eqns (3.12) - (3.13) in fact represent the three equations resulting from the three independent 

translational variations of the position of a point on the dividing surface (two tangential and 

one normal with respect to the surface). The physical meaning of Eqns (3.12) and (3.13) 

suggests that they should be equivalent to Eqns (2.35) and (2.36). This point is discussed in 

Section 4 below. 

Finally, we note that by means of Eqns (3.7) and (3.8) Eqns (3.12) and (3.13) can be 

transformed in the following equivalent form [48] 
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V,y - C,V,H - C,V,K + V.(Cq) - 0 (3.15a) 

2Hy + 2DC - C,(2H2 - K) + 2C,HK - ;VS2C, - 
(3.15b) 

- 2HVS2C2 + b : V,V,C, = P,, - PI . 

Eqns (3.15a) and (3.15b) are equivalent to the corresponding expressions derived by Boruvka 

and Neumann [41] for the case when the shearing tension < = 0. 

b) Bending monrenl due IO sreric inreracrions 

As mentioned earlier, the elec/rosta/ic and van der Waals contributions to the 

interfacial bending moment, B, are studied in Refs. [Sl-541. Here we will briefly consider the 

contribution due to the s/eric interactions as an illustration of the applicability of the basic 

equations in the previous section to phospholipid monolayers and bilayers. We will make use 

of the Helfrich [3] expression for the energy of flexural deformation, IY,, per unit area of the 

curved surface: 

w, = 2k,(H - HO) (3.16) 

where HO is the spontaneous curvature and k, is coefficient of bending elasticity. The 

contribution due to the torsion (Gaussian) elasticity is neglected in the present context. 

Typically k, = 10.” J for bilayers of phospholipids [56,57]. Unlike k,, the spontaneous 

curvature H, depends strongly on the composition of the monolayer. For a two-component 

monolayer an expression due to Markin [8] may be used: 

Ho - e, I’1 + e, I’2 
(3.17) 

Here I-, and IYz express the number of molecules per unit area of the monolayer (in half of 

a lipid bilayer); e, and ez are coefficients. Depending on their shape the molecules in the 

bilayer can be characterized as “boys” or “girls” - see Fig. 5. The coefficients e, (k = 1.2) in 

Eqn (3.17) are positive for “girls” and negative for “boys”. (Sometimes e, are called in jest 

“erotic coefficients”.) If I is the length of a molecule and a, and vk are the molecular area and 

volume, then [58,59]: 



>_I-J_+f I2 
a,1 R 

-- , (k - 1,2) 
ok 3 R2 ok 
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(3.18) 

where R, is the curvature radius. Usually ! 8 R,, and thus 

(3.19) 

see also Ref. 1601. H,, is the spontaneous curvature per molecule. The coefficients e, can be 

expressed in the form 

ek - akHok ) k - 1,2 
(3.20) 

“girls’ “boys” 

- “girl” 

Fig. 5 Scbematie presentation of a lipid bilayer composed of two components of ditTerent motecular 
shape: “boys” and “girls”. 

For numerical estimates one can use the following data for lipids from egg yolk [!%I: 

(1 = phosphatidyl choline; 2 = phosphatidyl ethanolamine): 

a,-72A2 , v,emA3 , I-WA , H,I--S~OA , e,--8,5~10-‘~ cm 
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aa-42AZ , v,-7ooA3 , 1-11A, H~‘--I%MA, e,--32x10-‘“cm 

We note that both these lipids behave like “boys”. On the contrary, the cholesterol in a 

membrane behaves like a “girl”. 

From Eqn (3.16) one derives 

/3- - 4k,(H - Ho) 
r1.b 

(3.21) 

By integrating the thermodynamic relation (cf. Eqns (3.1) and (3.3)) 

(3.22) 

along with Eqns (3.17) and (3.21) one obtains [61] 

l% - pi ’ + kTlnx, - 4k,e,H, (k - 192) 
(3.23) 

where x, is the area fraction; the difference in the molecular interactions between the adsorbed 

species is neglected. At chemical equilibrium (pt = const) Eqn (3.23) yields Boltzmann 

distribution of the species: 

4k,e,H 
rk = exp - , 

kT 
(k - 132) 

(3.24) 

Accordingly, the concentration of “girls” (cl > 0) will be larger in the concave (H > 0) parts 

of the surface, whereas the “boys” (el. < 0) will prefer the convex parts (H < 0). Such an 

effect can be observed for curvatures of the order of H = kT/(4k,e,) and greater; for 

phosphatidyl choline this estimate yields H” < 2 nm. Hence, curvature induced variations in 

the concentration of the adsorbed species can appear only on interfaces of high and 

nonuniform curvature. 

Usually eJI < 1 and the exponent in Eqn (3.24) can be linearized, whereby Eqn (3.17) 

takes the form 

Ho - H,$” + P?H + ,.. 

where 

(3.25) 
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(3.26) 

(3.27) 

Substitution of Eqn (3.25) into Eqn (3.21) yields (611 

B - -4kgg) + 4k,(l - 1Z)H + o(P) 
(3.28) 

An estimate of B may be based on the first term in Eqn (3.28). because usually gO” B H: 

B = -4k,H;’ = const 
(3.29) 

For example, by using the data given after Eqn (3.20) for phosphatidyl ethanolamine above 

we obtain B = 3 x 10.” N. 

c) Micromechanical expressions 

Similarly to the surface stress and moment tensors, 0 and M, the coefficients in Eqn 

(3.3) (y, <, B and 0) are surface excess quantities and can be expressed as integrals over the 

excess pressure tensor P - of Eqn (2.43). As shown in Refs. [34,35] the respective 

expressions read: 

(3.30) 

(3.3 1) 

where 

4 = a,yP 3 x = (1 - AH)’ - XzDz (3.32) 

L is given by Eqn (2.44) and qap - by Eqn [3.14]. Just like in Eqns (2.47) and (2.48) the 

integration is carried along the normal to the surface at the respective point. The symbol “:” 
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denotes the double scalar product of two dyadics - see e.g. [23,28]. 

For illustration let us apply Eqns (3.30) and (3.3 1) to a cylindrical interface, when P’ 

is given by Eqn (2.52). In this special case one obtains 

q:F”‘pJ,, -PL (3.33) 

L=(l -bH)U,+AHq, q.L = (1 - 1H)q + AHU, (3.34) 

x - 1 - 2AH (3.35) 

Substitution of Eqns (3.33) - (3.34) into Eqns (3.30) and (3.31), and using Eqn (2.56), yields 

m w 

y 

(3.36) 

Coming back to the case of a general curved interface we note, that the interfacial 

bending and torsion moments, B and 0, as determined by Eqn (3.3 I), represent the trace and 

the deviator of the tensor of the interfacial moments, M, given by Eqn (2.51): 

B = U,:M, 8 - q:M (3.38) 

As demonstrated in Ref. [28], the halved trace and deviator of the interfacial stress tensor, 

and 

are the mechanical dilation and shear tensions. By substituting (I from Eqn (2.47) into Eqn 

(3.29) one derives micromechanical expressions for (3 and 11: 

The relationships between the /heurrrou’~~amica/ dilation and shear tensions, y and c, and their 

nrechunical counterparts, o and rl, read [28]: 
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Y - 0 + +BH + ~QD (3.41) 

c-q + ;BD + +I (3.42) 

One can directly verify the validity of Eqns (3.41) and (3.42) by substituting the 

nricronrechanical expressions for y, 5, B, 0, cs and q given by Eqns (3.30). (3.31) and (3.40). 

It will be shown in the next Section that Eqns (3.41) and (3.42) can be derived in an 

alternative way by using purely macroscopic considerations. 

The fact that the mechanical and thermodynamical tensions of a curved interface are 

different (y s CT, < f ‘1) makes possible two alternative definitions ofj7rtiJ interface to be 

given [48]. Indeed, from a thermodynamical viewpoint one can state that the work of local 

interfacial shear deformation of ajlrtid interface must be zero. i.e. c = 0. Eqn (3.42) shows 

that even if < = 0, the mechanical shearing tension TJ is not zero, i.e. the surface stress tensor 

is not isotropic for such a fluid interface at quasistatic conditions. 

Alternatively, one can define jllrid interface by means of a two-dimensional version 

of the Pascal law, that is the surface stress tensor to be isotropic at quasistatic conditions, i.e. 

q = 0. However, in such a case the work of shear is not zero and it is determined by the 

bending and torsion moments: < = (&!I + OH)12(cf. Eqn (3.42)). One realizes that the two 

alternative definitions offllriJ interface are not equivalent for a general curved interface. The 

above complications originate from the fact that ajlexltrul deformation of a surface is usually 

coupled with a shear deformation and vice versu. Of course, it is a matter of convention what 

is called “fluid” interface. What makes physical since it is whether the real curved boundaries 

between fluid phases comply with < = 0 or with TJ = 0. This is a problem for a future study 

based on comparison between experimental data and theoretical predictions. 

4. Relrting between the Mechanical and Thermodynamical Approaches 

In order to establish connection between the mechanical and thermodynamical 

approaches we note, that mechanics provides an expression for the work of surface 

deformation per unit area and unit time [21,28]; 

A!!?_ 
St 

a:(V,v f us x w ) + N:V,w (4.1) 

where v and w are linear and angular velocities and I is time. Eqn (4.1), multiplied by 61, 

should reduce to Eqn (3.3) for a quasistatic process. Comparing the coefficients at the 



independent differential in Eqn (3.3) with those resulting from Eqn (4.1) we can obtain the 

desired connections between the mechanical and thermodynamical surface tensions and 

moments. 

The velocity of a surface point can be represented in the form 

v - u,v’ + RV w (4.2) 

According to Eliassen [23]. the rate-of-strain tensor of the interface is defined by the 

expression 

d 1 a%@ 
=a 

= - - - gv.,, + VP& - 2b,p@)) 
2 at 

(4.3) 

In spite of the fact that we will eventually arrive at some quasistatic relationships, it 

is convenient to the begin with considering the rates of change. It is easy to obtain the 

corresponding infinitesimal increments during an elementary quasistatic process. For example 

with 61 as the time increment, d,,J/ are the components of the surface strain tensor. Similarly, 

if & is the time derivative if the mean curvature, then 6H = Z&t is the differential of H, 

which enters into Eqn (3.3). 

As shown in Ref. [35] the scalar quantities 

dr - u“‘d 
P- 

and 

characterize the local rates of dilation and shear, respectively. The corresponding different& 

are, of course, 

8a = dr8t and sp = fiat (4.6) 

which take place in Eqn (3.3). 

As mentioned above, we restrict our considerations to quasistatic processes for which 

the motion of a surface material point is caused by the deformation of the surface (zero fluxes 

of surface convection or diffusion are assumed). In this case, having in mind Eqn (4.59, one 

can write [ZSJ 

(4.7) 

Similarly we can represent the surface stress tensor in the form [28]: 



% - flap” + 14,Y (4.8) 

If cr, and CT* are the eigenvalues of the tensor CT,, (in our case they are the tensions acting 

along the lines of curvature), then it follows from Eqns (3.39) and (4.8) 

1 l o2) and ? (4.9) 

~irn~i~ly, the tensorial field of the surface moments can be represented in the form: 

where M, and M2 are the eigenvalues of tensor M. We recall that the connection between 

tensors M and N is given by Eqn (1.28). Moreover, the angular velocity of a surface point is 

related to the running unit normal, II, by means of the expression [28]: 

(4.11) 

ft is shown in Ref. [2X] that by substituting Eqns (4.Q (4.10) and g4.11) into Eqn (4.1) one 

can derives Eqn (3.3) with y and < being determined by Eqns (3.41) and (3.42), and with 

B = Mr f Mr , 8 - Mt - Ma (4.12) 

(In fact, Eqn (4.12) is a special case of Eqn (3.38); M, and M2 can be identified with the 

Gibbs coefftcients c and c as discussed after Eqn (3.6) above.) In this way the general 

validity of Eqns (3.41) - (3.42) is established. These equations form a bridge between the 

mechanical and thermodynamical approaches to the theory of curved interfaces. Indeed, by 

substituting Eqns (4.8) and (4.10) into the ntechanicul version of Laplace equation, Eqn 

(2.35), and by using Eqns (3. I4). (3.4 I), (3.42) and (4.121, one arrives at the ~~~~~/?~u~~~~~~~ca~ 

version of Lapface equation, Eqn (3.13). In part&tar, substitution of y and TJ from Eqns 

(3.41) and (3.42) into Eqn (3.13) results in a more elegant and compact form of the 

generalized Laplace equation, viz., 

2Ho + 2Dlj (4.13) 

Xn addition, by means of Eqns (3.14)” (3.41), (3.42), (4.10) and (4.12) one can 

transform Eqn (4.8) to obtain 



gB I ya aB + {q”8 - ~=yMYB 

Then by using Eqns (4.10), (4.12), (4.14) and the mathematical 

(4.14) 

identities 

it is possible to transform the r~rechanica/ expression for the lateral surface balance of 

momentum, Eqn (2.36) into its ~hennou’ynanrical counterpart, Eqn (3.12). 

In summary, in this section we have demonstrated the general agreement between the 

mechanical and thermodynamical approaches. It should be noted, however, that the 

mechanical approach is somewhat more general, because Eqns (2.35) and (2.36) can be 

employed with constitutive equations for Q and M, other than Eqns (4.8) and (4.10), which 

are appropriate for quasistatic processes only. Such constitutive equations, which take into 

account also viscous effects, are considered in the next section. 

At the end of this section we consider some special forms of Eqn (4.13) useful for 

application. If Eqn (3.16) holds, then 0 = 0 and B is determined by means of Eqn (3.21). In 

this case, assuming constant spontaneous curvature, HO, we transform Eqn (4.13) to obtain 

2Ha + 2011 - 2kJfH - P,, -PI (4.16) 

Let us now consider the special case of an axisymmetric interface. Such a symmetry 

is often observed in the experiment, e.g. when the so called nricropipet /echniyrre [7] is used. 

We choose z-axis be the axis of revolution and we introduce polar coordinates (r,cp) in the 

plane xy. Let Z(T) be the equation of the surface generatrix. Then one has (see Ref. 24, 

Chapter XIV, Eqn 66) 

V;H - 1 + pjf 2 r(l 1 
where 

(4.18) 

with 0 being the running slope angle. Besides, for an axisymmetric surface (see e.g. Ref. 62) 



2H_dsinB+-, sine ~~-.-d!E! dsin0 
dr r dr r 

Then by means of Eqns (4.17) - (4.19) one can transform Eqn (4.16) to read 

]} 
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(4.19) 

(4.20) 

The last term in Eqn (4.20) represents the contribution of the interfacial bending 

moment in the Laplace equation of capillarity for an axisymmetric surface. 

5. Constitutive Relations 

To solve any mechanical problem we need explicit expressions for the stress and 

moment tensors. These expressions usually have the form of constitutive relations between 

stress and strain characterizing the rheological behavior of the continuous medium: elastic, 

viscous, plastic [18,63]. It is important to note that a constitutive relation represents a 

theoretical model of the rheological properties of the medium, whose applicability to a given 

system is tested by experiment. Below we consider briefly some simple constitutive relations 

for curved interfaces. 

a) Swjace slress lensor 0 

According to Striven a liquid interface can be treated as a two-dimensional 

fluid [23,64,65]: 

viscous 

(5.1) 

where &a is the surface rate-of-strain tensor defined by Eqn (4.3) 4 represents the trace of 

this tensor; 5, and 13~ are the coefficients of surface dilational and shear viscosity. Note that 

in Eqn (5.1) c2 and th multiply the isotropic and deviatoric parts of the tensor &a. 

The elastic (nonviscous) part in Eqn (5.1), uu,a, is isotropic. Hence, it is postulated 

that there are no shear alasric effects in a two-dimensional viscousf]rriJ, i.e. rt = 0 - cf. Eqn 

(4.9). In other words, the surface shear stresses in the Striven’s rheological model have only 

a viscous origin. 
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Since the surface stress tensor Q has also transverse components, cf. Eqn (2.6), a 

constitutive equation is needed for &“) too. In analogy with Eqn (5.1) one can represent ~9) 

as a superposition of a viscous and a nonviscous term: 

(5.2) 

The viscous term, a::;‘, can be expressed in accordance with Newton’s law of viscosity [66]: 

(5.3) 

lateral friction between 
surface molecules 

-/ 
\---_ 

I 

Fig. 6 Sketch of the relative displaccnlcnt between the surface molecules (the rcctanglcs) during the 
capillary wave motion; u is the local deviation from planarity. 

As illustrated in Fig. 6, Eqn (5.3) accounts for the lateral friction between the molecules in 

the interfacial zone. x2 is the coefficient of transverse shear viscosity. For quasistatic 

processes, when v + 0 and O$ --+ 0, the transversal stress resultants reduce to cr$. Then 

in accordance with Eqns (2.34), (4.10), (4.12). (5.2) and (5.3) one obtains 

(5.4) 

The surface rheological model based on Eqns (5.1) and (5.4) contains 3 coefficients 

of surface viscosity: &, rh and x2 In addition, two coefficients of flexural elasticity enter the 

theory through I3 and 0 as discussed below. 
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b) The Tensor of m&ace moments. M 

According to Helfrich [2] the energy of flexural deformation, n,, can be written in the 

form: 

Iv,’ 2k,(H -Ho)2 + E,K (5.5) 

Here k, and r;O are coefficients of bending and torsion elasticity, HO is the spontaneous 

curvature, and K is the Gaussian curvature of the surface. Since K = Hz - 0’ from Eqns (3.7) 

and (5.5) one obtains 

- 4k,(H - HO) + 2&H 

81 - -2x,0 

(5.6) 

(5.7) 

For the case of a small mean curvature from Eqn (5.6) we obtain 

B - -4k& for H-O (5.8) 

A comparison between Eqns (3.9) and (5.8) yields a relationship between the Tolman length, 

S,, and the spontaneous curvature HO: 

Hi’ I _ 2kC 

(yo%!) 
(5.9) 

WithkC*5x10’2iJ 6 t o = 3 x lo-” m, y0 = 70 mN/m from Eqn (5.9) one estimates HO’ ss 5 

A as the order of magnitude of the spontaneous curvature of an aqueous drop. 

By means of Eqns (4.10), (4.12), (5.6) and (5.7) one obtains an expression for the non- 

viscous part of the tensor of surface moments: 

yt)@ - ; (Ba =@ + 6q”f’) = [(2k, * h,)H - 2kCHo],=@ - z,Dq”f’ 
(5.10) 

Thus in accordance with Eqns (2.34). (3.14), (5.4) and (5.10) for the total tensor of the surface 

moments we can write: 



In fact, Eqn (5.11) represents a constitutive equation for the tensor M stemming from the 

Helfrich’s formula, Eqn (5.5). By using the Codazzi equation, Pay = ba’.“, see Ref. [24], we 

get 

The above Eqns (5. I 1) and (5.12) yield 

@,s I 2k,H.” - xzvtn).’ (5.13) 

Here we treated the spontaneous curvature H,, as a constant; this assumption can be violated 

when the distribution of the species is not uniform throughout the surface - cf. Eqns (3.17) 

and (3.24) above. Besides, its worthwhile noting that the torsion elasticity, k0 , is not 

involved in the right-hand side of Eqn (5.13). Hence, kc , does not enter into the transversal 

and tangential surface balances of the linear momentum, Eqns (2.15) and (2.16). which (at 

negligible surface inertial and body-force terms) take the form 

(5.14) 

(5.15) 

Here crap is to be substituted from Eqn (5.1). It should be noted that Eqn (5.14) represents a 

generalized version of the Laplace equation of capillarity for dynamic processes. 

c) Application IO jlrrctuarion capillary waves 

We consider capillary waves of amplitude I( on a horizontal fluid interface - cf. Eqn 

(1.22). Usually it is supposed that the amplitude a is small enough [20] and that Eqns (5.14) 

and (5.15) can be linearized: 
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2 au oQ,'u - k,V;V,2u + x2Vs at I Trw(“) (5.16) 

Q,o + ~2QsVs.vu + q2V;rvn - n.(T, - T,).LI, (5.17) 

where we have used the relationships 

2H = Q,zu , "60 . au 
at and v, = u,v= (5.18) 

We note that the dependent variables, u and v,,, are separated in linear a~~r~x~~~lion~ the 

generalized Laplace equation (5.1’6) contains the normal displacement u, whereas the two- 

dimensional Navier-Stokes equation (5.17) contains the lateral surface velocity v,,. 

Eqn (5.16) can be utilized to analyze interfacial fluctuation - dissipation processes. 

Since the fluctuation capillary waves originate from the Brownian motion of the surface 

molecules, a Brownian force term it to be introduced in Eqn (5.16): 

O<U - k,$Qfu + xz v2au J- 
at 

+ s”(@,a - Pn - PI (5.19) 

where s@‘) are the ~an~~t~J transverse shear stress resultants (s”[“’ are the random counterparts 

of cP(“)). The correlations of Pin), determined by means of the general theory of hydrodyn~ic 

fluctuations [ZO], read [66]: 

(S’(“)(r,t)SB(“)(r’,t’)) - 2k,Txza’B8(r - r’)iS(f - t’) (5.20) 

where kB is Boltzmann constant, T is temperature and 6 is the Dirac function. 

By using Fourier transformation, from Eqns (5.19) and (5.20) one derives the mean- 

square amplitude of the thermal corrugations with wave number g: 

(a;) = y(Apg * oq2 + k,q4)-’ (5.21) 

where A is surface area, g is gravity acceleration, Ap = pt - p,, is the difference in density 

between the two neighboring phases. Eqn (5.21) is widely used to interpret data for light 

scattering from fluid interfaces [S, 121. 

Similarly, we can determine the averaged mean-square amplitude of the fluctuation 

capillary waves [30,66-681: 
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(u2> - g ltl(l + p) (5.22) 

(the contribution of k, - neglected) as well as the relative dilation of the surface area, a = 

AA/A, due to the thermal corrugations [66]: 

Here 

2 

P’&$ 

(5.23) 

(5.24) 

a is a cutoff parameter, accounting for the fact, that the wavelength can not be shorter than 

one molecular diameter. One can expect that 

ias 6 (5.25) 

where A, is the area per one surface molecule. For instance, the experiment [69] yields A, = 

52 A'. Then by using typical values, kJ’ = 4.1 x IO-*’ J, rs = 32 mN/m, and Ap = 1 g/cm’, 

from Eqns (5.22) - (5.25) one estimates (n2)IR = 5.7 A and a = 0.10. The latter Figure means 

that the surface area is increased with IO % due to the fluctuation surface corrugations. For 

surfaces of low surface tension (o + 0), like lipid bilayers, biomembranes, microemulsion 

droplets, the bending elasticity, kc, determines the magnitude of the fluctuation capillary waves 

- cf. Eqn (5.21). When two such surfaces approach each other at a mean distance h, the 

overlap of the surface corrugations gives rise to a repulsive force known as the “undulation” 

surface force, first introduced by Helfrich and coworkers [14,70]. The theoretical 

considerations [14,15,70] show that this force (per unit area of the surfaces) must be 

proportional to h”: 

4lndh) - 
3n2(kgT) 

64k p 

c 

The undulation component of the disjoining pressure, qnd has been measured [66-681 and the 

inverse third power dependence of the film thickness h has been confirmed experimentally. 

It should be noted that, in general, the shapes of two approaching fluid interfaces are 

affected by the surface forces, which can be due to van der Waals, electrostatic, steric, etc. 

interactions [74,75]. An implication of this fact is that a disjoining pressure term enters the 



interfacial balances of the linear and angular momenta - see Refs. f34,76j. 

6, Conclusions 

C)ur aim in this review was to compare the mechanical and thermodynamical 

approaches to the theory of an arbitrarily curved interface, to find the coaacctions between 

them and to demonstrate their self-consistency. 

Basic quantities of the n~~hanicai approach are the tensors of surfsrce stress and 

momenis, Q and M. From a m~cromech~ic~ viewpoint these are surface excesses with 

respect to the bulk stress (pressure) tensor - see Eqns (2.47) and (Z.Slf. The basic equations 

of the me;chanicai approach, represent the vectorial balances of Iine~~ and an&or momenta, 

Eqns (2. t 5) + (2.16) and (2.29) - (2.30). These equations are known from the theory of shells 

and plates by Kirchhoff and Love. Their implications for a fluid-liquid interface or membrane 

are discussed in Section 2 above - see Eqns (2,19) - (2.20) and (2.34) - (2.36), la particular, 

the knower Laplace equation of capillarity is a special case of the interfacial balance of linear 

momentum. 

The ~~~~~~?~~~~~~~rr~c approach originates from the Gibbs theory of capiilarity. The 

Gibbs ~~~darn~nta~ equation of a~ int&ace in&des a term zccormting for the mechanical 

work of surface d~~~rrnat~o~ The tatter consists of the works af ~~t~~a~~a~ dilation, shear, 

b~~di~~ and torsion, characterized by the dilation and shear tensions, y and & and by &tre 

bertding and torsion moments, B and 8 - see Eqn (3.33. These quantities are intierrelared by 

the conditions for thermodynamic equilibrium corresponding to minimum free energy of the 

system. The thermodynamics provides expressions enabling one to calculate the dependencies 

of ths surface tensions and moments an temperature and composition; an illustrative example 

for a mixed lipid monolayer is given in Section 3b. 

Ta find the connection between the mechanical and thermodynamical approaches one 

should answer the fotlowing two questions: 

(i) How the scalar r~~~~~?~~~~~#r~~~~ quantities ‘f: L II and 0 are related to the 

~r~~~~~~~~~ stress and moment tensors, 0 and M? 

(iif What is the relation between the ~~~rrttudy~a~t~~~~ equifibrium condit~o~$~ amend the 

ntedrrrricaf balances of linear and anguiar momentum? 

The replies to these questions are given in Section 4 above. In particular, the 

thermodynamic bending and torsion moments, B and 0, turn out to be equal to the trace and 

the deviator of the tensor of surface moments, M - cf. Eqn (3.38). Similarly, the trace and the 

deviator of the surface stress tensor, a , determine the mectmnical dilational and shear 
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tensions, u and rh respectively - see Eqn (3.39). u and q are related to their ~herrrrodynamicuf 

counterparts, y and c, by means of Eqns (3.41) and (3.42). 

By using the aforementioned relationships between the thermodynamical and 

mechanical tensions and moments, in Section 4 demonstrate that the thermodynamical 

conditions for equilibrium, Eqns (3.12) and (3.13), are corollaries from the mechanical 

balances of linear and angular momentum in the special case of quasistatic processes. The 

mechanical approach can be applied also for dynamic processes, when viscous effects have 

to be taken into account - see Section 5. 

To solve any me~h~ica~ problem, one needs constitutive relations between stress and 

strain. Such a relation represents a theoretical model of the rheological properties of an 

interface. In Section 5 we discuss a rheologica1 model based on the constitutive relations due 

to Striven [64] and Helfrich [3]. This model contains 6 surface rheological parameters: the 

viscous behavior is characterized by the surface dilational viscosity, e2, and by the surface 

lateral and transversal shear viscosities, qr and xz; the surface jlcxnral elastic behavior is 

characterized by the bending and torsion moduli, k, and & , and by the spontaneous 

curvature, &,. This rheotogical model represents the basis of the theory of fluctuation capillary 

waves and undulation surface forces. 

In conclusion, we found out that the mechanical and thermodynamica~ approaches are 

in a good agreement. Moreover, they are complementary to each other and represent the two 

parts of a self-consistent theory of the general curved interfaces. We hope that the 

interconnecting between these two approaches, considered in the present review, will be 

helpful for a further advance in this field. 
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