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This work is devoted to a special kind of capillary interaction, which differs from the common lateral 
capillary forces between floating particles. It appears between particles protruding from a liquid film and 
ita physical origin is the capillary rise of the liquid along the surface of each particle. Special attention 
is paid to the case when the position of the contact line is fixed. The resulting capillary force is compared 
with that at fixed contact angle. It is demonstrated that the two alternative approaches to the calculation 
of capillary interactions, the force and the energetical one, are equivalent. When the liquid film is thin, 
the disjoining pressure affects the capillary interactions between particles attached to the film surfaces. 
The appearance of this effect is studied quantitatively for two specified systems modeling globular proteins 
in aqueous film on mercury substrate and membrane proteins incorporated in a lipid bilayer. For both 
systems the capillary forces appear to be strong enough to engender two-dimensional particle aggregation 
and ordering. This is a possible explanation of a number of experimental observations of such effects. 

Introduction 
A new interest in the capillary interaction between 

colloidal particles has been aroused by the experimental 
findings that it can produce formation of two-dimensional 
arrays from submicrometer particles.1*2 This interaction 
differs from the conventional lateral capillary force 
between floating particles in two aspects: (i) it is operative 
with very small particles (even down to 10 nm size) and 
(ii) it appears between particles, which are partially 
immersed in a liquid film? In particular, it was observed112 
that the transition from disordered state (Figure la) 
forward to ordered state (Figure lb) appears suddenly in 
the moment, when the particle tops protrude from the 
thinning liquid films. The role of gravity in this case is 
to keep the film surface planar. This role is played by the 
disjoining pressure when the film is thin enough? In the 
latter case the capillary interactions between colloidal 
particles are entirely governed by the surface forces (those 
which give rise to the disjoining pressure and the three- 
phase contact angle), the gravity effect being negligible. 

Recent experimentsM show that globular protein mac- 
romolecules form a two-dimensional ordered array in an 
aqueous film spread on a substrate. The occurrence of 
this phenomenon with proteins4v5 in many aspects resem- 
bles the ordering process with the larger latex particles1p2 
(Figure 1). It can be expected that the capillary inter- 
particle forces play an important role in both these systems. 
It should be noted that well-ordered two-dimensional 
protein arrays are the subject of intensive research as a 
basis of future high technologies at  a macromolecular level.' 

The capillary forces between particles attached to an 
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Figure 1. Two-dimensional ordering of suspension particles in 
a liquid layer on a substrate: (a) chaotic motion of the particles 
in a thick layer; (b) the capillary forces appear and give rise to 
aggregation after the particle tops protrude form the liquid layer. 

interface were studied experimentally by Hinschs and 
Camoin et aZ.9 and theoretically by Nicolson,lo Gifford 
and %riven," Chan et a1.,12 and Fortes.13 The theoretical 
approach developed in ref 3 for identical particles was 
later extended to particles of different size and contact 
angle14 and to particle-wall intera~ti0ns.l~ 

In the present paper we first investigate the similarities 
and dissimilarities between the different kinds of capillary 
forces. Our aim is to attract the reader's attention to the 
variety of capillary interactions and their physical im- 
portance. In particular, we compare the magnitudes of 
the capillary interactions taking place at  two different 
boundary conditions on the particle surfaces: fixed contact 
angle and fixed contact line. However, our main purpose 
in this article is to investigate some general properties of 
the lateral capillary forces. In fact, we deal with an indirect 
interaction stemming from the overlap of the perturbations 
in the meniscus shape, which are due to the presence of 
attached particles. Therefore, a theoretical description 
of the capillary interaction resembling a two-dimensional 
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field theory is possible. In this aspect, a general proof is 
given to an analogue of Newton's third law for capillary 
forces between particles attached to the surface of both 
thick and thin liquids films. In the latter case the effect 
of the disjoining pressure is taken into account. Then we 
demonstrate analytically the equivalence between the two 
alternative theoretical approaches to the capillary 
interactions: the energetical and the force one, which have 
been previously found14J6 to give numerically coinciding 
results. Finally, we study quantitatively the capillary 
interactions in two specified systems modeling the ex- 
periments with globular proteins in aqueous films on 
mercue5  and with membrane proteins incorporated in 
phospholipid bilayers (biomembranes) in an aqueous 

Our aim is to verify whether the lateral 
capillary forces in these systems are strong enough to 
produce two-dimensional particle aggregation. 

Capillary Forces: Theoretical Description 
Many works have been devoted to the theoretical 

description of the capillary forces,10-16 but because of the 
diversity of the approaches and configurations studied an 
outline is needed. 

Flotation and Immersion Lateral Capillary Forces. 
The cause of the lateral capillary forces is the deformation 
of the liquid surface, which is supposed to be flat in the 
absence of particles. The larger the interfacial deformation 
created by the particles, the stronger the capillary inter- 
action between them. It  is known that two similar particles 
floating on a liquid interface attract each other; see Figure 
2a and refs 12,13, and 16. This attraction appears because 
the liquid meniscus deforms in such a way that the 
gravitational potential energy of the two particles decreases 
when they approach each other. Hence the origin of this 
force is the particle weight (plus the Archimedes force). 

A force of capillary attraction appears also when the 
particles (instead of being freely floating) are partially 
immersed in a liquid layer on a substrate; see Figure 2b 
and refs 3 and 14. The deformation of the liquid surface 
in this case is related to the wetting properties of the 
particle surface, i.e. to the position of the contact line and 
the magnitude of the contact angle, rather than to gravity. 

To distinguish the capillary forces in the case of floating 
particles from ones in the case of partially immersed 
particles on a substrate, we call the former lateral flotation 
forces and the latter lateral immersion forces. As dem- 
onstrated below (eq 1.29) the flotation and immersion 
forces exhibit similar dependence on the interparticle 
separation and different dependencies on the particle 
radius and the surface tension of the liquid. 

The flotation and immersion forces can be both attrac- 
tive (Figure 2a,b) and repulsive (Figure 2c,d). This is 
determined by the signs of the meniscus slope angles \kl 
and 9 2  at  the two contact lines: the capillary force is 
attractive when sin \kl sin \k2 > 0 and repulsive when sin 
91 sin \k2 < 0; see refs 14 and 16 for detail. The sign of 
\kl or \k2, separately, is a matter of convention; we follow 
the convention \k > 0 (\k < 0) for convex (concave) 
meniscus. In the case of flotation forces \k > 0 for light 
particles (including bubbles) and \k < 0 for heavy particles. 
In the case of immersion forces between particles pro- 
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Lateral Capillary Forces 
(at equilibrium contact angle) 

FLOTATION FORCES IMMERSION FORCES 
due to particle weight 

(effect driven by gravity) 

due to capillary rise I (effect driven by wetting) 
I andArchimedesforce 1 , 1 

flotation forces disappear immersion forces exist 
even for R - 10 nm for R<10 pn 

e 
(e) 

Figure 2. Comparison between the flotation (a, c, e) and 
immersion (b, d, f) lateral capillary forces. 9 1  and 9 2  are meniscus 
slope angles; a1 and cy2 are contact angles; 7 is interfacial tension. 
The flotation force appears between freely floating particles 
whereas the immersion force appears when particles are partially 
immersed in a liquid film. 
truding from an aqueous layer \k > 0 for hydrophilic 
particles and \k < 0 for hydrophobic particles. When \k 
= 0 there is no meniscus deformation and hence there is 
no capillary interaction between the particles. This can 
happen when the weight of the particles is too small to 
create significant surface deformation-see Figure 2e: the 
depth of the particles immersion is determined by the 
magnitude of the contact angles a1 and a2. Such is the 
situation with particles of radii smaller than ca. 10 pm, 
when the interaction energy due to flotation force becomes 
smaller than the thermal energy kT (cf. Figure 7 below). 
On the other hand, the immersion force can be significant 
even with 10 nm large colloidal particles confined in a thin 
liquid film, Figure 2f. In this case the film surfaces (far. 
enough from the particles) are kept plane-parallel by the 
disjoining pressure rather than by gravi t~.~ The immersion 
force is responsible for the assembling of micrometer size 
particles in thin liquid films's2 as sketched in Figure 1. 

It  is worthwhile noting that the immersion force between 
particles confined in a thin liquid film is substantial even 
when the contact angle a! is zero3 (pronouncedly wettable 
particle surface). On the other hand, flotation forces 
cannot be observed with a! = 0 because the particles will 
detach from the interface and will sink into the lower liquid. 

Immersion type lateral capillary force can appear not 
only between two particles but also between two partially 
immersed vertical cylinders, which cannot move along the 
vertical;3J4J5 see Figure 3. A construction of this type is 
convenient for a direct measurement of the immersion 
force and has been used in the experiments of Camoin et 

Force and Energetical Approaches to Capillary 
Interactions. There are two alternative theoretical 
methods for calculating the lateral capillary interactions: 
the energetica13J2J6 and the force14J5 approaches. 

The energetical approach is based on a general expres- 
sion for the grand thermodynamic potential of a system 

a1.9 
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Figure 3, Sketch of two vertical cylinders separated at a distance 
L, which are partially immersed in a liquid; qCm is the meniscus 
slope angle at the contact line and h, is ita elevation above the 
planar liquid surface far from the cylinders. The overlap of the 
menisci on the two cylinders gives rise to a lateral capillary force 
liable to a direct measurement. 

of particles attached to the interface between fluid I and 
fluid I1 (see, e.g., Figure 2a)3 

N 
n(rl, ..., rN) = &mdZK(') - AI JvTy dV + 

=l - 
N kKY~,, + TA + const (1.1) 
-1 = ,  

Here rl, r2, ..., rN are the position vectors of the particle 
mass centers and mK values (K = 1, 2, ..., N) are their 
masses; ZK(') is the projection of r K  along the vertical, g 
is the acceleration due to gravity; Py and Vy are the 
pressure and volume of fluid phase Y (Y = I, 11); AKY and 
WKY are the area and the surface free energy density of the 
interface between particle K and phase Y; y and A are the 
interfacial tension and the area of the boundary between 
fluids I and II; the additive constant in eq 1.1 does not 
depend on rl, r2, ..., rN. Then the lateral capillary force 
between particles 1 and 2 is determined by differentiation: 

The pressure in eq 1.1 depends on the vertical coordinate, 
z ,  due to the gravity effect 

P ,  = P, - py%z, Y = I, I1 
(1.3) 

where PI and pn are the mass densities of the respective 
fluids. 

In the alternative force approach the lateral capillary 
force exerted on one of the particles is calculated by 
integrating the meniscus interfacial tension along the 
contact line and the hydrostatic pressure throughout the 
particle surface: 

(1.4) 

F(kyy' = UII.$dluy (1.5) 

P, = Pylzpo = const, 

F(k) = F(kT) + F(kp), k = 1, 2, ... 
where 

Lk 
is the contribution of the interfacial tension and 

FUP' = Un.$ds(-np) (1.6) 

is the contribution of the hydrostatic pressure. Here Lk 
sk 

Figure 4. The lateral capillary force FU) is a net force originating 
from the integral of surface tension y dong the contact line Lk 
and the integral of hydrostatic pressure throughout the particle 
surface s k  (k = 1, 2); is the thickness of the plane-pardel 
liquid layer far from the particles; PI and Pn are the pressures 
in phases I and II; z = {(x,y) determines the meniscus shape. 
is the three-phase contact line, S k  denotes the particle 
surface with outer unit running normal n, dl and ds are 
linear and surface elements and UII is the unit tensor 
(idemfactor) of the horizontal plane xy, and u is the 
running unit normal to the contact line, which is tangential 
to the meniscus surface; u determines the direction of the 
surface tension force exerted on the particle along the 
contact line. The meaning of eqs 1.4-1.6 is illustrated in 
Figure 4 for the case of two particles on substrate. One 
can realize that if the contact lines were horizontal, both 
Fckp) and F(kT) (k = 1,2) would be zero. In fact the lateral 
capillary force F(k) is a result of the perturbation of the 
shape of the liquid meniscus around a given particle caused 
by the presence of the second particle. The calculations 
carried out in refs 14 and 16 show that IF(b) << JF(kT)J with 
submillimeter particles; that is, the interfacial tension 
contribution dominates the lateral capillary force. As far 
as the two particles interacting indirectly through the 
perturbation in the shape of the liquid meniscus created 
by them, it is not quite obvious that a counterpart of 
Newton's third law will hold, i.e. that 

(1.7) 
A general derivation of eq 1.7 is given below in this paper; 
see eqs 2.17 and 3.9. 

Besides, it is not obvious that the energetical and force 
approaches are equivalent, i.e. that the magnitudes of the 
capillary force calculated by means of eqs 1.2 and 1.4 will 
coincide. Numerical coincidence of the results of these 
two approaches was established in refs 14 and 16. Below 
one can find analytical proof of the equivalence of the 
energetical and force approaches. 

Boundary Conditions at the Contact Line. Let us 
consider a system of two particles attachedto the interface 
between phases I and II; this can be each of the config- 
urations depicted in Figures 2-4. The fluid interface is 
supposed to be flat and horizontal far from the particles. 
We choose the coordinate plane xy to coincide with this 
horizontal surface. Let 

2 = !%Y) (1.8) 
be the equation describing the shape of the liquid meniscus 
formed around the two particles. In general, the meniscus 
shape obeys the Laplace equation of capillarity21 

F(1) = -F(2) 

WT = (Pn - (1.9) 
where H is the meniscus mean curvature. Since the 
meniscus is flat far from the particles, PIO = Pno in eq 1.3 
and then eq 1.9 can be transformed to read 

where the representation of the mean curvature as a two- 

(21) Princen, H. M. In Surjace and Colloid Science; Matijevic, E., Ed.; 
Wiley: New York, 1969; Vol. 2, p 1. 
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dimensional divergence22 has been used. Here 

a a  
= (2 

is the gradient operator in the plane xy and 

(1.11) 

is the capillary length. For a water-air interface at  room 
temperature q - 1  = 2.7 mm. In fact q-l determines the 
range of the lateral capillary forces (see eq 1.26 below). 
Equation 1.10 represents a second-order differential 
equation for determining e. In our case, one of the 
boundary conditions reads 

lim t (x ,y )  = 0, F = (x2  + y2)'l2 (1.13) 

The other boundary condition, which is imposed at  the 
three-phase contact lines on the particle surfaces, depends 
on the specified physical conditions. Most frequently 
formation of a constant contact angle, a, is supposed. Such 
an angle satisfies the Young equation 

COka - W k j  = cos ark, k = 1,2  (1.14) 

In the case of vertical cylinders, like those depicted in 
Figure 3, the boundary condition reads 

mV,f = -cot ak = const (at contact line Lk, k = 1,2) 
(1.15) 

where m is the outer unit normal of the cylindrical surface. 
Equation 1.15 determines the meniscusslope at the contact 
line. 

Other possible physical situation is the meniscus po- 
sition, rather than the meniscus slope, to be fixed at  the 
contact line. As sketched in Figure 5a,b this can happen 
when the contact line is located at some edge on the particle 
surface. Another possibility is the contact line to be 
attached to the boundary between hydrophilic and lipo- 
philic domains of the surface, as shown in Figure 5c. Similar 
configuration can be observed with membrane proteins 
incorporated in a lipid film in water, when the hydrophilic 
ends of the protein molecules (the shadowed caps in Figure 
5c) protrude from the lipid film. Such proteins are found 
to attract each other and to form two-dimensional ordered 
arra~.l'-~o Note that in the three configurations depicted 
in Figure 2a-c the interaction belongs to the immersion 
type of lateral capillary force. The boundary condition at  
the contact line in the case of consideration reads 

5 = h,, = const (at the contact line) (1.16) 

cf. Figure 5. 
When the liquid film is thin enough the disjoining 

pressure effect becomes important. Then if the meniscus 
slope is small, the meniscus profile &,y) can be found by 
solving eq 1.10, where q is defined as  follow^:^ 

Here II(h) is the disjoining pressure isotherm with h being 
the film thickness. II - 0 for large h and then eq 1.17 
reduces to eq 1.12. On the contrary, one has -II' >> Apg 
in thin films and then the gravitational term in eq 1.17 
becomes negligible. As shown in ref 3, to derive eq 1.17 
one first expands II in series for << h and then neglects 
the quadratic and higher order terms with respect to {. 

(22) Finn, R. Equilibrium Capillary Surfaces; Springer-Verb New 
York, 1986. 
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P l l l ! l  

Figure 5. Capillary interactions at fixed position,of the contact 
line: (a) two vertical cylinders or disks immersed in a liquid 
layer; (b) two vertical cylinders whose lower bases are attached 
to a fluid interface; (c) particles incorporated in an emulsion 
film: the contact lines are attached to the boundaries between 
the hydrophilic and lipophilic domains of the particle surface. 
As the contact lines are immobilized, the energy of wetting does 
not contribute to the capillary interaction, unlike the cases with 
mobile contact lines depicted in Figures 2 and 3. 

To compare the magnitudes of the lateral capillary forces 
corresponding to the two alternative boundary conditions, 
eq 1.15 (fixed slope) and eq 1.16 (fixed elevation), let us 
consider the simplest geometry: two vertical cylinders of 
identical radii, F,, at small meniscus slope: 

l0,fl2 << 1 (1.18) 

In the case of fixed slope (eq 1.15) the interaction energy 
due to the lateral immersion force reads3 

AQ(L) = -27ryr, sin qcm[hc(L) - h, J (fixed slope) 
(1.19) 

where L is the distance between the axes of the two 
cylinders, sin \JElc.. = cos a, and h,(L) is the elevation of the 
contact line above the level of the plane liquid surface far 
from the cylinders; see Figure 3. Equation 1.19 is valid 
not only for thick but also for thin films, when disjoining 
pressure effects become important (see Appendix IV). In 
eq 1.19 we have used AQ instead of Q to notify that the 
additive constant in eq 1.1 is determined in such a way 
that AQ - 0 when L - Q). hcm is the limiting value of h, 
at  L - QD, which is determined by Derjaguin's formula23 

(1.20) 2 
Yeqrc 

h, = rc sin 9,- In - 

qrc << 1 

where Ye = 1.781072418.. . (In r e  = 0.577 ... is often called 
the Euler constane see, e.g., ref 24, Chapter 6). On the 
other hand, as derived in ref 3 

(23) Derjaguin, B. V. Dokl. Acad. Nauk USSR 1946,51,517. 
(24) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical 

finctions; Dover: New York, 1965. 
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h, = rc sin \kc- 7, + 2 In c 
(qa)2 << 1 

where 

a = ( ~ ~ 1 4  - r,2)1/2 (1.22) 

and 

7, = In[a/r, + (1 + a2/r,2)1/2~ (1.23) 
When the boundary condition of fixed elevation, eq 1.16, 

is used, the term C W K ~ A K ~  in eq 1.1 is constant. Then by 
applying the procedure developed in ref 3 from eq 1.1, one 
derives the following expression for the capillary inter- 
action energy between the two cylinders: 

AWL) = 2?ryr&,,[sin \kc(L) - 
sin \k,,l (fixed elevation) (1.24) 

see also Figure 5. (In the case of symmetric film, Figure 
5c, there are two deformed liquid interfaces and conse- 
quently the interaction energy is twice AS2 as given by eq 
1.24.) To obtain analytical expression for \k,(L) we solved 
the Laplace equation, eq 1.10, under the restriction for 
small slope, eq 1.18. The derivation is presented in 
Appendix I, where one can also find analytical expression 
for the meniscus shape, r(x,y), of the configurations 
depicted in Figure 5. The result for sin \k,(L), which is 
to be substituted in eq 1.24, reads 

where KO is modified Bessel function and A is given by eq 
A.8 in Appendix I. (When therelationship A.19 is satisfied, 
eq A.18 should be used instead of eq 1.25 to calculate sin 
\k,(L).) Note that eq 1.24 is valid not only for thick but 
also for thin films, where disjoining pressure effects become 
important (see Appendix IV). 

The energies of capillary interaction stemming from the 
two alternative boundary conditions, eqs 1.15 and 1.16, 
are compared in Figure 6. In both cases AS2 is negative 
(attractive) and of the order of 1@l2 J by magnitude (much 
greater than the thermal energy kT). The capillary 
interaction at  constant slope turns out to be stronger than 
those at  constant elevation. 

Analytical Expressions for the Lateral Capillary 
Forces. Analytical expressions are available only for the 
case of small meniscus slope, when eq 1.18 holds and the 
Laplace equation, 1.10, can be linearized. Then a zeroth- 
order compound asymptotic expansion can be derived, 
which gives the following expression for the capillary force 
(for details see refs 14 and 16) 

F = 2~QiQ2qKi(qL) (1.26) 
where K1 is modified Bessel function 

Qk = rk sin qk, k = 1, 2 (1.27) 
r k  and q k ,  k = 1, 2, are the contact lines radii of the two 
interacting particles and meniscus slope angles. Note that 
eq 1.26 is derived under the constant slope boundary 
condition, eq 1.15. In the case of constant elevation it can 
be proven by means of eqs 1.2, 1.22, 1.24, and A.18 that 
eq 1.26 represents the asymptotic behavior of F at certain 

L I ( 2 r , )  
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

constant 
elevation 

f 
Figure 6. Free energy of capillary interaction Ail vs distance, 
L, between two vertical cylinders of radii r,. Ail1 and Ail% 
correspond to fixed slope (eq 1.19) and fixed elevation (eq 1.24), 
respectively. 9,- and h,, are the meniscus slope and the contact 
line elevation for a single cylinder (L - 0) ) ;  7 is the meniscus 
surface tension and Q-’ is the capillary length; cf. eq 1.12. The 
values of 9,,, r,, q-l, y, and h,, are the same for the two curves. 

conditions (when t << 1 in eq A.19). It follows from eq 1.26 
that 

when rk << L << q-l (1.28) Q1Q2 F = 27ry- L ’  
Equation 1.28 resembles to some extent Coulomb’s law of 
electricity. That is why Qk is called’s the “capillary charge” 
of particle k. In fact Qk characterizes the ability of the 
particle to deform the liquid interface and thus to take 
part in capillary interactions. 

In the simplest case of two vertical cylinders a t  constant 
contact angles (Figure 3) Qk is a constant determined by 
the cylinder radius rk and the contact angle a, = 4 2  - 0,; 
cf. eq 1.27. 

The procedure of calculation of Qk is the case of fixed 
contact angle is described in ref 3. In particular one has 
(RI = R2 = R; r k  << L << q-l) 

R6 F a - K,(qL) for flotation force 

F Q yR2K,(qL) for immersion force (1.29) 

Hence, the flotation force increases when the interfacial 
tension decreases. This is due to the fact that a t  given 
particle weight the meniscus deformation is larger when 
y is lower; cf. Figure 2a,b. On the other hand, the 
immersion force increases proportionally to y. This can 
be attributed to the fact that at  a given capillary rise (and 
meniscus deformation) the meniscus surface energy is 
larger when is higher; cf. Figure 2b,d,f. 

Equation 1.29 shows also that the flotation force 
decreases much stronger with the decrease of particle 
radius R than the immersion force. This is illustrated in 
Figure 7. The energy AS2 due to flotation force is calculated 
for two identical floating spherical particles of mass density 
PI = PZ = pp = 5 g/cm3 by integrating eq 1.26. The energy 
due to immersion force is calculated for two identical 
spherical particles on a substrate which are partially 
immersed in a liquid layer. Its thickness is uniform far 
from the particles and equal to R/2 ( lo  = R/2; cf. Figure 
4); the calculation procedure is described in ref 3; the 
disjoining pressure effect is not taken into account. For 
both lines in Figure 7 the interparticle center-to-center 
distance is L = 4R. The energy of capillary interaction is 

Y 
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can be written in the form 
- 
P = P1(z)w,Y)  - 2) + PII(mz - m y ) )  (2.2) 

where PI and PII are determined by eq 1.3 and 

8 ( x )  = 0 for x < 0 
= 1 for x > 0 (2.3) 

is the Heaviside stepwise function, As known26 

(2.4) 

where S ( x )  is the Dirac function. From eq 1.6 one obtains 

d dx m) = m) 

.............. j ....... ....... ...... 
I 

'OS . 
p = o  

10' - n 

........ .... ..... 10' .... . 
10) ........... 
IO' ' 

.... 

IO' kT 
- 

10" 10-5 104 10.) 10-2 
R (cm) 

Figure 7. Free energy of capillary interaction, AQ, between two 
identical spherical particles of radius R separated at a center- 
to-center distance L = 4R. The full and the dashed lines 
correspond to the particle configurations depicted in parts a 
(flotation force) and b (immersion force) of Figure 2, respectively. 
y is the meniscus surface tension and u is the particle contact 
angle (Figure 2), is the thickness of the planar film far from 
the particles (Figure 4), p , pI, and pn are the mass densities of 
the particles and the two &id phases I and 11, respectively. The 
values of y, a, PI, pn, and L are the same for the two lines. 

divided by the thermal energy kT at room temperature 
(25 "C). One sees that the energy due to the flotation 
force decreases faster with the decrease of R and becomes 
smaller than kT (i.e. negligible) for R < 7 km. On the 
other hand, the energy due to the immersion force is much 
larger than kT even for R = 10 nm. Hence it is possible 
for the immersion force to cause formation of two- 
dimensional aggregates (Figure lb) of micrometer and 
submicrometer particles as observed experimentally.1~2J 

As mentioned above, analytical expressions for the 
lateral capillary forces are available in the case of small 
meniscus slope, when the Laplace equation can be 
linearized. For the readers convenience in Table I we list 
the configurations, for which analytical expressions are 
available, as well as the respective references in which 
details can be found. 

Newton's Third Law for Capillary Forces: Thick 
Films 

As known from hydraulics, when two pistons of different 
area contact with a liquid under pressure, the force exerted 
on the piston of larger area is larger. Then the physical 
insight could suggest (incorrectly) that the larger of the 
two particles depicted in Figure 4 would experience larger 
capillary force, as far as the capillary force is an integral 
of distributed forces (pressure through the particle surface 
and surface tension along the contact line, cf. eqs 1.4-1.6). 
Indeed, the hydrostatic pressure and surface tension 
contributions to the lateral capillary force, separately, can 
be different: 

(2.1) 
Nevertheless, it turns out that an analogue of Newton's 
third law, eq 1.7, holds for the total capillary force, as 
defined by eq 1.4. The validity of eq 1.7 was proven in ref 
14 under the following restrictions: (i) small meniscus 
slope, i.e. eq 1.18 holds; (ii) constant contact angle at  the 
particle surface; (iii) the derivation is exact for vertical 
circular cylinders and approximate for spherical particles. 

Below we present a general proof of eq 1.7, which is not 
subjected to restrictions i-iii. The hydrostatic pressure 
and surface tension contributions to the capillary force 
will be considered separately. 

Hydrostatic Pressure Contribution. If the meniscus 
shape is determined by eq 1.8, the hydrostatic pressure 

F(1P) f -F@P). F ( 1 Y )  + -F(2Y) 

At the last step we used the Gauss theorem with Vout being 
the volume outside the two particles; when the "particles" 
are two infinitely long cylinders, S1 and S2 are their lateral 
surfaces and the meaning of Vout remains the same. From 
eqs 2.2 and 2.4 one derives 

where the integral is taken over this part of the plane xy, 
which represents orthogonal projection of the liquid 
meniscus. 

Surface Tension Contribution. From eq 1.5 one 
obtains 

&"k" = U,,.P fdluy (2.8) 

Then one can apply the Green-Gauss-Ostrodradsky 
theorem in the form26pZ7 

$dlucp = S,ds(VIIcp + Wiicp) (2.9) 

where cp is a scalar, S is a part of a curved surface 
encompassed by the contour C; H, ii, and Vn are the mean 
curvature, the running unit normal and the two-dimen- 
sional gradient operator of surface S. In our case S is the 
meniscus surface, whose boundaries are the two contact 
lines, L1 and La, taken with negative orientation, and cp 
y = const. Then from eqs 2.8-2.9 one derives 

2 

k = l  Lk 

C 

F l  

The position vector of a point of meniscus surface S is 
(2.11) 

where e,, ey, and e, are the unit vectors of the Cartesian 
coordinate axes. Then 

W,Y) = xe, + yey + KWe, 

aR aR a, =-  and ay =- 
ax a Y  

(2.12) 

are the vectors of a local basis in S and hence the unit 
normal ii can be represented in the form 

(25) Kom, G. A.; Kom, T. M. Mathematical Handbook; McGraw- 

(26) Brand, L. Vector and Tensor Analysis; Wiley: New York, 1947. 
(27) Weatherbum, C. E. Differential Geometry of Three Dimemiom; 

Hill: New York, 1968. 

University Press: Cambridge, 1939. 
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Table I. List of Available Analytical ExDressions for the Lateral C a l l l a r u  Force at Various Configurations 
~~ ~ 

configuration boundary condition reference 
two horizontal cylinders (flotation force) 
two vertical cylinders (immersion force) 

two spheres (flotation force) 
two spheres or sphere/vertical cylinder (immersion force) 
wallhertical cylinder wall/sphere (immersion force) 

ii = (a, x a,)/la, x ayl (2.13) 

From eqs 2.11-2.13 one derives 

where Vn is defined by eq 1.11. Then 

and hence the integral in eq 2.10 can be taken over the 
projection, SO, of surface S in the plane xy 

2 

FF(kT) = Js$2HyV11{ (2.16) 
=I 

Finally, from eqs 1.4, 1.9, 2.7, and 2.16 one obtains 

F“’ + F‘2’ = Js0[2Hy + PI(n - PII(nlVII{ = 0 (2.17) 

i.e. we established the validity of eq 1.7. Equation 2.17 
is a consequence only of the fact that the meniscus shape 
obeys the Laplace equation, eq 1.9, irrespective of the 
boundary conditions at the contact line (constant contact 
angle, constant elevation, or something else). Note also 
that during the derivation of eq 2.17 we did not use any 
assumptions to specify the shape of the two interacting 
particles. A straightforward generalization of eq 2.17 is 
possible for N interacting particles 

= 0 (2.18) 

One effect which is not taken into account in the derivation 
of eq 2.17 is the disjoining pressure, which appears when 
the liquid layer (see Figure 2b,d,e) is thin enough. This 
effect is considered in the next section. 

Newton’s Third Law for Capillary Forces: Thin 
Films 

The disjoining pressure, II, represents the surface force 
per unit area of the thin film surface. II can be due to van 
der Waals, double layer, hydrophobic, solvation, steric, 
etc. surface f o r ~ e s . ~ J ~  From a thermodynamic viewpoint 
the disjoining pressure is an excess pressure, which appears, 
when the real thin liquid film (of nonuniform density and 
nonisotropic pressure tensor) is described theoretically as 
an idealized liquid layer of uniform density and isotropic 
pressure, PI, sandwiched between two mathematical 
Gibbsean dividing surfaces. To make this idealized liquid 
layer mechanically equivalent to the real thin film, one 
introduces in the idealized system an additional pressure, 
the disjoining pressure, coupled with a variable film surface 
tension, which depends on the film thi~kness.~O*~~ 

2 

(28) Derjaguin, B. V. Stability of Colloids and Thin Liquid Films; 

(29) Iaraelachvili, J. Intermolecular and Surface Forces, 2nd ed.; 

(30) Kralchevsky, P. A.; Ivanov, I. B. Chem. Phye. Lett. 1986,121,116. 
(31) Kralchevsky, P. A.; Ivanov, 1. B. J Colloid Interface Sci. 1990, 

Plenum Prese, Consultants Bureau: New York, 1989. 

Academic Prese: London, 1992. 

137, 234. 

fiied contact angle ref 12 
fixed contact angle 
fiied contact line 
fixed contact angle 
fiied contact angle 
fixed contact angle ref 15 

refs 3 and 14 
this paper, eq 1.24 
refs 12 and 16, this paper, eq 6.4 
refs 3 and 14 

When particles are confined in an initially plane-parallel 
thin liquid film (see Figures 2, 4, and 51, they create 
deformation of its surfaces, i.e. we have to deal with films 
of uneuen thickness. In this case the overall shape of the 
liquid film is characterized by the so-called ureference 
surface”, which is located somewhere inside the film.3l 
For example, the reference surface of the film depicted in 
Figure 3f is its midplane; in a spherical, vesiclelike film 
the reference surface will be spherical, etc. Then the 
disjoining pressure, II, is a vectorial quantity representing 
the excess force per unit area of this reference surface (see 
eq 3.12 in ref 31). The generalization of the Laplace 
equation, 1.9, for the film surface (cf. eq 3.16 in ref 31) 
reads 

VI1.T + [P,(O - P,(D]ii + CII = 0 (3.1) 

Here {is the distance between a_ point of the film surface 
and the reference surface; ii and Vu have the same meaning 
as in eq 2.9 referring to the film surface; c is a eometrical 

surface stress te sor. When the interfacial curvature 

T = yo, (3.2) 

with 611 being the two-dimensional unit tensor in the film 
surface and y being the film surface tension. In the limiting 
case of a thick film EI = 0, y = const and by using the 
identity32 

coefficient determined by eq 3.20 in ref 31; # is the film 

effects are negfigi I J  le, T is an isotropic surface tensor: 

VII.6, = mil (3.3) 

form eqs 3.1 and 3.2 one recovers the Laplace equation 
1.9. For our considerations below it is not necessary to 
specify some explicit expression for ifi; we need only the 
following general property of T: 

ai-T = 0 (3.4) 

cf. eq 2.12 in ref 31. Besides, the equivalence between the 
real and idealized systems with respect to the forst 
momenta implies that the disjoining pressure is perpen- 
dicular to the reference surface: 

u,*n = 0 (3.5) 

Here and hereafter in this section UU is the idemfactor 
(unit tensor) of the reference surface. (Equation 3.4 is 
derived in ref 31 for the special case of planar reference 
surface. However, a closer inspection of eq 3.30 in ref 31 
shows that one can set = 0 and then eq 3.5 above is 
obtained as a general result if some negligible gravitational 
terms are omitted.) Below for the sake of simplicity we 
suppose that the reference surface is planar. 

Equations 2.5, 2.7, and 2.14 above, originally derived 
for a thick film (II = 0)) are applicable also for a thin film 
(II # 0) with UII and VII being operators in the reference 
surface. In particular, from eqs 2.7 and 2.14 one derives 

(32) Aria, R. Vectors, Tensors and the Basic Eqwtions of Fluid 
Mechanics; Prentice Halk New York, 1962. 
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t '  
where S denotes the film surface. On the other hand, in 
the case of thin films the definition 1.5 can be generalized 
as follows: 

F(kr) = UII*$dZ(u*'F) 
Lh 

Then one can use a modified version 

id1u-T = Jsds(vn*T + Wil-T) (3.7) 

of the Green-Gauss-Ostrogradsky theorem, eq 2.9, with 
T being an arbitrary tensor, to obtain 

c 

(3.8) 

At the last step eq 3.4 was utilized. A combination of eqs 
1.4, 3.1, 3.5, 3.6, and 3.8 finally yields 

FCs + E''') = -U u s  *J dS{vJ' + [PI(n- Pn(nlfi + 
cn) = 0 (3.9) 

i.e. we arrived again at  eq 1.7. Hence, an analogue of 
Newton's third law holds also for the capillary forces 
between particles confined in a thin liquid film. 

Equivalence between the Energetical and Force 
Approaches 

Our purpose here is to demonstrate avariational method 
for proving that the energetical and force approaches to 
the lateral capillary forces are equivalent. We consider a 
configuration of simpler geometry, when the two inter- 
acting "particles" are two vertical cylinders, not necessarily 
circular. This can be the case of a single interface, depicted 
in Figure 3, or the case of two interfaces (thin liquid film) 
shown in Figure 5c. In the latter case the disjoining 
pressure effect (the interaction between the two film 
surfaces) becomes important. For the sake of simplicity 
we consider asymmetrical fiim of planar reference surface 
(Figure 5c) and we will deal with the upper film surface, 
the treatment of the lower film surface being analogous. 

Our starting point is eq 1.1, which represents the basis 
of the energetical approach. For the geometry of con- 
sideration the different terms in eq 1.1 can be specified 
as follows: 

(4.3) 

Ak,I = SdZLfdz, Ak,II = $dlJfz*dz (4.4) 
ch c h  

For the sake of brevity we use the notation 

(4.5) 

SO has the same meaning as in eq 2.7. It is assumed that 
the system under consideration is situated between the 
planes z = 21 and z = 22, located on the two opposite sides 
of the interface z = f(x,y). These two planes play an 
auxiliaryrole: the final results do not depend on the choice 

Figure 8. Sketch of the contours C1 and Ca representing the 
horizontal projections of the lateral surfaces of the vertical 
cylinders 1 and 2; Cd is the position of CZ after the displacement. 

of z1 and 22. That is why the exact location of z1 and 22 
is not important. Ck (k = 1,2) is a contour representing 
the orthogonal projection of contact line Lk onto plane xy. 

As far as the two cylinders are not allowed to move 
along the vertical, the first term in the right-hand side of 
eq 1.1 is constant an can be omitted. Then eqs 1.1 and 
4.1-4.5 yield 

where 

Equations 4.6 and 4.7 hold for both thick film (11 = 0) and 
thin film (ll # 0). Nevertheless, there are some implicit 
differences in the formalism in these two cases: 

(i) In the case of thick film (single interface) y = const 
and 1: satisfies the conventional Laplace equation, eq 1.9. 

(ii) In the case of thin film the surface tension depends 
on the local film thickness;30J1 as far as lo is fixed (Figure 
5c) one has y = y(n. The latter dependence is determined 
by the equation (see Appendix 11) 

= -(1 + Ivnf12)-1/211 (4.8) 

In addition, the shape of the film surface satisfies the 
following generalized version of the Laplace equation (see 
Appendix 11): 

d1: 

my = (Pn - - (1 + 1vnf121-lrI (4.9) 
One can easily check that when II - 0 eqs 4.8 and 4.9 

yield the respective results for a thick film. 
Let us now consider an infinitesimal displacement, bL, 

of cylinder 2 along axis x .  Consequently, contour C2 will 
be displaced in a new position, C'2; see Figure 8. By using 
Laplace and Neumann-Young equations, in conjunction 
with some methods of the variational calculus,= one derives 
the following expression for the variation of fl (see 
Appendix 111) 

dy 1 6Q - = -ex.F(2p) - i d ly [  (1 + 1:: + 1:;)lI2- + CXm.fi 
6L n dl 

(4.10) 

where in view of eqs 1.6 and 2.2 

(33) Elsgoltz, L. E. Differential Equations and Variational Calculus; 
Nauka: Moscow, 1969; in Russian. 
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Table 11. Capillary Length q1 vs Film Thickness, L, for 
the Water-Gas Surface of an Aqueous Film on Hg (AH = 

-732 X 10-% J, y = 72 mN/m) 
h, nm q-1, h, nm q-1, nm 
5.0 63 15.0 563 
7.5 141 17.5 767 
10.5 250 20.0 1001 
12.5 391 

(4.11) 
4 

is the hydrostatic pressure contribution to the lateral 
capillary force and the expression 

m=$,-%y (4.12) 

defines the outer unit normal to contour C2, shown in 
Figure 8. By using eqs 2.14 and 4.12 one can derive 

(4.13) 
On the other hand, a t  each point of the three-phase contact 
line L2 one has: 

u = t x a  (4.14) 

where t is the running unit tangent to L2 and the meaning 
of u is the same as in eq 1.5. The running position vector 
of a point on L2 can be expressed in the form 

R(t)  = x(bex + y ( b Y  + t (b ,  (4.15) 

where is the natural parameter (the length) along Lz. 
Then 

dR dx dy d t  
t=-=  -e, + -ey + -e, 

d l  dt  d t  d t  
(4.16) 

From eqs 2.14, 4.14, and 4.16 it follows 

with dl being the elementary length along contour CZ. 
Finally, by means of eqs 4.13 and 4.17 one can represent 
eq 4.10 in the form 

where 

(4.18) 

(4.19) 
L2 

Equation 4.18 along with eqs 4.11 and 4.19 gives a proof 
of the equivalence between the energetical approach, based 
on eq 1.1, and the force approach, based on eqs 1.4-1.6. 
We hope the variational method presented above can be 
extended to particles of general shape. 

Numerical Results and Discussion 
In this section we focus our attention on lateral capillary 

forces between colloidal particles in thin films; see Figures 
2b, 2f, and 5c. The intriguing point is how large is the 
effect of disjoining pressure on the magnitude of the 
capillary interaction. The disjoining pressure becomes 
significant when the thickness, h, of the liquid film is small 
enough. On that reason the calculations presented below 
are carried out with comparatively thin films (h 5 20 nm). 
The thermodynamic (macroscopic) disjoining pressure 
approach has been proven to give an adequate description 
of the properties of such films.28@ Therefore, we hope 
the theory presented in the previous sections, which is 
based on the disjoining pressure approach, is appropriate 
enough to allow a correct numerical estimate of the 
capillary interactions in thin films. 

We consider two model examples. The first of them is 
related to the conditions of the experiments by Yoshimura 
et aL4s5 with globular proteins in thin aqueous films on 

mercury substrate. The second example models the 
interaction of membrane proteins incorporated in a 
phospholipid bilayer in water environment; see, e.g., ref 
29. 

Spherical Particles in Aqueous Film on Mercury. 
We suppose that the aqueous solution spread on mercury 
contains electrolyte with concentration high enough to 
suppress the electrostatic double layer interaction. If such 
is the case, the stability of the aqueous thin film is ensured 
by the repulsive van der Waals disjoining pressureM: 

The Hamaker constant for this system was estimated by 
Usui et al.34 to be AH = -7.22 X 10-20 J. Then the surface 
tension of the boundary between aqueous film and air is36 

(5.2) 
AH y(h) = yo + iJhmII(h) dh = yo - - 

24nh2 
where yo is the surface tension of a thick film (h- m). For 
h 1 5 nm one calculates IA&(24?rh2) S 3.8 X mN/m. 
Hence, in our calculations we can neglect the dependence 
of y on h; i.e. we can set y = yo = const. On the same 
reason the contact angle a, formed at the particle/water/ 
gas contact line, can be considered (approximately) as being 
independent of h. 

Since the surface tension of the boundary between 
mercury and water is rather high ( y m  = 470 mN/m) in 
our estimates below we will neglect the deformation of the 
mercury surface due to the presence of particles and we 
will account only for the deformation of the water-gas 
interface; cf., e.g., Figure 2b. 

From eq 5.1 one obtains 

(5.3) 

From eqs 1.17 and 5.3 we calculated the capillary length, 
q-1, for the water-gas interface; y = 72 mN/m was used 
for the surface tension. The results shown in Table I1 
demonstrate a strong dependence of the capillary length 
on the film thickness. q-' is smaller when the film is thinner 
and the repulsive disjoining pressure is higher. The 
disjoining pressure tends to keep the film surface planar 
and to suppress the capillary waves or any other surface 
deformation. In this aspect it behaves similarly to the 
gravity force but is much stronger. (For example, the 
capillary length due to gravity, calculated from eq 1.12, is 
q-1 = 2.7 mm on the Earth and q-l = 1.6 mm on Jupiter; 
compare the latter values with those in Table 11.) 

As far as eq 1.1 is applicable for both thick and thin 
films, we will use a procedure, which is analogous to that 
developed in ref 3 for calculating the free energy of capillary 
interaction, ASl, between two identical spherical particles, 
which are partially immersed in the film. According to 
this procedure 

(34) Usui, S.; Sasaki, S.; Hasegawa, F. Colloid8 Surf. 1986, 18, 53. 
(35) Ivanov, I. B.; Toehev, B. V. Colloid Polym. Sci. 1976,253, 693. 
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(attractive interaction) and many times larger than the 
thermal energy kT. Hence, this capillary attraction can 
be the reason for the particle assembly and two-dimen- 
sional crystal formation observed experimentally with thin 
films on sub~trate.~?s 

Cylindrical Particles in a Lipid Film. Now we 
consider the system depicted in Figure 5c. The position 
of the contact line is fixed at the boundary between the 
lipophilic and hydrophilic domains of the particle surface. 
To model a lipid bilayer we choose the thickness of the 
film, h = 210 (Figure 5c) to be 30 A; see, e.g., ref 29. The 
disjoining pressure in this system can be written in the 
form 

R = 6 n m  
y=72mN/m 1 

-80 t Ap = 1 g/cm3 
AH = -7.22 11 0'' J 

-1 00 ' I 
1.0 2.0 3.0 4.0 5.0 6.0 

L42R) 
Figure 9. Capillary interaction energy AQ vs distance L between 
two identical spherical particles of radius R in a thin aqueous 
film on a mercury substrate. Curves 2 and 2' are calculated at  
"switched off" disjoining pressure (If = O), whereas n # 0 for 
curves 1 and 1'. h is the thickness of the plane-parallel film far 
from the particles, y is the meniscus surface tension, Ap is the 
difference between the mass densities of the film phase (water) 
and the upper phase (gas), and AH is the Hamaker constant for 
an aqueous film sandwiched between mercury and gas. 

Ail = -27ryo(A, - A,) (5.4) 
where 

A, = 2h$ cos (Y - h,rc sin qc + r: 
A, = 2h,,R cos a - h,,r,, sin qCm + rcm2 

As usual, R is particle radius and the subscript "an denotes 
the value of respective parameter for infinite interparticle 
separation (L - a). The distance between the three- 
phase contact line and the substrate surface is 

l = h + h ,  (5.5) 

rc = [ (2R - I) I3 ' I 2  (5.6) 

(5.7) 9, = arcsin - - a 

Then at given film thickness h, contact angle a, and 
interparticle distance L the six unknown geometrical 
parameters, h,, r,, q,, 1, a, and 7, can be determined from 
the set of six equations, eqs 1.21-1.23 and 5.5-5.7. The 
limiting values for L - are similarly determined from 
eqs 1.20 and 5.5-5.7, where r,, q,, and h, must be replaced 
by rem, q c m ,  and h,,. Finally the results are substituted 
in eq 5.4 and Afl is calculated. 

Curves Ail vs L are shown in Figure 9 for (Y = Oo (curves 
1 and 2) and (Y = 30° (curves 1' and 2'). To specify the 
system we chose R = 6 nm, h = 9 nm (typical values in the 
experiments with ferritin4*s). The disjoining pressure 
affects Ail through the capillary length q-1, which takes 
part in eqs 1.20 and 1.21. Curves 1 and l', are calculated 
with q determined from eqs 1.17 and 5.3. Curves 2 and 
2' are calculated by setting ll' = 0 in eq 1.17; i.e. these 
curves correspond to an imaginary film in which the 
disjoining pressure is "switched off". The area confined 
between curves 1 and 2 (or 1' and 2') visualizes the effect 
of disjoining pressure on the capillary interaction energy 
An. One sees that the latter effect is important and 
comparable by magnitude with the contact angle effect. 

The fact that the capillary interaction between the 
particles of smaller contact angle is stronger is due to the 
higher capillary rise of the water along the more hydrophilic 
particle surface which results in a larger meniscus defor- 
mation. In all cases the calculated values of Ail are negative 

Additional simple geometrical considerations yield 

r C  

R 

n(h) = n,(h) + n8t(h) (5.8) 
Here l l ~  is the van der Waals disjoining pressure defined 
by eq 5.1; however the Hamaker constant is now positive 
(attractive interaction). We specify& = 5 X J, which 
is a typical value for the interaction of aqueous phases 
across a hydrocarbon fi1m.m l18t in eq 5.8 is the steric 
disjoining pressure, which is caused by the repulsion 
between the interpenetrating hydrocarbon tails (brushes) 
of the two attached phospholipid monolayers. Since this 
situation corresponds to the interaction between two 
terminally anchored polymer layers in 0-solvent, one can 
use the expression for the interaction free energy, fet(h), 
due to Dolan and Edwards36 

fat Jhmllnt(h) dh = 4rkT exp ( -- $) (5.9) 

h2 > 3h2 

Here I' is the number of polymer chains per unit area of 
the monolayer and h has the meaning of root-mean-square 
end-to-end distance of a chain. For our model calculations 
we specify I'-' = 40 A2. To find an estimate of h consistent 
with the values of the other parameters we proceed in the 
following way. 

It is natural to suppose that a t  equilibrium conditions 
the van der Waals attraction and the steric repulsion 
counterbalance each other. Then by setting ll = 0 and h 
= 30 A in eq 5.8 and by substituting the expressions for 
llw and ll,, stemming from eqs 5.1 and 5.9 one calculates 
A = 11.5 A. With these values of h and h one obtains ll' 
= 5.55 X 1013 J/m4. 

The value of the film surface tension y can vary 
depending on the experimental conditions; in our model 
calculations we specify y = 30 mN/m. Then eq 1.17 yields 
a capillary length q-' = 232.5 A. In addition we specify 
rc = 25A, which is in the range of the radii of the membrane 
proteins. Then if the interparticle separation, L, and 
contact line elevation, h,, (Figure 5c), are known, one can 
calculate the energy of lateral capillary interaction between 
the two protein macromolecules as follows: (i) from eq 
1.20 one calculates \kc,; (ii) by means of eqs 1.22 and 1.23 
one determines a and 7,; (iii) by using eqs A.8 and A.12 
(Appendix I) one calculates sin 9,(L); (iv) a substitution 
of the parameters thus determined into eq 1.24 yields the 
capillary interaction energy. Note that there are two 
deformed liquid surfaces in the case of symmetrical thin 
f i i  (Figure 5c) and hence the interaction energy An (listed 
in Table 111) is twice the interaction energy as given by 
eq 1.24. 

(36) Dolan, A. K.; Edwards, S. F. R o c .  R. SOC. London 1976, A343, 
627. 
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Table 111. Dependence of the Capillary Interaction Energy 
AQ on the Distance L between the Axes of Two Cylindrical 
Particles, Figure Sc (re = 26 A, y = 30 mN/m, T = 298 K, ~1 

232.6 A) 
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of Laplace equation, eq 1.10, which is a nonlinear partial 
differential equation and can be solved by using either 
approximated analytical expansions or sophisticated com- 
puter integration procedures. 

(v) The effect of disjoining pressure, 11, on the energy 
of capillary interaction, AQ, is studied quantitatively in 
the case of small meniscus slope, when Laplace equation 
can be linearized. II affects the capillary interaction 
through the capillary length, q-l; see Table I. The effect 
of 11 on AQ is comparable by magnitude with the contact 
angle effect; cf. Figure 9. The specified model systems 
studied quantitatively show that the capillary interactions 
between particles of nanometer size are strong enough to 
produce two-dimensional particle aggregation and order- 
ing, as observed experimentally.4f~J9~20 
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Appendix I. Meniscus Shape at Boundary 
Condition of Constant Elevation 

Our aim is to determine the meniscus shape, r(x,y), in 
the case when the meniscus elevation at the contact line 
does not depend on the interparticle separation, L; see 
Figure 5. Under the restriction for small meniscus slope, 
eq 1.18, the Laplace equation, eq 1.10, can be linearized 
to read 

v,2r = s2r (A.1) 
To solve eq A.l along with the boundary conditions, eqs 
1.13 and 1.16, we will make use of the mathematical 
approach developed in ref 3, which is based on the method 
of the matched asymptotic e~pansions.3~ This method 
can be applied when a small parameter is available in the 
equation. In our case qr, (or qa) can serve as a small 
parameter. Then in the region close to the particles (at 
distances of the order of r,) and in the region far from the 
particles (at distances of the order of q-l) asymptotic 
solutions of eq A.l are found. Finally, these solutions, 
called “inner” and “outer” are matched by means 
of an appropriate procedure; see eq A.9 below. As far as 
the procedure is analogous to that in ref 3 below, we present 
only the main steps of the derivation. 

Bipolar coordinates (u,r)  are introduced in the plane xy 
(see e.g. ref 25): 

~~~~ 

-AQ/KT 
Llr, h,, = 4 A h,, = 8 A 
2.0 2.38 9.54 
2.5 2.22 8.88 
3.0 2.06 8.22 
3.5 1.90 7.58 
4.0 1.74 6.96 
4.5 1.58 6.34 
5.0 1.44 5.74 

The data for AQ vs L shown in Table I11 correspond to 
two different values of the contact line elevation hem. One 
sees that in spite of the relatively small elevation and 
particle size, the energy of capillary interaction can be 
several times kT. In addition, the resulting interparticle 
attraction appears to be rather long-ranged. 

It should be noted, that the range of interaction depends 
on the value of the film surface tension y, as far as q-’ a 
y1I2; cf. eq 1.17. If y is decreased, then both the range and 
the magnitude of the capillary attraction will decrease (cf. 
eq 1.24). On the contrary, a t  not too low values of y the 
lateral capillary forces can be strong enough to create two- 
dimensional particle aggregation in the film (membrane). 

Concluding Remarks 
The results of this article can be summarized as follows: 
(i) The difference between flotation and immersion 

lateral capillary forces is demonstrated. The former 
originates from the particle weight, whereas the latter is 
engendered by the particle wettability (position of the 
contact line and magnitude of the contact angle). Both 
these forces appear when a liquid interface is deformed 
due to the presence of attached particles. That is the 
reason why these forces exhibit the same functional 
dependence on the interparticle distance (see e.g. eqs 1.26 
or 1.28). On the other hand, their different physical origin 
results in different magnitudes of the “capillary charges” 
of these two kinds of capillary forces (as a rule, the 
immersion force is much stronger than the flotation force; 
see Figure 7). In thisaspect they resemble the electrostatic 
and gravitational forces, which obey the same power law, 
but differ in the physical meaning and magnitude of the 
force constants (charges, masses). 

(ii) In addition to the capillary interactions at fixed 
contact angle, interactions at fixed contact line (Figure 5 )  
are investigated and respective expressions for the inter- 
action energy are derived (see eqs 1.24 and 1.25 and 
Appendix I). The numerical test (Figure 6) shows that 
the capillary interaction at  fixed contact angle is stronger 
than that at fixed contact line. 

(iii) A general proof is given to an analogue of Newton’s 
third law for lateral capillary forces between two particles. 
This proof is valid for both thick (II = 0) and thin (II # 
0) films, as well as for both immersion and flotation forces, 
at general boundary conditions on the particles surfaces. 

(iv) The equivalence of the energetical and force 
approaches to the lateral capillary forces is proven 
analytically for the special case of two vertical cylinders 
(not necessarily circular). The proof is valid for both thick 
and thin films at fiied contact angle or fixed contact line 
boundary conditions. The equivalency between the en- 
ergetical and force approaches, as well as Newton’s third 
law for capillary forces, provide useful tests of the 
numerical results for capillary interactions. Such tests 
enable one to check the precision of the obtained solution 

(A.2) 
a sinh T a sin u 

= cosh T - cos u 
X =  cash T - COS u 

where parameter a is determined by eq 1.22. Each line 
r = const is a circumference (see Figure 4 in ref 3). The 
projections of the two contact lines in the plane xy obey 
the equations r = fro where rc is given by eq 1.23. 
Following the method of the matched asymptotic expan- 
sionss7 we introduce an inner and outer region 

inner region (close to the cylinders): 

outer region (far from the cylinders): 

In the inner region eq A.1 reduces to3 

(cosh r - cos u)’ >> 

(cosh r - cos 4’ I (qaI2 

(37) Nayfeh, A. H. Perturbation Methods; Wiley New York, 1973. 
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(A.3) 

By using the identity 

" 2  

n=l n 
ln(2 cosh 7 - 2 cos a) = 171 - E- exp(-nlr()cos nu (A.4) 

one can check that the expression 

[ r" = h,, + A ln(2 cosh 7 - 2 cos u) - 7, + 

cosnu (Ah) 1 2 coshnr 

&n coshnr, 
- e+"'c - 

satisfies both eq A.3 and the boundary condition 1.16; A 
is a constant. In the outer region eq A.l reduces to3 

- 1 -(r d df -) = q2t 
r dr dr (A.6) 

From eqs 1.13 and A.6 one derives 

Pt = 2AKo(qr) (A.7) 
where KO is modified Bessel function and constant A is 
determined by means of the procedure of matching3' - 2 exp(-nr,) 

n=l n cosh nr, 
T ,  - 2 ln(y,qa) - E ] (A.8) 

The compound solution for 5; which is uniformly valid in 
the inner and outer regions, is37 

f = s'" + I""t - ( p u y  (A.9) 

(Pt)h = -2A ln(yeqr/2) (A.lO) 
It should be noted that in the boundary regions 7 - fr, 
or qr >> 1 the inner solution eq A.5 or, respectively, the 
outer solution, eq A.17, are more accurate than the 
compound solution, eq A.9. 

Angle 9&), which appears in eq 1.24, is in fact an 
average slope angle, defined as follows (see eqs 2.18 and 
3.13 in ref 3) 

where 

where contour C1 represents the projection of the contact 
line in the plane xy and m is running unit normal. From 
eqs 1.16, A.2, A.5 and A.ll one obtains 

A (A.12) sin \k,(L) = -Jzdu-&rc 1 = - 
2rr, r C  

(qu)2 << 1 

where A is given by eq A.8. For small separation between 
cylinders surfaces a - 0 (cf. eq 1.22); then rc - a/r, and 

- exp(-nr,) dx 4 ~ e a  

coshnr, = r C  

- -In - (A.13) 

At  the last step we have used integration by parts along 
with the identity38 

(38) Prudnikov, A. P.; Brychkov, Y. A.; Marichev, 0. I. Integrals and 
Series; Nauke: Moecow, 1981; in Rwian.  

Hence in the limit of close contact (a - 0) the two 
logarithmically divergent terms in eq A.8 cancel each other 
and parameter A (and the slope angle 9,) have finite value. 

In the other limit, (qa)2 >> 1, one can find expression for 
9 , ( L )  by using the superposition a p p r o ~ i m a t i o n . ~ ~ J ~ J ~ J ~  
In the framework of this approximation the elevation h, 
of the contact line can be presented in the form 

hc= h,, + Ah,+ ( - ) (sin 9,-sin~,.J (A.15) dsin 9, rc 

Here h,, is the elevation at  L .--* m 

Ah, = rc sin 9,,K0(qL) (A.16) 
is the elevation created by a single vertical cylinder at  a 
distance L from ita axis (the distance at  which the second 
cylinder is situated); the last term in eq A.15 accounts for 
the change in h, due to the change in 9,. From Derjaguin's 
formula, eq 1.20, one obtains 

(A.17) (L) = r C h -  2 
d sin 9, Yeqrc 

The boundary condition, eq 1.16, requires h, = hcm and 
then eqs A.15-A.17 yield the sought for asymptotic 
expression for 9 , ( L )  

sin e,(L) = sin 9,- [ 1 - (In L)-lKo(qL)] (A.18) 
Yeqrc 

Equation A.18 holds when the second term in the brackets 
is small, i.e. when 

The two asymptotic5 given by eqs A.12 and A.18 can be 
matched by applying the standard procedure (cf. eq A.9) 
to the function l/sin 9, (L) .  The resulting compound 
expression is eq 1.25 above. We recommend to the reader 
to use eq A.18 when c(L) << 1 and to use eq 1.25 in all other 
cases. 

Appendix 11. Relationship between Surface 
Tension and Disjoining Pressure of Thin Liquid 

Films 
When the reference surface of the film is planar the 

geometrical factor c in eq 3.1 reads (cf. eqs 3.16,3.20 and 
4.3 in ref 31) 

c = n-fi = (1 + ( ~ ~ f l ~ ) - ~ / ~  (B.1) 
where n and fi are the running unit normals of the reference 
and upper film surface, respectively. Besides, eq3.5 means 
that the vector of disjoining pressure is directed along n. 
Then one obtains 

I&fi = nn-fi 03.2) 
In addition, eqs 3.2 and 3.3 lead to 

Vu.? = V1fy + 2Hyfi 03.3) 
From eqs B.1-B.3 it follows that the projection of the 
vectorial expression eq 3.1 along the normal i is in fact 
eq 4.9. Similarly one can derive that the projection of eq 
3.1 in a plane perpendicular to i reads 

Let up, CY = 1,2, be curvilinear coordinates and arr be the 
respective local basis vectors in the plane of the reference 
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surface. Then one can prove (cf. eq 2.19 in ref 31) that 
the vectors 

8, = a, + n a = l , 2  03.5) 

form a covariant local basis on the film surface. Hence 
one can write2739 

sua' 
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where liab = liba are the contravariant components of the 
film surface metric tensor and summation over the 
repeating indices is supposed. From eqs B.5 and B.6 one 
obtains 

(B.7) 

Having in mind eq B.7 one can transform eq B.4 to read 

n*6,, = - a!: apab = 6 , ~  
&dol 

(3 + cn)6,1; = 0 (B.8) 

Since in general 611s # 0, from eqs B.1 and B.8 one derives 
the sought for eq 4.8. 

Appendix 111. Derivation of Equation 4.10 
The surface integral in eq 4.6 can be transformed to 

read 

where 

Y&d = YLl(X)  for x1< x < x2 

= yL2(x) for x 3  < x < x4 
= 0 for all other values of x (C.2) 

points XI, ..., x4 and functions yik(x), i,k = 1,2, are shown 
in Figure 8. Then the variation of the surface integral 
induced by the displacement 6L is 

6Jsp@ = J-~dx[@l,,,~Y, - @I,*,~Y~l + Jspao (C.3) 

where 6 ~ 1 ~ 6 ~ 2 ,  and 6@ are the first variations of respective 
functions. In particular 

(C.4) dyk 6yk I+L y&(x + 6L) -Y&(X) dx 
By using eqs C.2 and C.4 one derives 

+- J-" w 4 , - , $ Y l -  @ l y = y ~ Y z ]  = - ~ d 4 y . y 1 ( x ) ~ Y l  - 

From eqs 4.6, C.3, and C.5 one obtains 

(39)Eliasseq J. D. Ph.D. Thesis, University of Minnesota, 1963; 
University Microfiie, Ann Arbor, MI, 1983. 

The differentiation of eq 4.7 yields 

t = x , y  
Then eq C.8 can be represented in a convariant form: 

Equation C.9 can be transformed to read 

where 

One can check that M is identically zero: (i) in the case 
of thick film (y = const) this follows from the Laplace 
equation, eq 1.9, along with eqs 1.10,4.7, and C.11; (ii) in 
the case of thin film it follows from the generalized Laplace 
equation,eq4.9,alongwitheqs 1.10,4.7,4.8,andC.ll.By 
substituting M = 0 in C.10 and by using the Green theorem 
one derives 

where m is outer running unit normal, see Figure 8. In 
general, one has33 

a s 2  = 6flcz + br-(V,Olcz ((2.13) 

where 6{2 is defined by eq C.7 and 6r is the vector of 
displacement of contour C2. In our case 6r = (6L,O). 
Besides, at contour C1 6s 6f1, as far as the position of 
contour C1 is not varied. Then from eqs 2.14, C.12, and 
C.13 one obtains 

Ss,dsb@ = #dlmdrbT, + $dlm*fty(6r2 - tX6L) ((2.14) 
C1 c1 

Equations C.6 and C.14 yield 

W ~ , I  - wk,n)6Sk (C.15) 
where we have taken into account that the angle subtended 
between the unit vectors m and fl is the three phase contact 
angle a&: 

m*fi = cos a, for (x,y) E C,, k = 1 , 2  (C.16) 
Below we will set the last term in eq C.15 equal to zero 
because (i) at boundary condition of fixed contact angle 
the Young equation, eq 1.14, holds, or (ii) at  boundary 
condition of fixed contact line eq 1.16 holds and hence S{K 
3 0. From eqs 4.7 and C.15 one deduces the sought for eq 
4.10. 

Appendix IV. Capillary Interaction Energy, AO, 
in the Presence of Disjoining Pressure 

Our purpose here is to prove the validity of the key 
expressions for 651, eqs 1.19 and 1.24, for thin films, when 



36 Langmuir, Vol. 10, No. 1, 1994 

the effect of disjoining pressure, II, becomes significant. 
We restrict our considerations to a wetting liquid film on 
a substrate. (The results can be quite similarly derived 
for a symmetrical liquid film, Figure 2f, which can be 
formally related as two wetting films “adsorbed” on each 
other.) 

As earlier, we consider a film of uneven thickness (Figure 
4) 

h = 1, + l(x,y), 1, = const (D.1) 
For small deviations from planarity, t << h, y(n can be 
expanded in series: 
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in the right-hand side of eq D.ll. Since both f and Vnf 
vanish at  infinity, the integral I can be represented as a 
s u m  of linear integrals taken along the contours C1 and Cp: 

y =yo+  (e), -( 1 a 2 y  ) ?+ ... (D.2) 
[ + 2  ah2 0 

Here and hereafter the subscript “0” denotes the value of 
the respective quantify for r = 0. For a plane-parallel 
film the thermodynamics of thin liquid films yields35 

(e), = -4; ( $)o = -( g)o I -II’ (D.3) 

Equations D.3 can be also derived from eq 4.8 for small 
meniscus slope, i.e. IVnf12 << 1. The combination of eqs 
D.2 and D.3 leads to 

(D.4) 

Equation D.4 implies that AS2 can be represented as a 
s u m  of terms due to the hydrostatic pressure, wetting 
surface energy, and meniscus surface energy3 

A52 = AQP + AQW + A52, (D.5) 

1 y = yo - no{- p? + ... 

1152, is determined by the expression 

AS2 yo[AAP - CUI,’] (D.6) 
where 

yoMP E Jsp [?(I+ (VIIf12)”2 - 703 03.7) 

As usual, the subscript “a” in eq D.6 denotes the value of 
the respective quantity at  infinite interparticle separation, 
L - -; the meaning of SO is the same as in eq 2.7. By 
expanding the square root in eq D.7 in series and 
substituting y from eq D.2, one derives 

YOAAP = Js$s [Yo ;IvIIflz - no{- +e] (D.8) 

where higher order terms with respect to { are neglected. 
On the other hand one has 

TdVIId2 = Yo[v,.(F,n - F2fI = ~ o v I I ~ ( F I I n  - 
Apg? + II’? (D.9) 

At the last step we used the linearized Laplace equation3 

YOVI?~ = (Apg - W r  (D.lO) 
stemming from eqs 1.10, 1.17, and D.4 for JV11fl2 << h. 

The substitution of eq D.9 into eq D.8 yields 

where 

(D.12) I = -s ds V,.(m,n 

It is worthwhile noting that the terms with II’ cancelled 

1 
2 so 

where m is a running outer unit normal to the respective 
contour (Figure 8). 

The hydrostatic pressure contribution in eq D.5 reads 

By means of eqs 1.3,4.2, and 4.3 one derives 

AQP = Js$s [ (PII,o - PI,o){ + $pgf] + const (D.14) 

where the additive constant is independent of L. In 
addition, for an equilibrium thin liquid film one has35 

no = 4 1 , o  - 4 , o  (D.15) 

Then a combination of eqs D.5, D.6, D.11, D.14, and D.15 
yields 

A52 = ?,(I - I,) + Ailw (D.16) 

Note that the integrals throughout SO in eqs D.ll and 
D.14 cancel each other. 

In the case of constant contact angle eq 1.15 holds. 
Then for two identical particles one obtains3 (cot Cyk = tan 
\k, = sin \kc,) 

1 
I = Z?rr&, sin \kc,, h, 6 - $dZ{ (D.17) 

2arc c1 

In addition, for the same case one can derive3 

AQW = -4ayg,(h, - h,,) sin \kc, (D.18) 

Finally, a combination of eqs D.16-D.18 leads to eq 1.19 
with yo instead of y. The difference between y and yo is 
of the order of IIh and is negligible compared to y; see e.g. 
ref 35. 

In the alternative case of fixed contact line one has AQW 
= 0. Moreover, eq 1.16 implies that 

-1 
I = 2?rrJzc, sin I,, sin I, = - $dZmVIIS. (D.19) 

2arc c1 

Then eq D.16 reduces to eq 1.24. 
Similarly one can confirm the validity of eq 5.4 for 

partially immersed spheres (instead of cylinders). 
The absence of an explicit term with the disjoining 

pressure II in eqs 1.19 and 1.24 does not mean that AS2 is 
independent of II. In fact II affects AS2 implicitly, through 
the values of h, or @,, which are determined by solving the 
Laplace equation, eq D.10. Indeed, the latter contains a 
II’ term. 


