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The perturbation approach of Barker and Henderson is applied to obtain analytical formulae for the collective diffusion coef-
ficient, short-time self-diffusion coefficient, sedimentation velocity, static and dynamic structure factors at low particle concen-
tration. All these quantities are expressed as explicit functions of the system parameters (particle size and charge, electrolyte
concentration, Hamaker constant, etc.) and can be easily calculated if the latter are known. By using light scattermg experiments
information on the particle charge (or potential) and Hamaker constant can be obtained.

1. Introduction

The general approach for studying the diffusion
phenomena in suspensions of interacting Brownian
particles at low volume fraction was developed by
Batchelor [1,2] and Felderhof [3-7]. These authors
presented the first-order (with respect to particle
concentration) correction terms for the sedimenta-
tion and diffusion coefficients of hard spheres as a
sum of different contributions. The latter are ex-
pressed as integrals over the radial distribution func-
tion of the particles.

In order to take into account long-range (e.g. elec-
trostatic) interactions usually numerical computa-
tions are needed in order to determine the concentra-
tion dependence of both the collective and self-
diffusion coefficients [8,9]. Recently, simple analyt-
ical expressions for the concentration dependence of
the collective and short-time self-diffusion coeffi-
cients of charged colloidal particles were derived
[10,11]. The sedimentation velocity, static structure
factor and wave-dependent diffusion coefficient of
diluted dispersions could also be treated in the
framework of the same approach [11]. The model is
very simple for weakly charged particles and is in good
agreement with the experimental results [10]. The
case of strongly charged particles is more complex but

it can be simplified by using a perturbation approach
[11]. However, in order to relate the diffusion coef-
ficients to the actual properties of the particles (sur-
face charge and/or potential ) one needs to solve nu-
merically the nonlinear Poisson—-Boltzmann equation.

In the particular case of thin electrical double lay-
ers (ka>1, k! is the Debye screening length and a
is the particle radius), a simple analytical relation be-
tween the particle charge or surface potential and the
diffusion coefficient (measured by dynamic light
scattering ), and the second osmotic virial coefficient
(measured by static light scattering) could be estab-
lished without a numerical solution of the Poisson-
Boltzmann equation. This could be achieved by us-
ing the asymptotic solution of Chew and Sen [12]
for the potential distribution around a charged spher-
ical particle with a thin electrical double layer. Such
approach enables one to treat arbitrarily charged par-
ticles in the framework of a simple analytical model,
if the electrolyte concentration is high enough. How-
ever, at thin electrical double layers the van der Waals
interaction should also be taken into account.

The derivation of simple formulae for the electro-
static and van der Waals contributions to the concen-
tration dependence of the collective diffusion coeffi-
cient of arbitrarily charged particles with thin
electrical double layers is the main aim of the present
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article. The approach is also applied for calculation
of the static structure factor, sedimentation velocity
and short-time self-diffusion coefficient. The paper
is organized as follows: section 2 reviews briefly the
principal concepts used for expressing the diffusion
coefficient as a linear function of the particle volume
fraction; in section 3 the radial distribution function
of the particles is discussed; section 4 is devoted to
the derivation of an analytical expression for the
electrostatic contribution; section 5 deals with the
problem of the van der Waals interactions; section 6
gives some other applications of the approach and
section 7 summarizes the conclusions.

2. Concentration dependence of the collective
diffusion coefficient D¢

Following the approach of Felderhof [3,4] one can
write

Dc(D)=Dy(1+4D), (2.1)
where
A=Av+tio+tis+istip. (2.2)

D¢ is the collective diffusion coefficient, and Dy 1s
the diffusion coefficient at volume fraction $—0. The
latter may differ from the Stokes-Einstein value [13]

kT

SE = _6—16;(; (2:3)

when charged Brownian particles are considered, be-
cause of deformation of the counterion atmosphere

[10,14-17]. kT is the thermal energy, 7 the shear vis-
cosity of the solvent and a is the particle radius. The
different contributions in eq. (2.2) are presented as
‘integrals over expressions depending on the equilib-
rium radial distribution function g(r) (see refs.
[3,4,18-21]).

3. Radial distribution function

Following the perturbation approach [22] the po-
tential of mean force W(r) and radial distribution
function (RDF) g(r) for diluted dispersion of
charged particles can be written in the following form
(cf.alsoref. {11]):

W=WRHS+ WELL VW (3.1)

W,
s~2((1-252)

WRHS WEL WVW
=exp(—- T )(1 - ’?7;‘ - —k“]':‘) . (32)

With g, and W RHS we denote the RDF and potential
of mean force for the reference hard species (RHS)
system, while W,(r)<kT is the perturbation part
which includes the tails (r>o>2a) of the electro-
static and/or van der Waals contributions. Accord-
ing to Barker and Henderson [22] one can derive the
particle radius a, in the RHS system by the expression

SRS

°=jdx[1—g(x)]s«, (3.3)
0

where a is the actual particle radius, x=r/2a and
&=a/2a. For diluted dispersions

8(r)=0, r<2ay,
=1, r=2a,.

Finally, a criterion for establishment of the upper
integration limit & should be formulated. As dis-
cussed by Barker and Henderson [22] the choice of
o is a matter of convenience (to some extent) if we
are interested in the first-order correction only. We
use

W(X=5') _

T (3.4)

b

DO |

which was found to be rather appropriate for the case
of purely repulsive particle interactions [11]. The
latter equation defines & as the dimensionless dis-
tance at which the interaction energy W(r) equals the
Brownian kinetic energy k77/2.

By introducing eq. (3.2) into eq. (2.2) we obtain
the following expression for the coefficients 4; (i=V,
0O,A,S):

A, =ARHS L JELP L VW, (3.5)

The terms ARHS and AFLP (electrostatic perturba-
tion) were discussed in more detail inref. [11].
For clarity the electrostatic and van der Waals con-
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tributions are considered separately below.

4. Diffusion of strongly charged particles with thin
electrical double layers

The pair interaction energy between arbitrarily
charged colloidal particles (in a superposition ap-
proximation ) can be expressed in the following form
[23] (seealsoref. [11]):

WEL(r)y W, exp(—kr)

T = kT 2aexp(2ka) . , (4.1)
where
W, e*y2exp(—2ka)

=Wo=

(4.2)

kT 2¢kTa ’

eis the elementary charge, € is the dielectric constant
and x is the screening parameter [23]. The quantity
y can be obtained by numerical integration of the
nonlinear Poisson-Boltzmann equation [11,23]. It
is related to the dimensionless potential distribution
around the colloidal sphere y=e¥(r)/kT by means
of the expression [23]

y()=2= e -"’—’91(r—"’), for |y] <1. (4.3)

By using the outer asymptotic solution of the Poisson-
Boltzmann equation, derived by Chew and Sen {12],
one obtains

y= 4aekT(l+ ELI )exp(xa) s (4.4)

where

t=tanh(y./4), e¥s (4.5)
ann{ys Ys= T’ .

¥ is the actual surface potential of the particle. Hence,
for W, we obtain
2

W= SEZT“(H 21 13) : (4.6)

Ka

The substitution of eq. (4.6) into (4.1) gives the en-
ergy of interaction between two colloidal particles
with arbitrarily high surface potential y; and thin
electrical double layer (ka>1).

The condition ka> 1 enables one to derive also an
explicit (although approximate) expression for 6. Let
us assume that

I N
=1+ —+4, (4.7)
Ka
where
I N
A<+ —. , (4.8)
Ka

Combining egs. (3.4), (4.1), (4.2) and (4.7) and
keeping only the leading term one obtains

1 I ka+'1

Hence

51 _Lm(_x_a_ti,
T 2ka \2xkaW,)’

In conclusion, the thin electrical double layer ap-
proximation (ka> 1) allows: (1) to avoid the numer-
ical calculation of the Poisson-Boltzmann equation
by using eq. (4.6); the latter relates W, with the sur-
face potential y,; (ii) to obtain an explicit expression
for G instead of solving the transcendental equation
(3.4). The RHS radius a,, however, should be de-
rived by simple numerical integration of eq. (3.3).

The charge z, is related to the surface potential y;
by [12]

..IcaekTa (

(4.10)

ZOZ—'

inh(y,/2)+ 2 tanh(ys/‘*))
(4.11)

Once the quantities W, G and y are known we may
calculate the collective diffusion coefﬁc1ent De¢ (see
egs. (2.1)and (2.2)),

De= DO“+(/v+/o+AD+/R55+,RHS)¢}

(4.12)
where [11] (seealsoeq. (3.3))
Ay =873+2W, exp[ZKa(I~&)}§—(—%§—§)’K§Q,
(4.13)
=—6y2——2Woexp{2xa(i—&)]~22, - (4.14)
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15 9

RHS _ y=5

Aao= 87 +64 ;+0(™7), (4.15)
75

RHS —6

As 256 7 TO0(r~=%), (4.16)

ip=1. (4.17)

The electrostatic contributions AF'F and AJF (the
terms proportional to W, in egs. (4.12) and (4.13))
are presented in fig. 1 as functions of ka. The param-
eters used are =10 nm and ys=100 mV. The exact
numerical solutions (the full curves) are in very good
agreement with the approximate ones (dashed
curves). These electrostatic contributions dominate
the remaining counterparts (e.g. hard sphere, or van
der Waals - see below) for ka< 5. For large values of
ka, both AFF and AE'F tend to zero as expected. The
electrostatic contributions in 4, and Ag are omitted
in eq. (4.12) since they are negligible in comparison
with the other terms [11].

5. Contribution of van der Waals interactions to the
collective diffusion coefficient D¢

For particles with thin electrical double layers
(xa> 1) the van der Waals interactions between the
particles may become operative. Following the per-
turbation approach one can obtain expressions for

250

b
n
o |-
S

Ka

Fig. 1. AE® and AF'F versus xa. The full curves present the nu-
merical calculations and the dashed curves correspond to the
perturbation model. The parameters used are 4=10 nm and
Ys=100mV.

their contribution to the collective diffusion coeffi-
cient by including the van der Waals interaction en-
ergy in eq. (3.2) (see also eq. (3.3)) [8]:

A 2a? 2a r?—4aq?
vw_ _ ZH
W ’"6kT[r2—4 +1( o )]
(5.1)

where Ay is the Hamaker constant. Thus one obtains

44 & (-1 1 d+1
vw_ YH}Y Y
A= [3 31( 5 )+ 121“( )}

(5.2)

Jpw - _dn [1+( 2 1)m(~2 1)} (5.3)
kT o
A= fk“f{ﬁz [33&3 ln(%;_l)
T75.1n(6+ i) ’677; - 187&3 * 1015-5]
185 [Eln(a; 1)+ %m(-gg-)
.} 59

25 1 1 1
vw e
AT =T g kT [252 t 35 T 1260

| 1 52—1
+(§ — Zgz) ln(—-—5_2 )] . (55)

The numerical calculations show that for arbitrary
values of & the ratio (AYW +A¥V)/ (AVY +48%) is
less than 0.03. Hence, with high accuracy one can ex-
press the van der Waals contribution as

A 21
jVvW_TH 4 _52
A _kT[ 1+ (%53 0+6)ln< e )

+ gln(éi.l-)]- (5.6)
3 o

One should bear in mind that eq. (4.10) is not ap-
propriate for obtaining & in this case, because the lat-
ter was derived assuming only electrostatic interac-
tions between the particles. Hence, for the
determination of & one should solve numerically eq.
(3.4) with W(x) being the sum of the electrostatic
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Fig. 2. 2¥Y, 28¥ and AY¥ versus &. The full curves present the
numerical calculations and the dashed curves correspond 1o the
perturbation model. The parameters used are 2= 10 nm and Ay/
kT=2.5.

and van der Waals interaction energies if both are
considered simultaneously.

In fig. 2 the results for AYY, AgY and AVVY calcu-
lated by means of egs. (5.2), (5.3) and (5.6) are
compared with exact numerical results (see the inte-
grals (2.8) and (2.18) in ref. [4]; the lower limit of
integration is taken to be r=0=2ad). The Hamaker
constant Ay/kT=2.5 is used in these calculations.
One sees that the agreement is very good down to
d=1.1. This corresponds approximately to ka=x 10.
At thinner electrical layers eq. (5.6) underestimates
the magnitude of the van der Waals contribution at
this value of the Hamaker constant. The reason is that
at very small separations | WYY /kT| becomes much
larger than unity and the approximation eq. (3.2) is
not correct.

6. Other applications

The same approach can be applied in a straightfor-
ward manner to several other phenomena [11]. The
short-time self-diffusion coefficient D$ can be calcu-
lated by using the known expression [4] (cf. also ref.

[11])
DS=Dy(1+4, D),
Aa=ARHS 4 QELP 42XV (6.1)

Similarly, the sedimentation velocity is given by [11]
U=Up[1+ (Ao +ARS + i8S 1) @],
=ABHS 4 JEP 4 ¥V | (6.2)

where U, is the sedimentation velocity of a single col-
loidal sphere. Again the electrostatic and van der
Waals contributions can be neglected in 4, and Ag in
comparison with these in the Ao term, ,

The perturbation approach allows one also to ob-
tain analytical expressions for the angular depen-
dence of the intensity of the scattered light from the
suspension (static structure factor S(g)) and of the
effective diffusion coefficient Dggp(g) (or the dy-
namic structure factor) if (ga)?<< 1. The magnitude
of the scattering vector ¢ is defined as

a=Esin(672), (63)

where 7 is the refractive index of the solution, 4 is
the wavelength of the incident beam in vacuo and &
is the scattering angle. g is typically 10°~10° cm~! in
light scattering experiments.

Following the approach from ref. [11] one can
write

S(g)=1-6v®, (6.4)
Derp(q) =Do(1+069) (6.5)
0=0y+00+0s +0s+3dp, (6.6)

where the §; (i=V, O, A, S, D) are expressed as in-
tegrals over the radial distribution function g(r) (see
e.g. ref. [24]) and can be presented as

0; =ORHS 4 GELP 1 VW (6.7)

The first two terms, accounting for the reference hard
space excluded volume and the electrostatic pertur-
bation, have been calculated previously (see egs.
(5.31)-(5.41)) in ref. [11]). The van der Waals
contributions can be expressed in an explicit form for
small scattering vectors ((ga)?<1),

1
VW _ VW ~5 A
oV = + — 75 kT(qa)“[a +-+¢ m(l - 0_2)

o, e
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OIW =¥V — '1%%% (qa)2[~2+a41n(1 - %)]

+0(g%*a*), (6.9)
14 1
VW _ 4H 2]
op I5kT (ga) [1+( 2)13( 0.2)]
+0(g%a*), (6.10)
OV =¥V, (6.11)
15 4
VW vwW “IH 2
03V =2+ 556 e (99
2 1 3 1
{(5-3)u(1- ) 5 55
+0(g*a?) . (6.12)
7. Conclusions

The perturbation approach leads to significant
simplification in the consideration of the diffusion
and sedimentation in diluted suspensions of charged
particles. The thin electric double layer approxima-
tion allows one to obtain explicit expressions for the
electrostatic and van der Waals contributions. The
model enables one to treat charged colloidal particles
as lattices, proteins, ionic micelles and microemul-
sions. It is particularly convenient for interpretation
of static and dynamic light scattering data from such
systems. The application to other types of interac-
tions (e.g. steric, hydrophobic, etc.) is
straightforward.
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