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The potential energy of interaction between two deformed particles, having the shape of 
spherical segments and separated by a planar film, is considered. An exact explicit expression for 
the van der Waals interaction energy between such deformed particles of arbitrary size and 
deformation is derived by using the microscopic approach of Hamaker [Physica 4, 1058 (1937)]. 
By means of Derjaguin’s approximation [Kolloid Z. 69, 155 (1934)] explicit expressions for the 
electrostatic, steric, depletion, and other types of interaction are derived. The relative 
contributions of the interaction across the planar film and between the spherical surfaces 
surrounding the film, are analyzed for different cases. The surface deformation energy caused by 
an increase of the interfacial area during the particle deformation is also considered. The 
implication of the obtained formulas for treatment of the particle interactions in some particular 
systems like emulsions, microemulsions, and vesicles, as well as for the adhesion of such 
particles to a solid wall is briefly discussed. 

I. INTRODUCTION 

The stability and behavior of disperse systems depend 
mostly on the interaction between the particles. The stabil- 
ity of dispersions consisting of solid particles is usually 
satisfactorily explained in the framework of the Derjaguin- 
Landau-Verwey-Overbeek (DLVO) theory,‘” which ac- 
counts for the electrostatic and van der Waals interactions 
between the particles. In the last two decades the experi- 
ments with surface force balance revealed that other types 
of interactions may also exist at small surface to surface 
separations-oscillatory structure forces, hydrophobic and 
hydration forces, etc.4 The experiments proved also the 
important role of steri@ and depletion7 interactions in 
stabilizing (or destabilizing) the dispersions. 

For deformable particles (drops and bubbles) the sit- 
uation is more complex because they possess somewhat 
different properties than the solid ones. The most impor- 
tant are the drop deformability and surface fluidity.’ These 
two effects have great impact on the intermolecular and 
hydrodynamic interactions between fluid particles, and 
have been the subject of numerous studies.9Y14 It is estab- 
lished that when two large macroemulsion drops or bub- 
bles of millimeter or submillimeter size approach each 
other, they deform and a planar film forms between 
them.g-‘l The rate of thinning and the stability against 
rupture of this film determine the overall stability of emul- 
sions or foams.’ The role of different factors on the behav- 
ior of the liquid films is theoretically and experimentally 
investigated in details.s-‘4 However, several important 
questions can be raised, which still have no definite answer. 
It is not clear whether such deformation takes place when 
smaller particles (of micron or submicron size) are con- 
sidered: on the one hand the smaller drops possess higher 
capillary pressure which opposes their deformation, but on 

the other hand they undergo intensive Brownian motion 
which gives rise to an additional force5?15 enhancing the 
deformation. Another problem is how the energy of drop 
deformation, connected with the extension of the interfa- 
cial area, contributes to the pair interaction. It is not clear 
also how the presence of a planar film between the two 
particles will affect the other interactions with the appear- 
ance of the deformation:iG” Indeed, when a film with 
small radius is present, the interaction cannot be described 
by the existing theories neither for infinite planar films, nor 
for spheres,” because the contribution of the spherical 
parts to the interaction is comparable to that of the film. 

The construction of an appropriate pair interaction po- 
tential, accounting for the specific features of the deformed 
particles (drops or bubbles), is the main aim of the present 
paper. Such potential enables one to define the radial dis- 
tribution function for diluted systems and hence to calcu- 
late different thermodynamic quantities. This potential 
could be introduced into the Smoluchowski theory” for 
colloidal coagulation allowing to investigate Brownian 
flocculation and coalescence in emulsion systems. Such a 
study is published elsewhere.18 In the present paper, we 
obtained explicit expressions for the van der Waals inter- 
action between two deformed particles, by using the Ha- 
maker approach.” The other types of interactions, which 
might be present in dispersions of deformable particles, are 
treated by applying the Derjaguin’s method2p3p21 to slightly 
deformed spheres. 

The developed approach allows also the investigation 
of interactions between deformable particle and a solid 
wall, which is important for studying drop (or biological 
cell) attachment and adhesion to different surfaces. 

The paper is organized as follows: In Sec. II the geom- 
etry of the system under consideration is specified. Section 
III A is devoted to the derivation of an exact formula for 
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the surface in the transition zone,22923 which needs exten- 
._ : -., -+ive aamerical calculations. 

FIG. 1. Geometry of the system under consideration. h is the film thick- 
ness and r is the ti radius. ab(k= 1,2) is the radius of the spherical part 
and V, is the volume of the respective particle. p and c are the radial and 
axial coordinates, respectively. 

the van der Waals interactions between two deformed par- 
ticles. In Sec. III B the energy of deformation for emulsion 
drops is derived as a function of the inter-facial tension and 
Gibbs elasticity; Sec. III C deals with application of the 
DeIjaguin’s method2P3’21 to slightly deformed spherical par- 
ticles; this approach is used for calculating the electrostatic 
interaction between two slightly deformed drops (bubbles, 
vesicles); the steric, depletion, and other types of interac- 
tion are also discussed; Sec. IV presents some numerical 
results and discussion and Sec. V contains the concluding 
remarks. 

II. GEOMETRY OF THE SYSTEM 

We consider a system consisting of two deformed par- 
ticles, having the shape of spherical segments with radii al, 
and a2s separated by a planar film of thickness h and ra- 
dius r (see Fig. 1). When alp CO, the case of interaction 
between a fluid particle and a solid wall is obtained. The 
radius and the thickness of the film are not necessarily the 
equilibrium ones-they may correspond to a given mo- 
ment of the processes of particle deformation (variable r) 
and film thinning (variable h). 

Two simplifying assumptions are imposed in our con- 
sideration (see Fig. 1). The first one is to consider the 
interaction between two spherical segments instead of ac- 
counting in details for the actual geometry of the deformed 
particles. As known, the local intermolecular interaction 
between surfaces 1 and 2 leads to a smooth transition from 
the flat film to the spherical surface far away from the 
film 273,22*23m where this interaction is negligible. However, as 
a fir& approximation we will neglect the effect of the real 
shape in the transition zone and will integrate the interac- 
tion energy per unit area for the unperturbed (idealized) 
system shown in Fig. 1. This simplification allows one to 
obtain quite simple (although approximate) formulas 
which describe the main effects caused by the deformation. 
In principle, the inaccuracy involved by this assumption 
can be evaluated by solving the problem for the shape of 

YAnother s’im@ication is achieved by assuming that 
the film is flat. In fact this is possible only when the par- 
ticles, are identical: als=a2s and yI=‘y2 (rl and y2 are the 
respective interfacial tensions), or when the interaction be- 
tween a drop and solid wall is considered. In the case of 
‘two ‘drops of’higerent radii and interfacial tensions, the 
film has its own curvature with radius af determined by 
the capillary pressure drops across the different surfaces 

y; ;I: .,~~~il~+ Y2) 332 I - _, 

af al a2 
(2.1) 

It is assumed for simplicity in Eq. (2.1) that the film ten- 
sion is the sum of the interfacial tensions of the two drops. 
If alSzati and ylzy2, af%ak, (k=l, 2). As shown by 
Ivanov, Vasan, and Borwankar,24 in this case the curvature 
of the film can be accounted by simply taking r= (d/n-)” 
2, where Af is the actual area of the curved film. Therefore, 
strictly speaking our consideration is restricted to drops of 
similar size and interfacial tension, or to the interaction 
between a fluid particle and a solid wall. 

Ill. INTERACTION ENERGY BETWEEN TWO 
DEFORMED DROPS 

In this section the interaction energy between two de- 
formed drops having the shape of spherical segments, like 
those shown in Fig. 1, is considered. Our aim is to formu- 
late a procedure for calculation of this energy by taking 
into account all the effects, stemming from the drop defor- 
mation. As a reference thermodynamic state we chose the 
system of two nondeformed (spherical) drops of radius 
ak (k= 1, 2) at infinite separation. The deformation is as- 
sumed to occur at constant volume of the drops, i.e., the 
radius of the spherical part of a deformed drop a&ak 
(k= 1, 2). 

The total interaction potential energy for two de- 
formed drops, W, is assumed to be the sum of several 
contributions: 

W= Ws+ Wvw+ WE+ Wsf+A W  (3-l) 
Here Ws is the contribution due to the change of the sur- 
face energy during the drop deformation, Wvw is due to 
van der Waals interaction, WE is the electrostatic term, 
W ” accounts for the steric interaction if polymers are ad- 
sorbed at the drop surface and A W  stands for other pos- 
sible interactions, e.g., those, mentioned above (depletion, 
structural, etc.). These contributions are considered below. 

A. Van der Waals interaction between two deformed 
particles 

The Derjaguin’s approach213’21 is often applied for de- 
riving the van der Waals energy of interaction between two 
spheres at small distances.2-5 However, the obtained result 
is valid only for h/2a(1.273 In the case of deformed 
spheres, an additional restriction is r/a< 1. Therefore, it is 
preferable to derive an exact expression for the van der 
Waals energy of interaction between two deformed spheres 
as shown in Fig. 1. For this purpose the microscopic ap- 
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preach of Hamakep is used. We should note that the 
electromagnetic retardation effects are neglected in the 
consideration, but they could be easily incorporated by 
introducing an effective Hamaker constant to account for 
them.5 

It is convenient to introduce a cylindrical coordinate 
system where p is the radial coordinate, 0 is the polar 
angle, and g is the vertical coordinate. The particles have 
the shape of spherical segments with radii al, and a2s and 
centers Or and O,, respectively. The planar parts for both 
particles have identical radii r. The corresponding particle 
volumes are Vt and V2 (see Fig. 1) . Other important geo- 
metrical points are the most remote points of the particle 
surfaces A, and Az with respect to the coordinate center 0. 
The coordinates of these two points are Al (O,O,&) and A2 
(O,O,Z,) where 

Zl=h+al,+ dm; Z2=azr+ &&?. (3.2) 

The energy of van der Waals interaction between two 
particles is defined by” 

AHdVl dV2 
lv-~216 

(3.3) 

where dV, is an element of the volume Vk(k= 1,2); rk is 
the radius vector of a given point in the volume vk with 
coordinates rk ( pk ,8k ,&). AH is the Hamaker constant. In 
the present coordinates we have16 

1r1-r212=p:+p~-2p1p2cos(01-02)+(51--52)2. 

(3.4) 

Hence, the general expression for the interaction energy ‘w 
[see IQ. (3.3)] can be written in the following form (see 
Fig. 1) 

w=-$ fdz,j-;dz2Job1dxl 

(3.5) 

where 

x*=p;; x2=&, 

q=!L; z2= -5;. 
(3.6) 

The function F6 is given by 

F6=[X1+X2-2JXIXZCOS(e1-e,,+(Zl+Z2)2]-3. 
(3.7,) 

The integration limits bk are defined as 

bk=U;-- (Zk-ak-zk)2, k= 1,2. (3.8) 

The sixfold integral can be calculated analytically. Inte- 
grating over et, e2, x1, and x2 leads to the following 
expression: 

F2= 
bl+br j/f+bl+bz+(~~+zz)~ 

4c-Q +z2) 4tq+zd2 Se ’ 
(3.9) 

where 

Q= L&-t&+ (z~+.d212-4W2. 
From F2 we can derive 

which is the interaction energy of two discoidal crossec- 
tions placed in particles 1 and 2 and parallel to the planar 
region (Fig. 1) . Equation (3.11) is valid for axysimmetri- 
cal bodies with arbitrary profiles. The specific shape of the 
bodies is introduced in the next two integrations. Our con- 
sideration below is restricted to the case of two deformed 
spheres (see Fig. 1) where an analytical solution is possi- 
ble. For other axysimmetrical geometries numerical inte- 
gration of the energy W2 over the coordinates z1 and z2 
might be needed (see Sec. IV D). 

For two deformed spheres the final result reads 

2az(Zl-h) h(Z,+Z,) ? II-h23 Zl-al-(Z2-a2) 23 2(Z2-a2)-hd-h 
W+M +2 In 1 zl(h+z2) 1 +p----- --. - 

12 hh 2Z1-2al-h hZl 211-2a1-h 2h 

+(2Z1-2al--h)[(h+Z2)(h+Z2-2a,)-(Zl-h)(Z1-2al-h)] --~- - --’ . 
---. 

(3.12) 
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where 

d= @i%? (3.13) 

It can be shown that the general expression (3.12) trans- 
forms into the well known Hamaker expressions2’ for the 
interaction energy between two spheres (r=O) and be- 
tween two infinite half-spaces (a--+ CO ,I+ 00 ,r-+ 00 ). The 
general result (3.12) can be simplified also in the following 
particular cases: 
r (i) al=a2=a; Z2=Z; Z*=Z+h, i.e., the energy of inter- 

action of two identical deformed spheres can be expressed 
as 

2aZ 2az 
(Z+h)‘+h(2Z+h) +2 In 

h(2Z+h) ? 1 1 (Zfh)’ +Tilz 

212 23 
--- 

hU+h) U+h) IN--a) +hl 
dz(d-h) 2?(2P+Zh+2ah) 

+2h[2(Z-a) +h]~~h(i+h)2[2(Z-a) +h12 * I 
(3.14) 

(ii) I,+ CO, al+ c0; this case corresponds to the inter- 
action between deformed sphere and a semi-infinite slab 

ln( j-$) +;-:I, (3.15) 

where Z=Z2 and a =a2, which are connected by the rela- 
tionship 

Z=a+ &X7. (3.16) 

(iii) For two identical spheres (i.e., al=a2=a; Z,=Z; 
Zl=Z+h) which are weakly deformed, ?/a2 is a small pa- 
rameter and after neglecting the terms O[r4/a4] we derive 

AH 

1 

4a2 
4a2 w=-i? (2a+hJz+h(4a+h) +2 ln[ :c$:j] 

128a5? 
+h2(2a+h)3(4a+h)2 ’ 1 (3.17) 

The numerical comparison showed that Eq. (3.17) gives 
results coinciding with the numerical data presented by 
Denkov et al. l6 

(iv) Further simplification can be achieved by intro- 
ducing the small parameters s1 = ( r/2a)2, .c2=h/2a, and 
e3 = h/2a + 4 (r/2a) 2 (i.e., small deformations at small in- 
terparticle distances). Ignoring all terms of higher order 
with respect to the above small parameters we obtain 

w=$[;+;+2,,(;)+;-$]. (3.18) 

The numerical calculations showed that this simple 
formula gives very accurate results for h/a <0.3 and 
r/a <0.7 (see Sec. IV below). We should note that Der- 
jaguin’s approximation (see Sec. III C below) does not 
provide the last term in the square braces in Eq. (3.18) 
when applied to van der Waals interaction. The numerical 

comparison showed that Eq. (3.18) is more accurate and 
less restricted (it can be applied in larger regions of values 
for h and r) than the result of Derjaguin’s approach. 

B. Surface deformation energy 

For simplicity in this subsection we consider two iden- 
tical drops. The generalization of the derivation to drops, 
different in size and interfacial tension, is trivial. 

Since the drop volume remains constant during defor- 
mation, any deviation of the drop shape from the spherical 
one leads to an increase of the interfacial area.16 This cor- 
responds to an increase of the free energy of the system 

ws=2 
s 

deformed drop 

y(SM-% (3.19) 
sphere 

where S and y are the area and the interfacial tension of a 
deformed drop. The dependence of y on S can be expressed 
by the effective Gibbs elasticity EG of the adsorbed surfac- 
tant monolayer (for small deformations & can be assumed 
constant) 

y(s)=~o+&~(s&); EG= 

Then 

(3.20) 

Ws=2(yo-EG) (S-So) +2E&i’ ln(S/So), (3.21) 

where y. is the inter-facial tension and So is the area of a 
nondeformed drop 

So=4ra2. (3.22) 

Usually, for small drops the capillary pressure is high and 
the deformation (the relative surface extension) is small, 
(S-S,)/S,<l. Hence with sufficient accuracy one can 
writei 

G---so) = 
Ws=2ro(S-So) +EG& s, . I 1 (3.23) 

The first term on the right-hand side of Eq. (3.23) ac- 
counts for the drop surface extension at constant interfacial 
tension, while the second term is related to the possible 
increase of the interfacial tension during the deformation. 
It is convenient to express Ws as a function of the planar 
film radius r. From geometrical considerations (see Fig. 1) 
for small deformations, (r/a< 1) , one obtains 

(S-So> T=(;)4+o[ (;)‘I, (3.24) 

where s=r/a. Then Eq. (3.23) can be transformed to read 

(3.25) 

In emulsions containing soluble surfactants in the con- 
tinuous phase and/or the drops, the adsorption surfactant 
flux may keep constant the interfacial tension of the ex- 
tended surface during the deformation. In this case the 
effective Gibbs elasticity defined by Eq. (3.20) is zero and 
the surface deformation energy can be simply expressed as 
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w~=2j@o ; ‘Lg. 0 (3.26) 

Even if EG is not zero but of comparable magnitude with y. 
the second term in Eq. (3.25) still can be neglected and Eq. 
(3.26) remains a reasonable approximation. However, in 
microemulsions y. can be several orders of magnitude 
smaller than EG and in this case Eq. (3.25) should be 
used. l6 Since Ws is positive, the contribution of the surface 
deformation energy corresponds to a soft repulsion be- 
tween the drops. 

For low values of y. (like in microemulsions or bilayer 
lipid vesicles) the bending elasticity of the interface (Or 
lipid membrane) may contribute to the deformation en- 
ergy.4 This contribution, w”, can be evaluated from the 
Helfrich approach25 to give 

wc=4nXc(5)‘( 1-9; (3.27) 

where Kc is the bending elasticity constant and R. is the 
radius of spontaneous curvature. For microemulsions KC 
was measured to be about the thermal energy kT, while for 
lipid bilayers it is 2 orders of magnitude larger.26 

C. Other interactions 

1. Application of the Derjaguin’s approximation to 
deformed particles 

When the interparticle distance and the range of inter- 
action are much smaller than the particle size one can use 
the approach proposed by Derjaguin.2*3’21 Let f(h) be the 
free energy of interaction per unit area in an infinite planar 
film. Then following Derjaguin’s approach we can express 
the energy of interaction of the two deformed drops as (see 
Fig. 1) 

W(h,r) = J-J- dx 4 f[H(xtu > I. (3.28) 

The plane xy is chosen to coincide with the lower surface of 
the planar film and p is the radial coordinate in this plane 

p2=x=+y! (3.29) 

The integral in E!q. (3.28) is taken over the whole plane xy. 
For small deformations the local thickness H(x,y) in the 
film and its vicinity can be represented as 

H(x,y)=h for p<r, 

H(x,y) =h+$ (x2+3-?) for p> r, 

~h-%.v 
where a,=-. 

als+a2s 
(3.30) 

The substitution from Eq. (3.30) into Eq. (3.28) allows 
one to express F(h,r) as a sum of two terms 

W(h,r) =&f(h) +?ra, (3.31) 

The upper limit of the integral in Eq. (3.3 1) is assumed to 
be infinity, because the range of interaction is supposed to 
be smaller than the particle size. For small deformations, 
(r/a)2<l, it can be shown that 

as=a[ 1+0(i)*]. 

Hence, with sufficient accuracy one can write 

(3.32) 

W(h,r) =?r?f(h) fn-a 
s bm ?W)dH[ l+O(f)l], 

where 
(3.33) 

%a2 a=- 
al+a2 * 

(3.34) 

What is remarkable in Eq. (3.33) is that the interaction 
energy between the two deformed drops is represented as a 
sum of two terms: (i) the interaction energy of two non- 
deformed drops, situated at the same surface to surface 
distance, h, and (ii) the interaction energy of a portion 
with area r? of an infinite flat film of thickness h. This 
general result, we derived in the present. paper, allows one 
to use the known expressions for the interaction energy 
between spheres and infinite planar films in order to de- 
scribe the interaction between deformed drops if the re- 
strictions of Derjaguin formula are satisfied. Similarly, an 
expression for the force F acting between two deformed 
drops can be derived: 

(3.35) 

2. Electrostatic interaction 

In emulsions a is typically above 10d5 cm. For bulk 
electrolyte concentrations, Gel, higher than lOA M, the 
Debye screening length l/~ (defined below) is less than 
1bm6 cm. Hence, the product Ku is much larger than unity 
and one can apply Derjaguin’s approach. The two different 
cases, of large and of small surface potentials, are consid- 
ered below. 

Small surface potentials. Let us consider the case of 
two identical drops possessing small electrical surface po- 
tentials Y, in the presence of z:z electrolyte 

In this case the function f(h) is2 

f:(h) =E Yi[ l-t-h(z)], 

where (T is the surface charge density, E is the dielectric 
permittivity of the medium. The superscripts ‘Y and (T in 
Eqs. (3.37) and (3.38) correspond to the cases of constant 
potential and constant charge, respectively. K is defined as 
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(3.39) 

e is the elementary charge and kT is the thermal energy. 
By substituting these expressions for f(h) in Eq. (3.33) we 
obtain 

wyh,+$Y:( [ l-~~(~)]~+~~(l+e-Kh)l 

and 
(3.40) 

?+G ln( l-emKh) 

(3.41) 
respectively. These two expressions can be generalized in a 
straightforward manner to include the case of two drops 
different in size and surface potential. The final results read 

W”‘( h,r) =$ 2YsI’Pfi ,. Kh -- <q~+q$> 

X(cothKh-1) + 1 
Xln(l+e-Kh)+(YSI-Ys2)21n(l-e~Kh)], 

(3.42) 

2nV 
WE,O(h,r) =- 

EK I 
2a102 

X(cothKh-1) - 1 43?ala2 
eK2(aI+az) [(01+02)2 

(3.43) 

The terms, proportional to the film area, ~-2, in Eqs. 
(3.40)-(3.43) are connected with the interaction across 
the film. The other terms correspond to the interaction 
between the spherical parts of the particles and are equal to 
the respective interaction energy between nondeformed 
spheres. 

High surface potentials. In this case analytical expres- 
sions can be derived only if the electric double layers 
around the two drops are weakly overlapping (Kh>l, but 
still h/a<l), i.e., if the superposition approximation is 
valid.2P3P5 For two different particles the result reads [cf. 
Eq. (3.33)1 

feI(h)=G C,lkT tanh(~)tanh(~)e-K’, 

(3.44) 

WE(h,r) =F CeIkT tanh( $$)tanh( 2) 

2a1a2 1 K(al+a2) * 
(3.45) 

The result for two equal in size and potential particles, can 
be obtained by supposing al =a2 and ‘u,, =Yti in Eq. 

(3.45). The first term in the square braces corresponds to 
the interaction across the planar film, while the second 
term is for the interaction between the spherical parts of 
the drops. 

If we are interested in the interaction at high surface 
potentials and small gaps between the drops (Kh< 1) one 
can proceed numerically by substituting in Eq. (3.33) the 
exact complex dependence of f(h) derived by Mulle?7 
(for details see the review by Derjaguin, Churaev, and 
MuHer ) . 

3. Steric interaction 
Another type of interaction which often plays role in 

stabilizing emulsions is the steric interaction if polymers 
are adsorbed at the drop surfaces. Several theoretical ap- 
proaches for calculation of the interaction energy between 
two parallel flat surfaces are available.5*28”’ For theta- 
solvent the theory of Dolan and Edwards29 can be used. If 
the thickness of the adsorbed polymer layer is much 
smaller than the drop radius, one can apply Derjaguin’s 
approximation, Eq. (3.33) (cf. Chap. 6 in the monograph 
of Russel, Saville, and Schowalter’). The result for two 
identical drops of radius a reads 

?e-(3’2)3+ z aL, erfc 
$6 (@)I 

for h>L,v’S, 

Wst=,,kT[ $+ln( f) ] 

+?nrl?kTL,[ -$ (1-i) 

+2h( 1-ln ci)-*.84 1 , for h < Lo-, 

(3.46) 

(3.47) 
where L,=IJN is the mean-square thickness of the ad- 
sorbed polymer layer with I and N being the length and the 
number of segments in a polymer chain, respectively. I is 
t_he surface concentration of the adsorbed chains and 
h = h/Lo is the dimensionless film thickness. Similarly, for 
good solvent the theory of Alexander-de Gennes3’ predicts 
the following expression: 

f(h) =2kTF3” Lg 
I 
; ;F514+- h 4-V/4 4 4 

7g 57 for h<2Lg. 
L 

(3.48) 
Introducing Eq. (3.48) into Eq. (3.33) we obtain 

W”=z-?f (h) +4rakTK’3’2Li for h <2Lg 

x [ 1.37;g-0.21~;‘4+3.20&1’4-4.36], 

(3.49) 
where 

Kg=&, ~L,=N( rp) 1’3. 
g 

(3.50) 
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TABLE I. Summary of the approximate expressions for the interaction 
energy between two deformed drops. 

Type of interaction Equation 

1. Van der Waals 
2. Surface extension 
3. Electrostatic 

(a) nonlinear superposition 
(b) constant potential 
(c) constant charge 

4. Steric 
(a) theta-solvent 
(b) good solvent 

5. Depletion 

(3.18) 
(3.25) 

(3.45) 
(3.40) 
(3.41) 

(3.46),(3.47) 
(3.49) 
(3.51) 

The more complex theory developed by Ploehn and 
Russe13’ both for good and poor solvents, can be also ap- 
plied by performing numerical~calculation of the function 
f(h). 

4. Depletion interactions 

The modified Derjaguin’s approximation allows con- 
sidering other types of interaction if the restrictions inher- 
ent to it are fulfilled. For example, a very simple expression 
can be obtained for the depletion interaction4’28’32 caused 
by the presence of soluble polymers or micelles. The deple- 
tion energy, for small polymer molecules or micelles, is 
proportional to the volume, excluded from the gap between 
the colloidal particles. By incorporating the theory of Asa- 
cura and Oosawa32 into the Derjaguin approximation one 
obtains 

@P(h) 
kT = -7 ; (d-h)2+3h I I for h-Cd, 

pep=0 for h;d, 
J 

(3.51) 

where d is the diameter of the small colloidal species (poly- 
mer molecules or micelles) and @ is their volume fraction. 
It can be seen from Rq. (3.5 1) that the relative contribu- 
tion of the film (the second term) increases with the film 
thickness h. 

In a similar manner other types of interactions like 
structure, hydration, hydrophobic, etc., can be treated. A 
summary of the contribution of the different types of in- 
teraction into the total energy and force acting between 
two deformed drops is presented in Table I. 

IV. DISCUSSION OF THE RESULTS AND 
APPLICATIONS 

We start with numerical investigation of the role of 
deformation on the interaction energy between the two 
particles. In Fig. 2, the ratio Wvw/Wrw calculated from 
Eq. (3.14) and Hamaker result for two nondeformed 
spheres2’ is plotted. With Wlw, the van der Waals energy 
of interaction between two nondeformed particles sepa- 
rated by the same distance h is denoted.20 The lines in Fig. 
2 correspond to h/a=O.Ol (line l), h/a=0.02 (line 2), 
h/a=O. 1 (line 3) and h/a= 1 (line 4). One sees that the 
effect of deformation strongly depends on the separation 

6’.--.. 

FIG. 2. Plot of the ratio of the van der Waals interaction energy, Wvw, 
of two deformed drops of radius n, and of two nondeformed drops of the 
same volume, Wlrr. r is the fiim radius. The dimensionless film thickness 
is h/a=O.Ol (curve l), h/u=O.O2 (curve 2), h/u=O.l (curve 3), and 
h/u=1 (curve 4). 

between the particles. For small separations, h/a= 10m2 
(line 1) , even at small deformation, r/a - 0.3, the interac- 
tion across the planar film dominates the entire interaction 
energy. On the contrary, for large separation, h/a= 1 (line 
4), the deformation practically does not affect the interac- 
tion energy. At intermediate gap width, both interactions, 
i.e., across the film and between the spherical parts, must 
be taken into account; The trend for the interaction energy 
between a deformed drop and a semi-infinite slab is similar 
(Fig. 3). 

The same qualitative conclusions follow from Eqs. 
(3.15) and (3.18). One sees that in case of van der Waals 
interaction the contributions of the interaction across the 
planar film and of the interaction between the spherical 
surfaces surrounding the ljlrn are comparable if 

rN J;;i;. ‘$- 
(4.1) 

25 

20 

15 

10 

5 

0 J 
0.0 0.1 0.3 0.4 015 

FIG. 3. Plot of the ratio of the van der Waals interaction energy, Wvw, - 
between a deformed drop of radius a and an inifinite slab, and of a 
nondeformed drop of the same volume and a slab, Wzw. r is the film 
radius. The dimensionless film thickness is h/u=O.Ol (curve l), 
h/a=0.02 (curve 2), h/u=O.l (curve 3), and h/a=1 (curve 4). 
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FIG. 4. Plot of the ratio of the electrostatic interaction energy, WE, 
between two deformed drops, and the electrostatic energy of two nonde- 
formed drops. ris the lilm radius. 1~0=100 (curve l), ~a=20 (curve 2), 

and Ka=5 (curve 3). The dashed curves correspond to constant charge 
regulation, while the solid curves are for constant potential. ~h=2 for all 
curves. 

If r > @ and h/a<1 the interaction is dominated by the 
contribution of the planar film. On the contrary, if 
r < @ the interaction is approximately the same as the 
one between two spheres at the same surface to surface 
distance. Equation (4.1) reflects a situation which is often 
realized in the case of collision between emulsion and mi- 
croemulsion drops’6~‘8 when bubbles (drops) of submilli- 
meter size are attached to a surface, as well as in the sur- 
face force balance measurements.33 ~ 

It is important to note that the results from the sim- 
plified expression, Eq. ( 3.18)) practically coincide with the 
exact results presented in Fig. 2, except for the case of large 
separations,- h/a - 1. The numerical comparison showed 
that Eq. (3.18) is very accurate and can be used without 
introducing substantial error (the error is less than a few 
percent) for h/a<0.3 and r/a<O.7. 

In Fig. 4 are shown the results for electrostatic inter- 
action energy between two identical in size and electrical 
potential deformed particles [see Eqs. (3.40) and (3.41)]. 
All lines are calculated for Kh = 2, while the product Ka is 
varied: Ka=lOO (line l), Ka=20 (line 2) and Ka=5 (line 
3). The solid lines correspond to constant potential upon 
approach, while the dashed lines are for constant charge. 
One can conclude from Fig. 4 that again the effect of the 
deformation (the relative contribution of the interaction 
across the planar film) strongly depends on the parameters 
like particle size, ionic strength and film thickness. 

It is known’ that when two flat (or spherical) surfaces 
are of different surface potentials, the electrostatic interac- 
tion between them can change from repulsive to attractive 
(Y,,\u, > 0, constant potentia134) or from attractive to re- 
pulsive ( alo, < 0, constant charge35) at small distances. 
This suggests that when deformable particles (drops, bub- 
bles, vesicles) are considered, the interaction can change 
from repulsive to attractive or vice versa during the defor- 
mation even at constant separation h. Such a possibility is 
illustrated in Fig. 5, where the interaction energy WE is 

-100 

-200 

-309 

-400 

-500 ’ 0.1 (x.2 0.3 .0.4 0.5 

(r/a)” ( 

FIG. 5. Electrostatic interaction energy between two drops of different 
surface potential as a function of the film radius. Yv,, =20 mV and Yfi= 10 
mV. The drop radius a= 1 pm and ~a=20. 

plotted as a function of the film radius r, for drops equal in 
size (a= 1 pm) but having different surface potentials: Ysl 
=20 mV and Y,= 10 mV. Equation (3.42) with Ka=20 
was used for calculation of these lines. One sees that at 
large distances (Kh = l.S),the repulsion between the parti- 
cles increases with the deformation r/a. At small separa- 
tions (Kh =O. 15)) however, opposite effect takes place. One 
can then conclude that in a certain range of deformations, 
as the film thins, the repulsion between the drops can 
change to attraction. This behavior can be understood if 
one remembers that for flat surfaces at constant potential, 
the force changes from repulsive to attractive at a film 
thickness273’34 

h=~In(\Y,i/Y& Y,,>Y,. (4.2) 

For the quoted potentials this condition corresponds to 
Kh=O.69. Hence, for Kh= 1.5 the drops are in the repulsive 
region and the deformation only increases the repulsion. 
For spherical particles with Kh =O. 15, the caps of the 
spheres are- attracting each other. The interaction energy 
between nondeformed spheres is still repulsive. With the 
deformation and the increase of the film radius, larger part 
of the drop surfaces will come closer in the attractive re- 
gion. As a result the attractive interaction becomes prevail- 
ing. 

Below we discuss briefly the application of the ob- 
tained results to some particular areas. 

A. Coalescence and flocculation in emulsions 

As mentioned in Sec. I when two macroemulsion drops 
of millimeter and submillimeter size approach each other 
they deform and planar fllm between them is formed. 
Much less is known about the dynamics of mutual ap- 
proach of smaller emulsion drops of micron and submicron 
size. Recently it was demonstrated theoretically’8’36 that 
due to the combination of Brownian and intermolecular 
forces acting between the small drops, the latter can also 
deform. For the case of coalescing droplets, when the sys- 
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FIG. 6. Interaction energy between two deformable drops of radius a vs 
the distance between their mass centers, z. Curve 1 is for a= 100 nm, and 
curve 2 is for a=200 nm. u= 1 mN/m and A,= 10Wu’ J. The onset of 
drop deformation is calculated by using the theory of Danov et al. (Ref. 
18). The dashed curve represents the interaction energy of two nonde- 
formable spheres of radius 100 nm and the same Hamaker constant. 

tern is not in equilibrium, the separation hi, at which the 
deformation starts, was calculated using the expres- 
sion9.1418 

F hi----- 
277Yo - (4.3) 

F is the total force acting between the two droplets.** The 
theory predicts that the radius of the film formed between 
two colliding drops should be 0 < r ( &&. Hence, the 
calculations need expressions for the interaction energy, 
accounting both for the interaction across the film and the 
interaction between the spherical surfaces around the film. 
In Fig. 6 we show the calculated interaction energy, W, 
between two deformable emulsion drops as a function of 
the distance between their mass centers, z. Only the surface 
deformation energy, Eq. (3.26) and the van der Waals 
energy, Eq. (3.12)) are taken into account. The parameters 
are y= 1 mN/m, AH= 1 x lo-*’ J. 

At z>zi=2a+hi, the drops are considered to be 
spherical in shape and the interaction curve coincide with 
that for hard spheres. At separation hi planar fihn is 
formed which radius r gradually -changes from zero to 
d- ahi. It is assumed that the film thickness remains con- 

stant during this process. By following the theoretical ap- 
proach of Danov et al. ‘* [see Eqs. (3.20)-(3.23) in this 
reference] we calculated hi=4.7 nm (for a= 100 nm- 
curve 1) and hi=5.5 nm (for a=200 nm-curve 2). For 
comparison the interaction energy between two nonde- 
formable spheres with a=100 nm is shown with the 
dashed curve. The positive surface deformation energy 
contributes during this process and leads to soft repulsion 
between the drops-note the increase of the total interac- 
tion energy. After that the film starts thinning at constant 
radius r = &&. In Fig. 6 this corresponds to a sharp 
decrease of the interaction energy at small separations. At 
some critical thickness, h,, (not shown in the figure) the 
film ruptures and the two drops coalesce. It is obvious from 
the figure that the interaction between deformable drops 
and nondeformable hard spheres is very different. 
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FIG. 7. Interaction energy between two charged deformable emulsion 
drops. a= 100 nm, (r= 1 mN/m, YS= 10 mV and AH= lo-” J. Curve 1 is 
for electrolyte concentration C,=lO-’ mol/dm3 and curve 2 is for C, 
=10m3 mol/dm3. At lower electrolyte concentration the drops do not 
deform (curve 2). The dashed curve illustrates what would be the inter- 
action energy if the drops deform even at this ionic strength. 

It is worthwhile mentioning that the maximum in the 
curve 1 is above W/kT= 1, i.e., we have barrier coales- 
cence of the drops. On the contrary, in curve 2 the van der 
Waals attraction prevails at any z and we have barrierless 
coalescence. 

As it was shown by Danov et a&l* for strong repulsion 
the deformation becomes impossible and the drops behave 
as charged hard spheres. Such situation is illustrated in 
Fig. 7 with the plot of the interaction energy between two 
charged deformable drops. The parameters of the drops are 
a= 100 nm, y= 1 mN/m, AH= lo-*‘J, Y,= 10 mV. Curve 
1 is for 10-l M NaCl solution (Ka= 10) and curve 2 for 
10F3 M NaCl (Ka= 1). The calculations show that at the 
higher electrolyte concentration the deformation starts at 
hi= 4.0 nm (see curve 1) . The electrostatics slightly affects 
the interaction in this case and the shape of curve 1 is 
similar to that shown in Fig. 6. At lower electrolyte con- 
centration (curve 2) the electrostatic repulsion is large and 
the drops do not deform. The dashed curve shows what 
would be the interaction energy between these drops if they 
will deform at hiz4.0 nm. One sees that the energy barrier 
for deformation and coalescence is several times larger 
than kT in this case. 

A possible alternative is the case of flocculating drop- 
lets in equilibrium where hi can be determined by minimi- 
zation of the free energy of a pair of drops (with respect to 
the film radius) at fixed distance between their mass cen- 
ters z. A detailed study of this case is performed else- 
where.36 

The overall conclusion from this consideration is that 
the change in the behavior of the drops from nondeform- 
able to deformable and vice versa will strongly affect the 
stability of emulsions against coalescence-and flocculation. 

B. Adhesion of vesicles, drops, and bubbles to solid 
surfaces 

The problem of adhesion of deformable particles like 
drops or vesicles is of great practical importance. The ki- 
netics of this process, as well as the equilibrium configura- 
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tion of the system strongly depend on the interaction be- 
tween the particle and the substrate. The formulas 
obtained in the present paper can find application in study- 
ing this phenomena. Since more detailed investigation 
needs additional considerations concerning the hydrody- 
namic interaction, bending energy, etc., we postpone it for 
a separate study. 

C. Interaction and fusion of microemulsion drops 

It is known that in microemulsions exchange of mate- 
rial between the microemulsion drop cores takes place. Al- 
though this phenomenon is extensively studied by fluores- 
cence techniques during the last few years,37-3g its 
mechanism is not understood. Recently, we proposed that 
the microemulsion drops can deform when colliding. l6 The 
intermolecular and hydrodynamic interaction between two 
deformed drops is quite different from that between non- 
deformable spheres.‘6*‘8*36 The obtained formulas can help 
one to investigate the interaction between microemulsion 
drops in more details and to calculate the rate of reversible 
coalescence and flocculation in such system. 

D. Surface force balance 

In the last 20 years the surface force balance found 
considerable application for direct measurement of the in- 
termolecular and adhesion forces between solid surfaces, 
eventually covered with amphiphilic substances.2*4*w2 In 
some cases a deformation of the surfaces under the applied 
loads and formation of flat portions is observed.33 For 
quantitative interpretation of the experimental data, the 
intermolecular interaction between the two surfaces should 
be known, along with the external load. Typical parame- 
ters are a-2 cm, h - 5 nm, I- 10 pm.33 Hence, Y - @ 
and the interaction across the flhn is comparable in mag- 
nitude with that between the curved surfaces surrounding 
the film. Exact calculation of the interaction energy can be 
performed in this case if we put in the Derjaguin approach 
more accurate expression than parabola for the shape of 
the curved surfaces. For example, Horn, Israelachvili, and 
Pribac33 showed that for contactless adhesion of two solid 
spheres, the Hertz theory43 predicts correctly the deforma- 
tion and can be used in such calculations 

H(x) =h+; r(~~--?)*‘~+(x~-2?) 

Xarctan[ (:)‘-l]‘“), for x>y (4.4) 

H(x) =h, for x<r. 

Then, one can use Eq. (4.4) instead of Eq. (3.30) and to 
calculate numerically the integral in Eq. (3.28). 

V. CONCLUDING REMARKS 

In the present paper, the interaction between two de- 
formed particles is considered (see Fig. 1). The most im- 
portant result of this study is the obtained explicit expres- 
sion for the van der Waals interaction energy between two 

deformed particles, having the shape of spherical segments 
[see Eq. (3.12)]. It gives the well known Hamaker expres- 
sions2’ for interaction between spheres and for semi-infinite 
slabs as particular cases. The contribution of the surface 
deformation energy is incorporated in the total interaction 
potential [see Eqs. (3.1), (3.25)) and (3.26)]. The electro- 
static (and other) interactions are treated by means of 
Derjaguin’s approach2* [see Eqs. (3.40)-( 3.45)]. Simple 
asymptotic formulas for different types of interaction be- 
tween deformed spheres are suggested (see Table I). It is 
shown that very often the contributions of the planar and 
spherical parts of the particles in the interaction are of 
similar order of magnitude. Also the particle deformation 
can change dramatically given type of interaction, thus 
leading in some cases to a qualitatively different picture. 
For example, the particle interaction between two nonde- 
formed equal in size particles (having different surface po- 
tentials, however) can be repulsive, while for deformed 
ones it could be attractive for the same interparticle spac- 
ing (see Fig. 5). 

The present consideration could be useful in studying 
many different systems and phenomena as interdroplet in- 
teractions and coalescence in emulsions, microemulsions 
and vesicles, drop and/or cell adhesion on solid surfaces 
and many others. 
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