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The Smoluchowki approach for treatment of diffusion-controlled coagulation is modified to include 
the case of coalescing emulsion droplets which can deform before flocculation or coalescence. By using 
appropriate expressions for the droplet interaction and boundary conditions of Smoluchowski type, we 
calculate the distance at which the droplet deformation takes place, the nonequilibrium (but steady) radial 
distribution function, and the total force (including the ensemble averaged Brownian force) acting between 
the droplets. As a result the particle flux toward a given %entral’’ droplet, i.e. the coalescence rate, is 
determined. The influence of different factors (Hamaker constant, surface potential, interfacial tension, 
drop size, and others) is investigated numerically. 

1. Introduction 

The f i t  general treatment of the coagulation kinetics 
in colloidal systems was performed by Smo1uchowski.l The 
theoretical approach, formulated by him, provides a 
background for studying the so-called diffusion-controlled 
reactions. A basic feature of all diffusion-controlled 
processes is the fact that their rates depend on the diffusion 
approach of the reacting species. Hence, from a math- 
ematical standpoint, diffusion-controlled reactions present 
a diffusion problem with boundary conditions determined 
by the specific features of the physicochemical transfor- 
mation of the contacting molecules, ions, colloidal particles, 
e k 2  Smoluchowski theory has been a subject of numerous 
improvements and generalizati~n:~’~ both direct inter- 
actions between the reacting par t ic le~~*~ and hydrodynamic 
interactionsgJO have been incorporated in it. A further 
step in generalizing the Smoluchowski theory was to take 
into consideration higher order correlations in the particle 
positions.11J2 The deviation of the particle velocity 
distribution from the Maswellian type has been also 
considered by using the Fokker-Planck approach.13 Re- 
cently, Zhang and David4 used the Smoluchowski method 
to calculate the collision rate for nondeformable droplets, 
with tangentially mobile surfaces in the absence of 
surfactants. 
All aforementioned theoretical works deal only with 

nondeformable particles. It is known, however, that the 
deformability of certain colloids (e.g. microemulsion or 
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emulsion droplets) can significantly affect both the 
thermodynamic16 and dynamic properties of these systems. 
When two large emulsion drops are approaching each 
other, a thin planar film may form between them.ls The 
rate of thinning of this film and its stability against rupture 
are among the main factors determining the overall 
stability of the emulaion.1618 The role of different factors 
(like the film radius and thickness, presence of surfactants, 
etc.) on thin f i i  behavior has been investigated theo- 
retically and experimentally; for a review see, e.g., ref 18. 
Most of the works on liquid film stability in emulsions 
deal with relatively large drops (millimeter and submil- 
limeter size), where the effect of the Brownian motion is 
negligible. Such systems are usually called macroemul- 
siom. The case of emulsions consisting of droplets of 
submicrometer to at most a few micrometers in size has 
been much less investigated (we call these systems 
miniemulsiom). In particular, it is not known in advance 
whether or not the small droplets (possessing considerably 
greater capillary pressure) will deform upon mutual 
approach. Recently, an experimental study of miniemul- 
sion stability was performed by Hofman and Stein.l8 The 
results were interpreted as an indication for the importance 
of the droplets deformability for the emulsion stability. 
Although the authors carried out some calculations of the 
interaction energy between two deformed droplets, they 
did not relate this energy to the kinetic constants char- 
acterizing coalescence. 

We believe that a more rigorous theoretical approach 
based on the classical model of Smoluchowskil should be 
developed for quantitative treatment of the coalescence 
rate in miniemulsions. The present study is a step in thia 
direction. The drop-drop interaction due to the joint 
action of the direct (interparticle) and hydrodynamic forces 
on one hand, and the Brownian force on the other is studied 
in more detail. The problem concerning the direct 
interactions of deformable particles is not a trivial one 
and represents a separate interest. It was described by us 
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in more detail in a separate paper,z0 where an explicit 
expression for the van der Waals energy of interaction 
between two deformed drops (with the shape of spherical 
segments) was derived. The electrostatic repulsion was 
also considered and approximate formulas were obtained. 
In the present paper we show that due to the interparticle 
interactions and Brownian force the miniemulsion droplets 
may deform when they come close to each other. A 
transcendental algebraic equation for the distance at which 
the deformation takes place (if it does) is derived. The 
processes of film formation, thinning, and rupture between 
two colliding droplets are included as separate stages in 
the Smoluchowski scheme and the flux of coalescing 
particles is determined. 

The theory predicts that with significant long range 
repulsion (e.g. electrostatic) between the droplets, defor- 
mation will not occur. We should emphasize, that there 
is a qualitative difference between the coagulation behavior 
of deformable and nondeformable particles. It is due to 
the presence of deformation energy, as well as to the fact 
that the direct and hydrodynamic interactions depend 
significantly on the droplet shape.z0 Such important 
processes as the surfactant transport and the rupture of 
the liquid layer between the droplets are also strongly 
dependent on the geometry of the system and a theory 
describing them for nondeformed droplets is not yet 
available. That is why in this study we investigate mainly 
the case of deformable droplets. The interaction and 
coalescence rate in miniemulsions of nondeformable 
droplets in the presence of surfactants will be considered 
in a subsequent paper. 

The article is organized as follows: in section 2 the 
method of Smoluchowski is applied to deformable emul- 
sion droplets. General equations are derived for the 
interparticle distance at which the deformation takes place, 
for the pair probability function, and for the force acting 
between the droplets; in section 3 the potential energy of 
interaction and hydrodynamic resistance to the approach 
of two deformable droplets are considered; the numerical 
results are presented and discussed in section 4; the 
conclusions are summarized in section 5. 

2. Mutual Diffusion of Deformable Interacting 
Emulsion Droplets 

2.1. A General Diffusion Scheme for Deformable 
Miniemulsion Droplets. When two macroemulsion 
drops approach each other, deformation of the latter takes 
place at  a distance hi between their forepoints.17J8 This 
quantity and the further dynamics of the film thinning 
are strongly dependent on the viscous resistance in the 
gap between the drops. Often, in the beginning of the 
deformation the drop caps acquire a bell-shaped form 
called a d i m ~ l e . ' ~ J ~  After that the surfaces in the zone 
between the drops flatten and a planar f i i  forms. This 
film thins with time and at a certain critical thickness 
ruptures.161a Ifthe f i b  can be thermodynamically stable, 
the thinning stops at  the equilibrium thickness he where 
the disjoiningpressure in the film equilibrates the capillary 
pressure in the drops. In this study we consider only the 
case of thermodynamically unstable f i b s  which always 
rupture: then the film lifetime depends mainly on the 
rate of thinning and the critical thickness her. 

In the case of miniemulsions, collisions occur due to 
Brownian motion. Following Smol~chowski~~~.~  we con- 
sider the diffusion of deformable miniemulsion droplets 
toward a given "central" droplet in the presence of direct 
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Figure 1. (a, top) Schematical presentation of the pair prob- 
ability distribution function P(z) for deformable coaleecing 
droplets. z is the distance between the maas centers of the 
droplets. A. denotes the region of nondeformed droplets 
approach, & denotes the region of droplet deformation, At denotee 
the region of film thinning, and & denotes the region of droplet 
fusion. zd is the distance at which the deformation occurs, zt is 
the distance at which the planar f i i  thinning starts, and z= is 
the critical distance of f i  rupture. (b, bottom) Droplet 
configurations at the points zd and zr. hi is the separation between 
the drop surfaces at which the deformation occurs and rt is the 
film radius in the region At. 

potential interaction energy W(z). Let P(z) be the 
probability to find another particle situated at  a distance 
z from the central droplet (more precisely, z is the distance 
between the centers of mass of the particles). Similarly 
to the case of macroemulsions, the approach of the droplets 
is supposed to follow the acheme shown in Figure la. 

At large distances, z - m, the probability P(z)  tends to 
a constant value P(z--) = 1. The first stage (region A, 
in Figure 1) presents the approach of two spherical or 
slightly deformed droplets of radius a. The distance z in 
this region adopts values between Zd = 2a + hi and infinity 
(hi is the minimal distance between the droplet surfaces 
prior to the film formation). This region can be described 
by the theory of barrier diffusion of spherical particles.sJO 

The second stage, below the distance Zd (see region & 
in Figure 1) represents rapid deformation of the droplet 
caps and formation of a flat f i b .  This occurs at given 
value, hi, of the minimal distance between the droplet 
surfaces; see Figure lb. We will call hi (the thickness at 
which the curvature at the droplet caps inverts its sign) 
thickness of film formation. In this stage the radius, r, 
of the formed plane-parallel film gradually (but ra~idly~~Js)  
changes from zero to a certain maximum value (denoted 
hereafter by rf). Although the thickness of the film can 
be assumed to remain constant during this process, the 
distance between the mass centers changes (due to the 
deformation) from Zd to zf.lS It was shown a n a l y t i ~ d y ~ ~ ~ ~ ~  
and numericallyz1 that the rate of film expansion is very 
high. For small (micrometer size) particles the plane- 
parallel film may appear without being preceded by dimple 
formation.ls 

During the third stage (region Af in Figure 1) the film 
thins from thickness hi to the critical thickness of rupture 
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h, at (almost) constant radius, rf. The distance between 
the mass centers of the two droplets in the moment of 
rupture is z,. The rate of film thinning depends on 
different hydrodynamic and thermodynamic factors.18*21-24 
The thickness at which the film ruptures, h,, can be 
determined by using the simple formula derived by Vrij 
et alJ6 (see eq 3.23 below). A more general analysislS 
showed that quantitatively this formula gives good resulta 
despite of the assumptions made in the course of ita 
derivation. 

In the last stage, after the f i  rupture (region & in 
Figure l), the mass centers of the droplets approach from 
z,to z = 0 and rapid fusion of the droplets is accomplished. 

2.2. General Equations. We will confine ourselves to 
solving the stationary problem where the particle flux J ,  
directed toward the central droplet is assumed to be 
constant (Le. V - J  = 0) 
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where k is the Boltzmann constant, Tis the temperature, 
n- is the particle number density at z - =, and D(z) is 
the mutual diffusion coefficient. Equation 2.1 can be 
transformed into 

Quation 2.2 describes the whole process depicted in Figure 
1. The boundary conditions, necessary for its solution, 
can be chosen as f o l l o ~ s : ~  

P-1, W - 0  atz-m (2.3) 
P - 0  atz+O 

The probability functionP(z) is supposed to be continuous 
at the points zcr, zt, and Zd (see Figure 1). On integration 
of eq 2.2 along with the boundary conditions (2.3), the 
following expression for the flux J can be obtained 

J =  JJWF (2.4) 
where the Smoluchowski flux is defined as1 

J,, = 16?rDoan, (2.5) 

and WF is the Fuchs factor accounting both for the 
hydrodynamic and the direct interactions between the 
droplets.8J0 It is defined as 

The diffusion coefficient of a single droplet, DO can be 
expressed through the Stokes-Einstein formula 

where q is the dynamic viscosity of the disperse medium. 
The mobility of the “central” droplet is taken into account 
in the Smoluchowski flux (eq 2.5). 

The probability distribution P(z) can be calculated by 
integrating eq 2.2 along with the boundary condition at 
z - = (2.3) 
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By combining eq 2.8 with eqs 2.4-2.7, one obtains 

(2.9) 
The probability function P(z) given by eq 2.9 does not 
correspond to equilibrium. The exponential factor in the 
right-hand side of eq 2.9 is the equilibrium probability 
function (for diluted systems W(z)  has the meaning of a 
potential of mean force), while the term in the braces has 
a nonequilibrium (but steady) nature. 

2.3. Determination of the Film Formation Thick- 
ness hi. In order to find the distance, hi, at which the 
deformation starts, we need to know the force acting on 
the particles during their approach (see the next subsection 
for more details). Equation 2.1 can be rewritten in the 
form 

where y(z)  is the hydrodynamic resistance to the mutual 
droplet motion 

(2.11) 

Let V(z) be the mean droplet velocity of directional motion 
toward the central droplet. The flux J ,  the particle 
concentration n-P(z), and the velocity V(z )  are connected 
through the relationship 

V(Z) = (2.12) 

On the other hand, in the framework of the linear 
hydrodynamics, the droplet velocity is proportional to the 
applied force, i.e. 

FT(Z) = r(z) V(Z) (2.13) 

where FT(z) is the total drag force, acting between the 
droplets. From eqs 2.10, 2.12, and 2.13 one obtains 

J 
4i?Z2n,P(2) 

We must emphasize that when deriving the expression 
(2.14) neither the type of the resistance y(z)  nor the energy 
W(z) was specified. Hence, as a general result we obtain 
that in the case of steady diffusion the total force acting 
on the droplet, FT, is a superposition of the Brownian 
(diffusion) force (i.e. kZV[ln P(z)l) and the potential force 
which is due to direct interactions between the particles, 
V[W(z)l. In this respect the situation is similar to the 
case of diffusion equilibrium in an external field considered 
long ago by Einstein.26 As suggested by him the equi- 
librium is sustained by the counterbalance of the Brownian 
force (gradient of the particle concentration) and that due 
to the external field. Batchelor2’ applied this approach 
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to investigate the equilibrium in a system of interacting 
colloidal particles. In our notation FT(z) = 0 at equilib- 
rium. The system of coalescing droplets, however, is out 
of equilibrium and FT(z) # 0. Equations 2.14 and 2.10 
give 

(2.15) 

The calculation of the integral in eq 2.6 requires 
knowledge (i) of the distances zt and zcr at which the film 
formation and the film rupture take place (see subsection 
2.1 and Figure 1) and (ii) of the explicit expressions for 
the interaction energy W(z) and the mutual diffusivity 
D(z). The film formation thickness hi depends on the 
total force FT17918 

JY(Z) 

4az2n,P(z) 
FT(z) = 

Danov et al. 

FT hi = - 
2au (2.16) 

where u is the interfacial tension. Equation 2.16 was 
derivedlGl8 by assuming that the drag force FT is constant. 
However, one can prove that it holds also for variable Fr 
(2) if the particle motion is quasi-steady.28 From eqs 2.15 
and 2.16 one obtains 

(2.17) 

withpd being the probability function at z = Zd (see Figure 
1). Integrating eq 2.2, along with the boundary condition 
at z = 0 (eq 2.31, we find the probability p d  (cf. also eq 
2.11) 

Introducing eq 2.18 into eq 2.17 leads to a transcendental 
equation for determination of hi (recall that zd = hi + 2a) 

k T  hi = - 
2auzdf (2.19) 

with f, defined by the following expression: 

The integral in eq 2.20 must be evaluated over three 
regions: &, Af, and Ad. It is reasonable to assume that 
the contribution from region & is much smaller than the 
ones from the other two regions, At and Ad. This 
assumption is supported by the following facts: (i) the 
film rupture and particle fusion are accompanied with 
sharp decrease in the surface energy of the droplets and, 
hence, in this region W << w d  and the exponent in the 
integral in eq 2.20 is very small; (ii) the rate of coalescence 
is much greater than the rate of film thinning, especially 
when surfactants are present (this means that the ratio 
y(Z)/y(Zd) in the same integral is much less than unity in 
the region A). Hence, the integral over the region & is 
negligible in comparison with those over Af and Ad. An 
additional possibility for simplification is suggested by 
the results of the numerical calculations which show that 
hi << a.16J8 Hence, with sufficient accuracy one can replace 
Z / Z d  byz12a. haresdt,eqs2.19and2.2Ocan besimplified 
to read 

This equation allows calculation of hi if y(z), W(z), and 
zcr are known. Equation 2.21 should be solved numerically 
because of the complex relation between h, = zcr - 2a and 
hi18*22124v26 (see eq 3.23 below). 

After the determination of h, (e.g. from eq 3.23) and hi 
one can obtain the factor WF (cf. eq 2.6). By using eq 2.4, 
the diffusion flux J can be calculated, which is directly 
related to the coalescence rate. For example, the rate of 
droplet coalescence in the beginning of the process is' 

dn21dt = k,nm2 (2.22) 

where n2 is the concentration of larger droplets formed by 
coalescence of two droplets of radius a and k, is the 
respective rate constant given by the expression 

(2.23) 

If we are interested in the further evolution of the system, 
when even larger droplets are formed, we should develop 
a kinetic scheme similar to that developed by Smolu- 
chowski for the coagulation of aggregatesof solid particles.' 
Such analysis wil l  be presented in a subsequent paper. 

3. Potential and Hydrodynamic Interactions 
between Two Approaching Deformable Droplets 

To make use of the general expressions derived above, 
one must specify the functions W(z) and y(z)  for the system 
under consideration. 

The potential energy of interaction between two de- 
formable droplets can be written as a sum of several 
terms15,20 

W = + Wvw + + AW (3.1) 
where w9 is the change of the surface energy due to droplet 
deformation, WVW is the van der Waals term, WE is the 
electrostatic energy of interaction, and A W standa for other 
possible interactions (e.g. steric, structural, etc.loS). These 
contributions are specified below. 

3.1. Surface Deformation Energy. During the 
process of approach the droplet volume remains constant. 
The change of the interfacial energy is due to the fact that 
any deviation of the droplet shape from the spherical one 
(at constant volume) is accompanied with an increase in 
the interfacial area. This leads to a corresponding increase 
in the free energy of the system.ls Figure 2 illustrates the 
geometrical parameters of the deformed droplets in the 
model: as is the radius of the spherical part and I is the 
distance between the forepoint and the most remote point 
in a deformed droplet. The radius of the film during the 
stage of film thinning, rf, can be expressed by the 
relationship (see eqs 294 and 296 in ref 18): r? = ahi. 
Hence, during the stage of droplet deformation, region & 
in Figure 1, the film radius (denoted by r )  gradually 
increases from 0 to the final value, rt = (ah#f2 << a. This 
means that for the system under consideration the 
deformation is small (rla << 1) and with sufficient accuracy 
we can use the 

(28) Danov, K. D.; Velev, 0. D.; Ivanov, I. B.; Borwankar, R. To be 
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+ 2 h  

, r << a (3.7) 1 h ( k , + h )  + 128a,51.2 

[ + hI2 1 h2(2a, + h)?h, + h)2 
where AH is the Hamaker constant.30 For h << 2a eqs 3.3 
and 3.7 lead to even simpler result 

Figure 2. Model of two deformed emulsion droplets having the 
shape of spherical segments of radius a,. r and h are the radius 
and the thickness of the f i b  between the dropleta. 

where SO = 4ua2 denotes the area of the nondeformed 
droplet and S is the total area of the deformed one and 
EG is the effective Gibbs elasticity of the surfactant 
monolayer covering the droplet surface. The first term in 
the right-hand side of eq 3.2 accounts for the extension of 
the droplet surface at constant interfacial tension u, while 
the second one is related to the possible increase in the 
interfacial tension during the deformation, caused by the 
stretching of the surfactant layer. The latter effect exists 
only if the surfactant transport onto the interface is slow 
(or absent) and cannot maintain the equilibrium adsorp- 
tion at the droplet surface during the process of defor- 
mation. As discussed previously16 this is probably the 
case of water-in-oil microemulsions when the surfactant 
is soluble in the disperse phase as well as the case of droplets 
covered with adsorbed layer of polymers or proteins. It 
can be shown that for (r /a)2 << 1 (see Figure 2) 

I = 20 [ 1 - $2 + O ( c 9 1  , a, = a( 1 + i g ' 4  1 + O@)] 

(3.3) 
where c = r/a << 1. Equation 3.3 and the exact formula 
for S lead tol5Jo 

2 1 4  s - so = ur2 + 2 u a ~  - 4ua2 = ua [ z e  + 0(c6)] (3.4) 

Equations 3.2 and 3.4 show that the ratio of the second 
toward the f i t  term in the right-hand side of eq 3.2 is 
E&(32u). Hence Gibbs elasticity can be neglected for 
emulsions, where EG and u are comparable in magnitude. 
Therefore with sufficient accuracy 

r I rf << a, (3.5) 

In the case of microemulsions u can be orders of magnitude 
lower than EG and the second term could be important.16 
Hence, one should use the complete expression (3.21, which 
for e << 1 can be rewritten as 

r I rf << a 

(3.6) 

3.2. Van der Waals Energy of Interaction. In ref 
20 an exact formula for the van der Waals energy of 
interaction between the two deformed droplets, shown in 
Figure 2, was derived. For the particular case of small 
deformations (i.e. +/a2 << 1) the exact expression can be 
simplified to read (for notations see Figure 2) 

Wwy = - E[ AH 7~ 0 + 2 hi(;) h + 4 3 + -Q] r2 (3.8) 

h<< a, r<< a 

The first three terms in the brackets of eq 3.8 correspond 
to interaction between two nondeformed spherical droplets 
of radius a at gap width h << a, while the last term accounts 
for the presence of a planar film of thickness h in the 
deformed state. 

In the region A, (see Figure la) the exact Hamaker 
expression for the interaction between two spheresm should 
be wed. 

3.3. Electrostatic Interaction. In the case of oil-in- 
water emulsions the electrostatic energy of interaction 
should be taken into account as well. For nondeformed 
(spherical) droplets one can use the potential of mean 
force derived by Beresford-Smith et al.31 

(3.9) 

where A is the so-called Bjerrum length and K is the inverse 
Debye screening length (for simplicity only the presence 
of 1:l electrolyte is considered) 

0.7 nm, at T = 298 K (3.10) 

K2 = 81Ac,1 (3.11) 
e is the elementary charge, & is the dielectric constant of 
the disperse medium, and C,l is the electrolyte number 
concentration. The dimensionless quantity in eq 3.9 is 
related to the surface potential (or charge density) of the 
droplets and can be determined by numerical integration 
of the nonlinear Poisson-Boltzmann In the 
case of low surface potentials (*e C 25 mV), ye can be 
approximated by the dimensionless surface potential 

A=---- e2 
&kT - 

Ye sz kT' e*s for *, C 25 mV (3.12) 

In miniemulsions a is typically between 0.1 and 10 pm. 
For electrolyte concentration higher than 10-9 M (1:l 
electrolyte) the product KU is much greater than unity and 
the electrostatic interaction between the droplets takes 
place only at small gap widths (Kh - 1, h << a). In this 
case one can use for the electrostatic energy of interaction 
between two deformed droplets the approximate expres- 
sionm 

r << a, KU >> 1 

(30) Hamaker, H. C .  Physica 1957,4,1068. 
(31) Beresford-Smith, B.; Chan, D. Y. C.; Mitchell, D. J. J. Colloid 

(32) Alelander, S.: Chaikin, P. M.: Grant, P.: Moralea, G. J.; Pmcus. 
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(33) Denkov, N. D.; Petaev, D. N. Physica A 1992,183,482. 



1736 Langmuir, Vol. 9, No. 7, 1993 

The unity in the brackets in eq 3.13 corresponds to the 
interaction between two charged spheres for h << a (cf. 
with eq 3.9) and the second term is due to the deformation. 
This expression is used in the numerical calculations below. 
Besides, for KU >> 1 one can express analytically the 
parameter yB for arbitrary surface potential, qS, by using 
eqs 14 and 15 in the paper of Chew and Sen" and eq 4.35 
in the work of Beresford-Smith et 

3.4. Hydrodynamic Resistance for Two Deformed 
Droplets Approaching Each Other. By equating the 
dissipated energy to the work of the outer forces, Charles 
and Mason36 obtained the following expression for the 
hydrodynamic resistance of two approaching solid particles 
at small distances (i.e. in lubrication approximation) 

Danov et 01. 

(3.14) 

where x is the radial coordinate (see Figure 2) and H = 
H(x)  is the local thickness of the gap, between the particle 
surfaces. For solid spheres this yields Taylor's result y = 
6rqa2/h. However, it was shownl7 that this approach is 
not applicable when droplets or bubbles with tangentially 
mobile surfaces are considered. In such cases one can 
proceed in the following way. The force acting on one of 
the droplets isle (see Figure 2) 

(3.15) 

where P, is the scalar pressure at the surface of the droplet 
(eq 3.15 holds for particles of arbitrary shape). It is related 
to the thinning velocity Vand the radial component of the 
velocity U at the droplet surface by means of the 
expression, following from lubrication theory18 

(3.16) 

For a system of two deformed droplets like those shown 
in Figure 2, the distance between the particle surfaces 
H ( x )  can be assumed with sufficient accuracy to be: 

H = h  for x l r  (3.17) 

for x > r  H = h - ; + -  r2 x 2  
a 

The radial component of the velocity U can be expressed 
as18 

for x I r (3.18) v x  U =  
W ( 1  + 8 + 2) 

The quantities ee and tf account for the surfactant 
diffusivity in the disperse phase and/or media, as well as 
for the droplet surface properties and can vary within a 
wide range of values.1e-f8 The effect of the surface viscosity 
is neglected in eq 3.18 but in principle it can be taken into 
account. We are not aware of a theory giving a complete 
description of the fluid motion in the meniscus region 
when surfactants are present. For that reason we use the 
fact that when the local spacing between the droplet 
surfaces increases (see eq 3.171, the radial component of 
the velocity decreases. Hence, the surface mobility is 
important only in the film and in a narrow region 
surrounding it. In order to account (although approxi- 
mately) for the hydrodynamic resistance of the meniscus 
region around the film, we suppose that in this region the 
surface mobility is absent, i.e. U = 0 for x > r. Introducing 
eqs 3.16-3.18 into eq 3.15 and performing the integration 

(34) Chew, W. C.; Sen, P. N. J. Chem. Phys. 1982, 77, 2042. 
(35) Charles, G. E.; Mason, S. G. J. Colloid Sci. 1960, 15, 236. 

we obtain (see also eq 2.13) 

(3.19) 

where cs denotes an average value of the ratio (ee + eW(1 + @ + €3 and can acquire values between 1 (for tangentially 
immobile surfaces) and 0.001 (for pure liquids or when 
the surfactant is soluble only in the droplet phase). Typical 
values of e* for systems with surfactants soluble only in 
the continuous phase are between 0.1 and 1; for systems 
with surfactants soluble only in the emulsion droplets en 
is between 0.001 and 0.01.36*37 

Combining eqs 2.21,3.6,3.8,3.13, and 3.19, and taking 
into account that1* r? = ahi, we can transform the 
transcendental equation for hi in the form 

(3.20) 

where the dimensionless fador fd accounts for the influence 
of the region of deformation &. It is given by the 
expression 

where F = r/rf is the dimensionless film radius. 
The other dimensionless factor ff accounts for the 

contribution of the film thinning region Af and is given by 

with h = h/hi being the dimensionless film thickness and 
h, denotes the ratio hdhi.  For the numerical calculations 
presented below, the latter is evaluated using the ap- 
proximate formula of Vrij,26 which can be transformed to 
read: 

Although this formula was derived under strong restric- 
tions (e.g., for tangentially immobile surfaces and only 
van der Waals attraction present), the calculations showed 
that the value of hi is very weakly dependent on h, for the 
parameters we used. If necessary one can apply more 
complete (and complex) expressions for the determination 
of h.,r.1'334*38 

4. Numerical Results and Discussion 
In this section numerically calculated values of the 

thickness hi, at which the droplet deformation takes place 

(36) Traykov, T. T.; Ivanov, I. B. Int. J.  M u l t i p h e  Flow 1977,3,471. 
(37) Traykov, T. T.; Manev, E. D.; Ivanov, I. B. Znt. J. M u l t i p h e  

(38) Maldarelli, C.; Jain, R. K.; Ivanov, I. B.; Ruckenstein, E. J. Colloid 
Flow 1977,3,486. 

Interface Sci. 1980, 78,118. 
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Figure 3. Dependence of the distance of droplet deformation 
hi on the droplet radius a: AH = 5 X J and e, = 0.1 (curve 

interfacial tension is u = 1 mN/m for all curves. 

 AH = 1 X 1emJ and e, = 0.1 (curve 2); AH 
e, 

5 X l emJ  and 
0.1 (curve 3); AH = 1 X le" J and e. = 0.001 (curve 29. The 

and of Fuchs factor WF (see eq 2.6) are presented. The 
effects of different factors on hi and WF are examined. 

4.1. Film Formation Thickness. Figure 3 shows the 
dependence of hi on the droplet radius, a, for different 
values of the Hamaker constant, AH (see eqs 3.20-3.22): 
AH = 5 X J (curves 2 and 
29, and AH = 5 X lem J (curve 3). The used values of AH 
are within the range accepted in the literature as typical 
for oil and water e m u l s i o n ~ . ~ ~ J ~ * ~ ~  The interfacial tension 
was assumed to be u = 1 mN/m for all these curves. 
Electrostatic interactions are not included when calcu- 
lating these data. Curves 1-3 were calculated with ea = 
0.1, which is considered to be a typical value for emulsions, 
stabilized with surfactant soluble in the continuous 

For curve 2' all parameters are the same as for 
curve 2 except for e,, which is now 0.001. The latter value 
corresponds to systems without surfactants, to systems 
containing surfactant only in the droplet phase, or to 
emulsions containing mixture of surfactants with at least 
one of them being in the droplets (e.g. when a demulsifier 
is present). 

From Figure 3 one sees that for micrometer size droplets 
hi is between 5 and 25 nm and slightly depends on the 
droplet radius. For particles smaller than 1 pm, one 
observes a significant decrease in hi. This region is 
investigated in more detail below, when the deformability 
of microemulsion droplets is briefly discussed. On the 
other hand, hi depends on the Hamaker constant: the 
stronger the attraction, the larger hi. The plotted values 
for hi seem quite reasonable and show that the Brownian 
force may lead to deformation of the emulsion droplets 
and formation of planar films during the collisions between 
them. It is interesting to note that the enhanced tangential 
mobility of the droplet interfaces, which strongly affects 
the rate of film thinning (and hence the fiilm lifetime16i21-23) 
practically does not change hi; cf. curves 2 and 2' which 
differ only in the value of e, used. This means that the 
increased tangential mobility of the interfaces shortens 
the time of film drainage but does not change the distance 
at which the droplet deformation starta.  This result is in 
accordance with the theoretical prediction made by Ivanov 
et al." that the shape of deformable approaching droplets 
depends mainly on thermodynamics factors rather than 
on hydrodynamic ones. 

In Figure 4 the effect of the interfacial tension, a, on hi 
is studied. The radius of the droplet is chosen to be a = 
1 pm and the other parameters are the same as in Figure 

J (curve l), AH = 1 X 

(39) V i e r ,  J. Adu. Colloid Interface Sci. 1972, 3, 331. 
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Figure 4. Dependence of the distance of droplet deformation, 
hi, on the interfacial tension u: AH = 5 X J and = 0.1 

2'). The droplet radius is a = 1 pm for all curves. 
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Figure 5. Influence of the electrolyte concentration, Cd, on the 
deformation distance hi: q, = 50 mV (curve 1); q, = 25 mV  curve 2); q, = 10 mV (curve 3). AH = lem J, a = 5 pm, u = 1 
mN/m, and e, = 0.1 for all curves. The full pointa at the en& 
of the curves correspond to concentrations, where the droplet 
deformation becomes improbable. 

3 (AH = 1 X J for curves 2 and 2', AH = 5 X le2' J 
and AH = 5 X J for curves 1 and 3, respectively; en 
= 0.1 for curves 1 to 3 and e@ = 0.001 for curve 29. One 
sees that hi increases when u decreases. At  a below 1 mN/ 
m, sharp increase in hi, is observed. Again, the increase 
in AH leads to increase in hi while ea almost does not affect 
the latter. These results are in agreement with the idea 
of Hofman and Stein19 that lower interfacial tension may 
enhance the droplet deformation, thus affecting the 
emulsion stability. 

The influence of the electrostatic repulsion on hi, in the 
case of oil-in-water emulsions, is demonstrated in Figure 
5. The plotted curves represent the dependence of hi on 
the electrolyte concentration, Cd, for three different surface 
potentials: 50 mV (curve 1),25 mV (curve 21, and 10 mV 
(curve 3). The other parameters are, u = 1.0 mN/m, a = 
5 pm, AH = 1 X J, and ea = 0.1. It turns out (see 
Figure 5) that at a given surface potential the electrostatic 
repulsion reduces very slightly hi above a certain electrolyte 
concentration. At high ionic strengths (e.g. C,l> 0.08 M 
for the potentials used in these calculations) the effect of 
the electrostatic interactions on hi can be entirely ne- 
glected. Obviously, this is not true when considering the 
hydrodynamic drainage and rupture of the formed film, 
where the electrostatic contribution in the disjoining 
pressure should be taken into account. However, below 
some critical ionic strength the physically reasonable root 
of eq 3.20 (which determines the value of hi) disappears; 
see the points at the ends of the curves. This means, that 
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Figure 6. Deformation distance, hi, VB the droplet radiua, u, in 
microemulsion systems: u = 0.1 mN/m, AH = lem J, c, = 0.1, 
EO = 0 (curve 11, EG = 10 mN/m (curve 2), Eo = 30 mN/m (curve 
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below this electrolyte concentration the electrostatic 
repulsion prevents the particles from deformation and f i  
formation. In other words, the kinetic energy of the 
droplets is not large enough to overcome the energy barrier 
accompanying the droplet deformation and the particles 
behave as nondeformable charged spheres. This point 
deserves additional theoretical and experimental inves- 
tigation in the future, because such a qualitative change 
in the trend of the occurring processes may be related to 
a drastic change in the emulsion stability. In particular, 
the strong dependence of the emulsion stability on the 
electrolyte concentration measured by Hofman and Steinl9 
(see their Figures 1 and 21, may stem from this effect. 

We dealt above mostly with micrometer size droplets, 
which are typical for common miniemulsions. However, 
similar considerations apply to microemulsion systems 
(nanometer size droplets) as well. It has been shown that 
collisions between microemulsion droplets may lead to 
coalescence of the colliding droplets and fusion of their 
coresu) in the case of four-component microemulsion 
systems. It was argued15 that this and other observations 
of the behavior of microemulsions can be explained by 
assuming that a planar film forms during collision between 
the droplets before they coalesce or rebounce. We wi l l  
diecues now this problem in the framework of the present 
theory. The curves in Figure 6 show hi as a function of 
the droplet radius a, at some typical parameters for 
microemulsions (see also the discussion on pp 164-166 in 
ref 16): u = 0.1 mN/m, AH = 1 X 10-20 J, e, = 0.1. As 
discussed previ~usly'~ the Gibbs elasticity, Eo, should be 
accounted for when considering the deformation energy 
in the case of microemulsions because the interfacial 
tension is very low in these systems, u << EG (see also eq 
3.6 above). The three curves in Figure 6 correspond to 
different values of EG: EO = 0 (curve l), EO = 10 mN/m 
(curve 21, and EG = 30 mN/m (curve 3). One sees that hi 
is about 2 to 5 nm and slightly decreases with EG. The 
calculated figures are quite reasonable for these systems 
(note, that a - 10 nm in this case). Besides, the results 
confirm the rough estimates based on a rather different 
approach15-namely, by comparison of the kinetic energy 
with the potential interaction energy between the droplets. 
Still the calculations for microemulsions are mainly 
illustrative because a more complete consideration should 
include some other effects (e.g. bending elasticity and 
spontaneous curvature) as well. The use of the simple eq 
3.23 for calculation of h, is also questionable for such 
smaU droplets. 

(40) hug, J.; Lalem, N.; Zana, R. J. Phye. Chem. lSSl,%, 9533. 
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Figure 8. Dependence of the efficiency fador WF (cf. eqs 2.4 
and 2.6) on the droplet radius, a, for microemulsion systems. 
The parameters are the same as in Figure 6. The dashed line 4 
corresponds to the coagulation of hard spheres with AH = lo-" 
J. The dotted line 5 is for spherical bubbles with tangentially 
mobile surfaces. 

of the two bubbles was calculated by using the theory of 
Haber et al.41 The fact that Wt for deformable micro- 
emulsion droplets is greater than that for nondeformable 
spheres with tangentially immobile surfaces, while for 
bubbles it is smaller, means that the most important effect 
is due to the deformability of the particles. The tangential 
mobility is less important. 

The numerical calculations show that WF for deformable 
and nondeformable spheres of micrometer size practically 
coincide. This result means that for miniemulsions the 
mutual approach of the droplets prior to their deformation 
is the rate-determining stage in the considered coalescing 
scheme. That is why the coalescence rate is the same as 
for the coagulation of nondeformable spheres; see eq 2.23. 
The reason for that is mainly the high hydrodynamic 
resistance of mutual approach of the spherical droplets 
and large average interparticle distance. However, at large 
droplet concentrations (when eqs 2.22 and 2.23 are no 
longer valid) the coalescence kinetics cannot be investi- 
gated simply by considering Fuchs' factor. For example 
van den T e m ~ e l ~ ~  showed that at high concentration, the 
long time kinetics is characterized by the parameter knn,/ 
kcl, where kn is the rate constant for droplet aggregation 
and k,l is the rate constant for droplet coalescence inside 
an aggregate. In the terms of our consideration kn is 
connected with the mutual approach of nondeformed 
droplets, while kcl is related to f i i  thinning and rupture. 
Therefore, for more concentrated emulsions, the droplet 
deformability can be a substantial factor. Such an analysis 
will be published elsewhere.43 

4.4. Importance of the Brownian and Intermolec- 
ular Forces. One question that can be raised is whether 
or not one can neglect the gravitational effects in the above 
treatment. To answer this question we calculated the force 
acting between the particles, FT (including the Brownian 
force), a t  the distance of film formation, hi, by using eq 
2.15. In Figure 9 the ratio between the buoyancy force 

Fb = A p g r a 3  4 
(4.1) 

and FT, as a function of the droplet radius, is plotted. The 
curves correspond to different values of the Hamaker 
constant (the same as in Figure l), u = 1 mN/m, ea = 0.1, 

(41) Haber, S.; Hetsroni, G.; Solan, A. Int. J.  Multiphase Flow 1973, 

(42) van den Tempel, M. Recueil 1953, 72, 433. 
(43) Danov, K.; IVMOV, I.; Gurkov, T.; Borwankar, R. Submitted for 

I ,  67. 

publication in J.  Colloid Interface Sci. 
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Figure 9. Ratio of the buoyancy force, F b  (cf. eq 4.1) and the 
total force acting between the droplets (eq 2.14) va the droplet 
radius a: AH = 5 X 1C2* J (curve 1); AH = ltm J (curve 2); AH 
= 5 X lem J (curve 3). e, = 0.1 for a l l  curves. 

and the mass density difference Ap = 0.2 g/cm3. One sees 
that for droplets smaller than 10 pm in diameter, the ratio 
F ~ F T  I W. This means that for such particles the 
gravitation can be entirely neglected in comparison with 
the Brownian and surface forces when considering the 
mutual approach of the droplets in a homogeneous 
suspension. Moreover, if we assume that only the gravity 
force is operative (i.e. if we neglect the Brownianand direct 
forces in FT) the substitution from eq 4.1 into eq 2.16 
shows that for micrometer size droplets hi should be below 
0.1 nm. The latter value is unrealistic which means that 
the gravity alone cannot lead to droplet deformation in 
miniemulsions. Hence, the deformation predicted by our 
theory is essentially due to the incorporation of the 
Brownian and direct forcea in the model. This conclusion 
is of great importance for the consideration of the 
coalescence in miniemulsions, since the coaleecence stages 
and processes are different for systems of deformable and 
nondeformable droplets. On the other hand, due to gravity 
the micrometer size particles can slowly sediment (or float 
up) with time, thus leading to nonuniform spatial distri- 
bution of the droplets. This effect becomes even more 
pronounced with time, because the droplet coalescence 
increases the mean particle diameter. Hence, if we are 
interested in the overall lifetime of the emulsion, a more 
complete and refiied consideration accounting for the 
sedimentation should be carried out. 

Another force which can be important for the emulsion 
stability is the hydrodynamic force in shear(" or in 
turbulent flows. An attempt for such considering the caee 
of turbulence was performed by Kumar et al.& 

4.5. Comparison with the Hofman and Stein Ap- 
proach.lg At the end of this section, we should like to 
point out some differences between the approach devel- 
oped in the present study and the theoretical consideration 
of Hofman and Stein.lg In fact, the general aim of both 
studies is similar: to investigate the effect of droplet 
deformability on the stability of emulsions. In both cases 
the Smoluchowski equation is considered as a starting 
point for examining the coagulation kinetics. However, 
Hofman and Steinle applied the Smoluchowski equation 
only to the case of nondeformble droplets. T h e  deform- 
ability of the droplets is accounted for only when con- 
sidering the energy of formation of a doublet of attached 
particles, like those shown in Figure 2. The thickness of 
the f i  during the deformation is assumed to remain 
constant. In this respect their modeP is quite similar to 

(44) Schowalter, W. R. Annu. Rev. Fluid Mech. 1984,16,246. 
(45) Kumar, S.; Kumar, R.; Gandhi, K. S. Chem. Eng. Sci. 1991,46, 

2483 Chem. Eng. Sci. 1992,47,971. 
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the one used in our previous study16 where the effect of 
droplet deformability on the energy of particle interaction 
and second osmotic viral coefficient in microemulsions 
was investigated. Such an approach is appropriate for 
estimation of the equilibrium properties but it should be 
extended to the investigation of the droplet coalescence 
kinetics in emulsions, because it entirely ignores the 
dynamics of the processes-the rate of film drainage and 
rupture, the hydrodynamic interactions before and after 
deformation, etc. In this respect we believe that the 
approach developed in the present article is a self- 
consistent modification of the Smoluchowski scheme for 
the case of deformable coalescing droplets. On the other 
hand, we are aware that for complete estimation of the 
rate of coalescence in a particular system one should 
provide an additional analysis of the possibility for rupture 
of the layer between the droplets prior to the formation 
of planar film, h,r > hi. Since a theory for h,r in the case 
of spherical droplets is still not available, we cannot say 
whether this possibility can be realized in miniemulsions. 
Such an analysis is under way and wil l  be published soon. 

Danou et 01. 

5. Concluding Remarks 
In the present study we extend the Smoluchowski 

scheme for particle coagulation to the case of coalescing 
deformable emulsion droplets. The overall picture of the 
process includes several consecutive stages: (i) close 
approach of nondefomed droplets; (ii) formation and 
expansion of plane-parallel film; (iii) thinning of the film 
at almost constant radius; (iv) rupture of the film and 
fusion of the droplets into a larger one-aee Figure 1. In 
every one of these stages the intermolecular and hydro- 
dynamics interactions me considered separately. By using 

appropriate expression for the droplet interactions and 
boundary conditions of the Smoluchowski type, we cal- 
culated the distance at which the droplet deformation takes 
place (see eqs 3.20-3.22), the two-particle nonequilibrium 
(but steady) radial distribution function (eq 2.9) and the 
total force (including the average Brownian force) which 
acta between the droplets (eq 2.14). As a result, the particle 
flux toward a given “central* droplet, i.e. the coalescence 
rate, can be determined; see eqs 2.4-2.6 and 2.22-2.23. 

Most of the numerical results are devoted to calculation 
of the particle separation, hi, at which the deformation 
occurs. The latter depends on the droplet interactions: 
van der Waals, electrostatic, hydrodynamic, as well aa on 
the energy for deformation of the droplets. The influence 
of different factors (Hamaker constant, surface potential, 
interfacial tension, droplet size, and others) is inves- 
tigated-see Figures 3-6. It is shown that the attraction 
between the droplets increases hi, while the repulsion leads 
to the opposite effect. Besides, at large enough electro- 
static repulsion, the deformation can become improbable 
and the droplets behave as nondeformable charged spheres 
(see Figure 5). The numerical calculations show that for 
micrometer size droplets and absence of electrostatic 
repulsion, the rate-determining stage is the approach of 
the particles before their deformation. For microemulsion 
dropletsthe deformability slows down the coalescence (see 
Figure 8). In the calculations we accounted for the 
interaction through the planar film as well as for the 
interaction between the parts of the deformed spheres 
outside the film because they give comparable contribu- 
tion. 
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