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Analytical Expressions for the Shape of Small Drops and Bubbles
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Analytical expressions describing the shape of small axisym-
metric sessile and pendant drops or bubbles are derived. The
expressions represent compound asympiotic expansions for
small values of the Bond number. The accuracy of the asymptotic
expansions is examined against the exact computer solutions of
the Laplace equation of capillarity. The derived equations can
be useful in interpreting the data from different methods of con-
tact angle measurement with sessile or pendant fluid particles.
@ 1993 Academic Press, Inc.

1. INTRODUCTION

Knowledge of the shape of axisymmetrical sessile and
pendant drops or bubbles is important for different experi-
mental methods for surface tension and contact angle mea-
surement ([-8). Since the Laplace equation of capillarity
has no analytical solution in this case, computer solutions
are frequently used. In the case of small or large values of
the Bond number, approximate analytical expressions can
be derived—see, e.g., Refs. {2, 9, 10). If available, such
expressions help to speed up the computer calculations, es-
pecially when experimental data for the interfacial profile
are processed.

In a previous paper (10} outer and inncr asymptotic ex-
pansions were obtained describing the profiles of small sessile
and pendant drops or bubbles. In this case the drops (bub-
bles) represent paris of slightly deformed spheres (small Bond
numbers). That is why the zeroth-order approximation for
the interfacial profile is a sphere and the higher-order terms
with respect to the Bond number account for the deformation
due to gravity. Unfortunately, the asymptotic expansions,
derived in Ref. (10), turned out to be nonuniformly valid
trrespective of the large domain of validity of the outer ex-
pansion. Our aim in the present study is 10 obtain an asymp-
totic expansion which is uniformly valid for surface slopes
trom 07 up o 180°, and to check the accuracy of this cx-
pansion against the exact numerical data from the computer
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integration. For that purpose we make use of the method of
the compound asymptotic expansion—see, €.g.,, Ref. (11).

2. COMPOUND ASYMPTOTIC EXPANSION

For the sake of convenience we use here the same notation
and the same choice of the coordinate system as in Ref.
{10). In particular, the coordinate origin is chosen at the
apex of the drop or bubble, i.e., the point where the two
principal radii of curvature are equal to each other—Fig. 1.
The radius of curvature at this special point is denoted by
b. The z-axis coincides with the axis of revolution of the
interface and is directed toward the interior of the fluid par-
ticle (drop or bubble). In terms of the dimensionless variables

X=—, Z= i1

z
b’ o

| =

(B is the Bond number), the Laplace equation of capillarity
takes the form (4, 10)

d (Xsing) =2+ ¢fz

- 2
X dx (2]
dz dx
-—=-~—1 3
o dp 20 [3)
Here € = 1 for a sessile interface and ¢ = —1I for a pendant

interface; Ap is the density difference between the heavier
and the lighter phases ( Ap > 0), ¢ is surface tension, and g
is gravity acceleration; and the angle ¢ characterizes the slope
of the interface: ¢ equals = at the particle apex {where z =
0) and then ¢ decreases with the increase of z—cf, Fig. 1.
Our aim is to find the profile of the fluid particie in a para-
metric form,

[4]

x=x(¢) z=2ze),

by solving Eqs. [2] and [3] with the boundary conditions

x=0, z=0 at ¢=m. i5]
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Sketch of an axisymrmetric fluid particle attached to an interface.
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FIG. 1.

The method of the matched outer and inner asymptotic
expansions was used to solve this problem. The outer ex-
pansion describes the surface profile in the region closer to
the fluid particle apex, whereas the inner expansion describes
the region of small ¢ (¢ — 0). The outer expansions for
X(¢)and z() read (10)

X% =sgin ¢ + B¢ l(:otf—}-sin299—lsincp
3 2 6 2

2 1
+ 62[[% + % cose — 5 sin%p — 3 ln(sin g)]sin @

__1_ l 22 f 3
2(1 +9cot 2)c0t2]+0(,@ y [6]

1 2 .
7 =1+cose+ ﬁé{g sin’p + 3 ln(sm %)

— %(1 + cos «,o)] + 08, [7]

For 3 < 1 Egs, [6] and [7] were found to describe the
shape of the interface with very good accuracy for 15° < ¢
< 180°. However, for ¢ < 15° the accuracy fast decreases
(see Fig. 3 in Ref. (10)) and both Egs. [6] and [7] exhibit
divergence for ¢ — 0.

The inner expansions for (¢ ) and Z(¢), which are to be
used in the region 0 < ¢ < 15°, have the form

27U + 108eBu” + 1445%u* — 8¢fu
54(3u + 2¢Bu’)

iin —

+0(8%), (8]

[9]

) 1 2 U
—ln=2*_ - + 2
z 2tpu+3,6’e In % o089,

where ¢ is the Napier number {In ¢ = 1) and

]
(*P‘Fﬂ \/(PZ"'EEB), n ==l

u= [10]

B | =
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For pendant interfaces ¢ = —1 and the angle ¢ has a minimum
value ¢ = ¢; corresponding to the inflectional point of the
surface profile z = z(x). Since the inflectional point also
corresponds to zero under the square root in Eq. [10], one
finds

¢f =7 B+ 0(8Y. [11]

W eo

Besides, for the sessile interface (¢ = 1) one has identically
n = 1 in Eq. [10]; for the pendant interface n = 1 for z <
z(g)and 7= —1 for z > z(g:).

It should be noted that Eq. [8] was derived in Ref. (10)
for the case of a sessile interface. We derived Eq. [9] by using
the same asymptotic procedure, which is described in Ref.
(10). The only difference is that we used a modified version
of Eq. [24]in Ref. (10):

2@, B) = (@) + (B1In B)Z(@) + BZ2(g) + - - -,
L _ ¢

v

The integration constants in Egs. [8] and [9] were deter-
mined in accordance with the method of the matched
asymptotic expansions, i.¢., in such a way that the outer
expansicn of the inner solution was equal to the inner ex-
pansion of the outer solution (see, e.g., Ref. (11)]:

[12]

{fin)out = (fuut)in; (Z—in)oul — (z—out)in' [13]

Here

3
Soutyin — _f_ g}___§
(x™)" = ¢ 6+ﬁf(3¢ 9 ¥

41 8§81
—Bz(gg-*g;), [14)

2
@ 2.
=2-"-+8[ImZ—1].
2 5 b‘e(}ln2 1)

Zoutyin
(z2°%)

[15]

Equations [14] and [15] can be derived from Egs. [6] and
{7] by expanding in series for small ¢ and keeping the two
leading terms of the expansions.

Finally, in accordance with the asymptotic procedure (11)
one can formulate the compound solution, which is uni-
formly valid in the outer and inner regions:

X(b‘P) = ¥ = gout 4 gin _ (foul)in [16]
z(b‘la):£=Eout+2‘in_(50U()in. [17]
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Thus to calculate the dependencies x{(¢) and z(y) from
Egs. [16] and [17] one substitutes X °! and 7°* from Eqs.
[6]and [7], ¥™and Z'" from Eqs. [8]and [9], and (X ")
and (z°*)'" from Egs. [14] and [15]. The functions x(¢)
and z(¢) calculated in this way are compared in the next
section with the exact computer soiution of the Laplace
equation, Eqgs. [2] and [ 3], for different values of the Bond
number, 5.

In the end of this section it is to be noted that in the
compound solutions, Eqs. [16] and [17], the divergent terms
in %" and Z°" for ¢ — 0 are exactly canceled by the re-
spective divergent terms in (£°')" and (z°*')"™. Note also
that when using Eqgs. {8], [9], [14], and [15] one must ex-
press angle ¢ in radians.

3. NUMERICAL RESULTS AND DISCUSSION

Let us define the relative errors of Egs. [16] and [17]:

X(@, B8) — X, B)

OV, AND NAGAYAMA

Here x{yp, 8)and (¢, 3) are determined from the asymptotic
equations and x.. (¢, §) and Z.(, §) are the exact values
of these functions obtained by numerical integration of the
Laplace equation—Egs, [2] and [3]. To carry out the nu-
merical integration we used the standard Runge-Kutta-Fel-
berg method (RKF45)—see, e.g., Ref. (12). The integration
starts from the fluid particle apex (x = 0, z =0, ¢ = 7) with
appropriate increments in ¢ up to some given value of ¢.
If one fixes the relative error 6, or 6., one can calculate
by means of Egs. [18] or [19] the curves of constant error

B = B(e).

{a} Sessile Interface (e = I; 5w = 1)

The relative errors 6, and 8, calculated by means of Egs.
[18]and [19] are shown in Fig. 2 as functions of the running
slope angle ¢. The solid lines represent the relative errors of
the compound solution, Eq. [16] or [17]. The respective
values of 6, and é. calculated by means of the outer solution,

by = (e B) Eqg. [6] (dahsed line), and of the inner solution, Eq. [8]
B e [18] (dotted line), are also given. One sees that the compound
_ e, B) — Zaly, B) solution for x{¢) (the solid line in Fig. 2a) provides better
5. = . ¥ p
) Zex (0, ) [19] accuracy in comparison with the inner and the outer solu-
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FIG. 2. Relative error of the asymptotic expansions vs running slope an
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tions. The outer solution coincides with the compound one
in the range for ¢ from 80° to 180°,
The relative error §, calculated by means of Eq. [19] for
8 =0.1and 0,01 is shown in Figs. 2b and 2c. The comparison
between these two figures implies that the accuracy of the
asymptotic formulae strongly increases with the decrease of
8, as it could be expected. It is seen also that the compound
solution for z(¢) has better precision than the outer and the
inner solutions when 0° < ¢ < 110°, If ¢ is larger than 110°,
the outer solution becomes more precise than the compound
one, Similar tendency is observed also in Fig. 2a for §,, where
the compound solution coincides with the outer solution for
¢ in the range 80-170°. That is why we suggest to the reader
to use the compound solution for x(¢) and z(¢) when ¢ <
110° and the respective outer solutions when ¢ > 110°,
Four curves of constant error |8, = 0.01, 0.001, 1074,
and 107 calculated from Eq. {18] (where the compound
solution is used for ¢ < 110° and the outer one—for ¢ >
110?) are plotted in Fig. 3a. The same calculations are made
for 6, by means of Eq. {19] and the results are shown in Fig.
3b. For all points below a given curve the precision of the
asymptotic solution is higher than the one corresponding to
this curve. The curves have a small break at ¢ = 110°, which
1s due to the transition from the compound to the outer
‘solution. The curves in Fig. 3a have a peak around ¢ = 30°,
because in this region 8, changes sign—cf. Fig. 2a. The curves
in Fig. 3b have the same peak around ¢ ~ 90°. The curves
@# vs ¢ in Fig. 3 sharply increase when ¢ — 180°, because
then the outer asymptotic solution tends to the exact shape
(see Ref. (10)).
One sees in Fig, 2 that at ¢ = 0 the compound solution
is equal to the inner one. For this point it is casy to derive
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the following equations by substituting ¢ = 0 in Egs. [8]

and [9]:
— 2
im(e=0) =\/;3(1 -8)

z_i“(go=0)=2—,8(l—lln§).

[20]

SIne 213

In the case of a gas bubble attached beneath a horizontal
solid surface Eqs. [20] and [21] represent the minimum pos-
sible contact radius and the maximum possible height, re-
spectively.

{b) Pendant Interface (e = —1)

There are two possibilities for the parameter 5 in this
case: n = 1 for z{¢) < z(y;)and n = —1 for z(¢) > z(e;).
The minimum value of ¢, ¢;, can be calculated by means
of Eq. [11]. To visualize that z{¢) is a double-valued func-
tion in a vicinity of the inflectional point ¢ = ¢; we plotted
¢ vs z—see the insets in Fig. 4. Since &, and 4, are also
double-valued functions of ¢, in Fig. 4, we plotted 6, and
&. for pendant interfaces as functions of the dimensionalized
z-coordinate, z/b.

One sees in Fig. 4a that for z/b < 2.0 (§ = 0.1) the error
d, of the compound solution is very small. In the region 2.0
< z/b < z{g;)/b, b, 1s relatively high, Around the inflectional
peint, z{y¢) = z(;), 8, increases very fast and goes to infinity.
This is due to the fact that the denominator in Eq. [ 8] equals
zero for ¢ = g;and e = —1.
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FIG.3. Curves of constant relative error for sessile interface calculated from the compound expansion for 0° < ¢ < 110° and from the outer expansion
for 110° < ¢ < 180°: {a) i8,| = constant; (b} |5,| = constant. For all points below a given curve the relative error is smaller than that corresponding to

the curve.
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The calculated values of 8, for 8 = 0.1 are given in Fig.
4b. It is seen that at the interface apex (z = 0) the compound
solution provides very large error and similarly to the sessile
interface we suggest that the outer solution be used for ¢ >
110° and the compound solution for ¢ < 110°. It is inter-
esting to note that at the same value of 8 the asymptotic
solution for z(¢) has a smaller error than the respective so-
lution for x(¢) in the region z(¢) = z(¢;) (i.e., p = —1)—
cf. Figs 4a and 4b. On the other hand, a comparison between
Figs. 4b and 4c¢ shows a pronounced increase in precision
when § is decreased. In addition, the problematic region
where n = —1 (z > z{¢;)) shrinks with the decrease of 8 and
becomes physically insignificant—cf. the insets in Figs. 4b
and 4c. For example, a change in the angle ¢ from ¢; to 90°
in Fig. 4b (8 = 0.1) at » = —1 corresponds to a change in
z/b from 2.15 to 2.35, whereas in Fig. 4¢ (8 = 0.01 and all
other conditions the same) z/5 changes from 2.02 to 2.04,

In contrast with X™"(¢,), the value of Z™(¢; )} is restricted.
From Eqs. [9]-[11] for ¢ = —1 one obtains

. 1., B
Zi"(wi)=2—§ﬁlng [22]
In Table 1 we checked the precision of Eqs. [11] and [22]
determining ¢; and z; { parameters of the inflectional point

TABLE 1
Numerical Test of Egs. [11] and [22] against Exact
Computer Solution

@) #il°) i} H N
[é] Eq. [11] exact Eq. [22] exact
1077 29.59 30.94 2.1365 2.1494
3 x 1072 16.21 16.69 20530 2.0564
1072 9.36 9.40 2.0213 2.0211
3x 1077 5.37 5.37 2.0076 2.0075
1073 2.96 2.96 2.0029 2.0029
3Ix 107 1.62 1.62 2.0010 2.0010
0™ 0.94 0.94 2.0004 2.0004
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FIG. 5. Curves of constant relative error for pendant interface calculated from the compound expansion for 0° < ¢ < 110° and from the outer
expanston for 110° < ¢ < 180°: (a) |8,| = constant; (b) |8.| = constant. For all points below a given curve the relative error is smaller than that

corresponging to the curve.

in the pendant drop profile) against the exact values of these
parameters calculated by means of numerical investigation
of Laplace equation. As it is to be expected, Eqs. [11] and
[23} are more accurate for smaller values of 8. It should be
noted that the accuracy of our compound solution is the
worst In a vicinity of the inflection point of the pendant
interface, illustrated numerically in Table 1. For larger values
of ¢ the accuracy fast improves and the compound solution
becomes practically exact at the fluid particle equator (¢ =
90°), even for 8 = 0.1—see Figs. 2a, b and 4a, b.

Figures 5a and 5b represent curves of constant error for
pendant interfaces. Figure 3a relates to constant |é,| and
Fig. 5b to constant |8,|. We plotted in Fig. 5 only the data
calculated with 5 = 1. The breaking of the curves at ¢ =
110° is due to the transition from the outer to the compound
solution. The peaks of the curves in Fig. 5a appear around
40-50° where §, changes sign, and the peaks of the curves
in Fig. 5b appears around ¢ = 90° where §, changes sign.

4. CONCLUDING REMARKS

In the present article we derived a compound asymptotic
expansion describing the shape of sessile and pendant liquid—
fluid interfaces by matching the outer and inner ¢xpansions
previously derived in Ref. (10). Here we pay attention to
the case of a pendant interface, which has not been considered
in detail in Ref, (10). In these aspects the present paper is
a continuation and complement of the study in Ref. (10).

The expansions are derived for small values of the Bond
number, 8, defined by Eq. [1]. For small 8 the droplet (bub-
ble) surface is almost spherical except the region of slope
angles 0 < ¢ < 30° (see Fig. 1), where the gravitational

deformation is significant. Figures 2 and 4 show that the
compound expansion derived here has a considerably better
accuracy in the region 0 < ¢ < 30° compared to the outer
and inner expansions. In fact, the compound expansion has
the best precision for all values of ¢ (0 < ¢ < 180°), ex-
cluding a small vicinity of the fluid particte apex (¢ = 180°),
where the outer expansion is more precise.

This study was provoked by the experiments on contact
angle and line tension measurements with small bubbles at-
tached to a liquid—gas interface ( 13-16). In these experiments
the slope at the contact line belongs to the interval 0 < ¢ <
20°. This ie exactly the region where our compound expan-
sion provides the greatest improvement over the outer and
inner expansions—see Fig. 2.

We hope the compound analytical expansions, Eqs. [16]
and [17], can find application for experimental data inter-
pretation in any case, when the slope angle ¢ at the contact
line of small fluid particles 1s between 0° and 30°. These can
be floating bubbles and oil droplets; bubbles or droplets
pressed by the upthrust beneath a solid plate; or sessile drop-
lets forming large contact angles like water droplet on strongly
hydrophobic substrate, mercury droplet on glass, etc.
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