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Abstract 

A dielectric thin film of charged surfaces intervening between two electrolyte solutions is considered as a model of the 
non-electrolyte films in water-in-oil emulsions. lipid bilayers or biomcmbranes. The fluctuations of the ion-charge density 
in the two electrolyte phases interact through the oil film thus giving rise to an effective attraction between the film 
surfaces, which is due to the ion correlations. The respective ionic correlation free energy of the film is calculated and its 
dependence on various factors is investigated. It is found that when the dielectric permittivity of the film substance is 
relatively high, the effect of ion correlations is comparable with the effect of van der Waats forces and can influence the 
thin film contact angle and emulsion stability. 

~e~~~,ord~: ~jsjoining pressure; excess free energy; ionic correlations; thin liquid films. 

1. Introduction 

In Part 1 of this study, Ref. [I], we investigated 
quantitatively the forces due to ionic correlations 
in electrolyte-containing thin liquid films. The over- 
lapping of the two electric double layers inside the 
fiIm gives rise not only to eIectrostatic repulsion 
{described by the DLVO theory [2,3]) but also to 
attraction, which is due to the effects of ionic 
correlations and image forces; see Refs [I,41 and 
the literature quoted therein. In Part 1 we derived 
analytical expressions allowing calculation of the 
film correlation free energy and disjoining pressure. 

In the present paper we consider the complemen- 
tary case of electric double layers situated outside 
the thin film. Such a configuration can be observed 

with oil films between aqueous emulsion droplets, 
with lipid bilayers, vesicles or biomembranes. In 
this case there is no overlapping of the two electric 
double layers. The ionic-charge density fluctuations 
in the two double layers interact through the thin 
oil film. Hence one can expect that the attraction 
due to ionic correlations will be smaller than in 
the case of inner double layers. However, in the 
latter case, the ionic-correlation attraction which 
appears on the film surfaces is missing when the 
double layers are outside the film. Therefore, even 
a smaller effect of the ionic correlations, in combi- 
nation with the van der Waals and steric inter- 
actions, can be important for interpreting the 
equilibrium and the stability of emulsion-type oil 
films of charged surfaces. 

In some aspects the system with two outer 
electric double layers is simpler than the system 
studied in Part 1, because both the surface charge 
and potential do not depend on the film thickness. 
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The same is true for the ionic distribution in the 
electric double layers. The theoretical approach 
developed in Part 1 can be applied to the present 
case without any limitations. 

Our aim below is to derive analytical expressions 
allowing calculation of the film excess correlation 
free energy and the respective component of 
the disjoining pressure. Then we investigate the 
dependence of the ionic-correlation attraction on 
different factors like concentration and valency of 
the ions, surface charge density and thickness of 
the Stern layer, temperature, film dielectric permit- 
tivity, etc. For the reader’s convenience the algo- 
rithm of the numerical calculations is given in the 
Appendix. 

2. Model of the ion distribution 

The system under consideration consists of a 
plane-parallel thin dielectric film situated between 
two aqueous phases. The film surfaces are charged 
and electric double layers are formed in the two 
adjacent aqueous phases, whereas ions are not 
present in the film interior. 

The film has thickness h and dielectric permittiv- 
ity pi (Fig. 1). Each electric double layer consists 
of a Stern layer of thickness w and of a diffuse 
double layer characterized by an ion-charge density 

Fig. 1. Sketch of the ionic-charge distribution in twu electric 
double layers situated outside a thin dieIectric film of permit- 
tivity tl and thickness h. The smooth and the stepwise profiles 
represent the real and the model charge distributions, p(z) and 
pid(z), respectively; w is the width of the Stern layers. 

distribution p(z). The z-axis is directed normally 
to the film surfaces, The function p(z) can be easily 
calculated by means of the Poisson-Boltzmann 
equation; see Eqns (Ad) and (A8) in Part I [I]. 

In this paper we follow the notation used in 
Part 1. In particular, c is the surface charge density; 
qi=Ze and q2= -2% (Z= +l, &2, . ..) are the 
charges of a counterion and a co-ion, respectively. 
The numerical densities of both ion species are 
equal to no far from the interface. 

As mentioned in Part 1, for calculating the ionic- 
correlation energy it is convenient to replace the 
continuous real charge density distribution p(z) 
with an idealized (model) one: 

pi for O< z< a 

id = p - 

1 

p” for a<z<a, (2.1) 

0 for .Z>CZ, 

see Fig. 1. Here p’, pi’, a and aa are parameters of 
the model. They can be calculated from Eqns (3.5) 
and (3.7) in Part 1, which stem from some 
conditions for equivalence between the idealized 
stepwise distribution pid(z) and the continuous 
distribution p(z). 

In the case of electric double layers inside the 
film, considered in Part 1, the stepwise model can 
be used for a film of thickness h satisfying the 
condition 2a < h < 2a,. It is worthwhile noting 
that there are no such restrictions in the present 
case, when the double layers are situated outside 
the film. 

The Debye screening parameters tcl, roll and ~~ 
corresponding to the three regions I, II and III 
(see Fig. 1) can be calculated as explained in 
Appendix B of Part 1. 

The Brownian motion of the ions gives rise to 
fluctuations in the ion charge density. The fluctua- 
tion charges in the two adjacent electric double 
layers can interact across the intervening thin 
dielectric film. The resulting correlations between 
the fluctuation charges lead to the appearance of 
additional correlation free energy with a bulk 
density frbd,(z,h). Since f$fr depends on the film 
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thickness h, one can define an excess correlation 
free energy density 

which accounts for the interactions across the thin 
film. Our aim is to calculate the excess correlation 
free energy per unit area of the film 

al 

4LVd = 2 J Af%z, h) dz (2.3) 

0 

where the factor 2 accounts for the two symmet~cal 
electric double layers. In accordance with the 
thermodynamics of thin liquid films [S-73 the 
derivative 

&?LJA n - cm = - 
[ 1 al2 T 

(2.4) 

represents the ion-correlation component of the 
thin film disjoining pressure. 

In the framework of our model the excess corre- 
lation free energy can be represented in the form 

AL = 2(@:,, -I- A.& + &!A (2.5) 

where 

* 

Af ;;, = 
J 

df ‘pb, dz (2.6) 

ax‘ 

are the contributions of regions I, II, and III 
depicted in Fig. 1. Below we calculate consecu- 
tively Af,‘,,t (V = I, II, III) by making use of the 
method developed in Part 1, 

3. Correlation energy of region I 

For an electrical charge q located at the point 
r = ro, which belongs to region I, Eqn (4.5) of Part 1 

(3.1) !&A+=-gs(z-i) 

where 

A2 = k2 + IC: (3.2) 

where c##, z) is the Fourier transfo~ of the flue- 
tuation polarization electrical potential, k = 
(k,, k,, 0) is a two-dimensional wave vector of 
magnitude k = lkl, CT is the dielectric permittivity of 
water, ICY is the Debye screening parameter in 
region I; compare with Eqns (3.12) and (4.3)-~4.4) 
of Part 1. By using the variables 

reads 

u=Izz, 5=X, El=& (3.3) 
* 

one transforms Eqn (3.1) to read 

a2# rb I_- 
au2 = - 2Er 6(u - C), O<&Cb, (3.4) 

The parameters 

br = AQ and bz = A(a, - a) (3.5) 

are the dimensionless widths of regions I and II; 
see Fig. 2. Similarly, the dimensionless thicknesses 

IV c E* 

Fig. 2. Sketch of the regions of uniform ion-charge density in 
our model. Regions I, II and III are the same as in Fig. 1; 
region IV is the dielectric film; regions V, VI and VII are 
similar to regions I, II, and III, respectively; regions Sl and 52 
represent the two Stern layers. 
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of the dielectric film and of the two adjacent Stern 
layers, Sl and S2, are denoted by 

c=lh and \it=Iw (3.6) 

see Fig. 2. Besides, for the sake of convenience the 
film is denoted as region IV in Fig. 2. The rcmain- 
ing regions V, VI and VII are symmetrical to 
regions I, II and III respectively. 

The solution of Eqn (3.4) for region I reads [g] 

&k, u) = B’ exp (- u) + B, exp u 

-E’sgn(u-t)sinh(u-t), 

O<u<b, (3.7) 

where B’ and Bz are integration constants and 

-1 for xc0 

sgn x = 

i 

0 for x=0 (3.8) 

1 for x>O 

Since r. belongs to region I (0 < 4: < b’), the 
counterparts of Eqn (3.4) for regions II and III are 
homogeneous equations: 

?+” 
--&#p=o, 

Al2 
b, <u < b’ + b2 (3.9) 

a2 4”’ - - p” $” = 0, 

2U2 
b,+b,<u<m (3.10) 

where 

(3.11) 

The solutions of Eqns (3.9)-(3.10) read 

$“(k, u) = A 1 exp (- txu) + A2 exp (au), 

bl <u < bl + b2 (3.12) 

#“(k, u) = F, exp(-pu), b,+b,<u<m 

(3.13) 

where A’, Az and F’ are constants. Similarly 
one calculates the fluctuation potentials in the 

remaining regions: 

b”(k, u) = C’ exp(- u) + C2 exp u, 

-c-2$-b’cu<-c-29 

4”‘(k, u) = G’ exp (- au) + Gz exp (au), 

-c-2$-b’- bZ<u<-c-26-b’ 

@“‘(k, u) = Fz exp (Pu), 

-oo<u<-c-2$-b’-b2 

@‘(k, u) = D’ exp(- tu) + Dz exp (tu), 

-3<u<o 

@2(k, u) == L’ exp (- tu) + L2 exp (tu), 

-c-29<t:<-c-d 

#“(k,u)=M’exp(-tu)+ M2exp(tu), 

-C-\3<U<-6 

where 

r = k/l 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

and Ai, B’, Ci, Di, F’, Gi, Li and Mi (i= 1,2) are 
constants. The integration constants are to be 
determined from the standard boundary conditions 

@,’ = 472 and cyl “$;’ _ ,,23_$. (3.21) 

imposed at each boundary between two regions 
k’l and Y2. The calculation of all integration 
constants is simple but tedious and finally yields 

(1 

s 
#(k, 5) di = IE, [b, /A2 + G’(v, o, b,)] (3.22) 

0 

where 

t12 -- G’(~AW- b;Ql 

x {‘y-c,j+[2b’(l-v)(o-l)+o-v] 

x exp(-2b’)l (3.23) 
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Qi =(v+ I)@+ l)+(v- l)(w-l)exp(-Zb,) 

(3924) 

11+/i 
P 

rj-- 1 
v=-- 

tt-p’ 
= - exp (- 2kw), 

rl+I 

c l-l-6 
rl =-- 

611-6 

6 X-l ci1+n 
=---exp(-2kh), x=:‘i”l;ll, 

X+1 

n r-1 
= G exp (- 2kw) 

l+Y l-=2----- 
1-U 

1 -y’ y = Gexp (-2bi), 

l-5) 
w=als_Q 

a/- P - exp (- 2crb,) 
&-l-B 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

The variables 1, bl) b2, c, LYI, @, and ‘c are defined 
by Eqns (3.2), (3.5)-(3.6), (3.11) and (3.20) as func- 
tions of k. 

The inverse Fourier transformation of Eqn (3.22) 
in view of Eqn (3.3) yields 

00 

+ 
s 

kJ,(r2 k)G’(v, o, bl )dk 1 (3.29) 

0 

where $(v,, 5) is the Fourier transform of &(k, [), 

r2 = !bl (3.30) 

is a position vector in the plane xy and Jo is a 
Bessel function, 

In the limit h + co (large fiim thickness) the 
fluctuation potential yr*(+, 5) tends to a function 
~‘r;(r~, [). In the same limit Eqn (3.29) transforms 

into 

m 

+ 
s 

kJo(r2k)G’(va, o, bi) dk 1 
0 

(3.3 I) 

where 

V 
-1 l+iTm 

m-r l-j.&’ Pm”---- @-:: exp(-2kw) (3.32) 

are the limiting values af the parameters v and ,U 
for h + co; the parameters br and Ed do not depend 
on h. (Note that in contrast to the case considered 
in Part 1, in the present case the Debye parameters 
tcl and roll do not depend on h.) 

Equations (3.29) and (3.31) are counterparts of 
Eqns (4.28) and (4.29) in Part 1, respectively, Then 
following the procedure for de~vation of Eqns 
(4.34) and (4.35) in Part 1 one obtains the sought- 
for expressions for the excess correlation internal 
and free energies per unit area of region I: 

(0 

H;.;kgT 
Au;, = 7 dk 

c s 
0 

x kCGf(v,O,bl)-Gi(vm,w, b,)l (3.?3) 

tC;kgT m dT ab 
4% = &?t 

s s 
jz dk 

T 0 

x k[G’(v, w, b,) - GIIv,, w b,)l (3.34) 

where T is temperature and ke is the Boltzmann 
constant. 

4. Correlstian energy of region II 

In this case bl cc C c bl + b2 (Fig. 2). Instead of 
Eqns (3.7) and (3.12) one has 

f#+(k, u) = B i exp (- u) + Bz exp u, Otu<b, 

(4.1) 
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&k, u) E= Al exp (- au) + At exp (aru) 

- E, sgn (U - t) sinh ct(u - (5) 

br c u < b, + bz (4.2) 

where 

Ezf E&X (4.3) 

Equations (3.13)-(3.19) hold also in the present 
case. The integration constants Ai, Bi, Cl, Di, Fi, 
Gi, Li and Mi (i = 1,2) can be determined from the 
boundary conditions (3.21). As a result of these 
simple but tedious calculations one obtains 

P 

+ 

s 
dk kJ& k)G”(O, bz, ct, p) 1 a 

(4.4) 

where 

G”V-4 bz, %,P, = (a, - a)2 

btQz 
X rp - 8# + [2cxb,( 1 - @(cr - /I) 

-t-62-P]exp(-2ab,)} (4.5) 

Qz = K’ [(0 - I)@ - (1) exp (- 2ccb,) 

- (0 + 1 )b + P,l (4.6) 

v- 
-$exp(-?b,) 

V-l 
1 - - v+l exp(--W 1 

(4.7) 

The variables bl, ba, cx, p, and v are defined by 
Eqns (3.5), (3.11) and (3.25)-(3.28) as functions of 
k. As usual r2 is a two-dimensional position vector; 
cf. Eqn (3.30). 

In the limit h I) OD the fluctuation potential 
@(r,, 6) tends to a function $$(r2, 0, representing 
the fluctuation potential in region II of a single 
electric double layer (infinitely thick film). In the 

same limit Eqn (4.4) reduces to 

m 

+ r dk kJo(r2 k)G”(d,, b2, a, P) 1 J 
0 

where 

e m=M 

l- 

1 fV” +exp(-2h,) 
* Ii 

1 I vm - sexp(-2b,) 
03 1 

(4.8) 

(4.9) 

and v, is given by Eqn (3.32). 
Equations (4.4) and (4.8) are counterparts of 

Eqns (4.41) and (4.42) in Part 1. Then following 
the procedure of derivation of Eqns (4.46) and 
(4.47) in Part 1 one obtains the sought-for expres- 
sions for the excess correlation internal and free 
energies per unit area of region II: 

- G”(&, , b2, M, P)l (4.10) 

K;kBT m dT m 
Af !a = 7 

s s 
TZ dk k[G”(t bz, a, P) 

T 0 

- G”@,,, La, P,l (4.11) 

5. Correlation energy of region I11 

In this case bl + bz -c < < co (Fig. 2). Instead of 
Eqn (3.2) Eqn (4.1) holds and Eqn (3.13) must be 
replaced by 

#“(k, u) = F, exp (- flu) + F3 exp (flu) 

- ES sgn (u - <) sinh p(u - 4) (5.1) 
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#here potential at the point rO == (0, 0, 5): 

&=JW G2) 

Equations (3,12) and (3.14)~(3.19) hold also in the 
present case. From the boundary condition 4”’ for 
(u - t) II cc one obtains 

d f$” (t: 1 =5 hmO 
-s 

dk exp (ik.r#@“(k, t) (5.8) 

Following the method developed in Part 1 from 
Eqns (3.31, (3,11), (5.2), (5.6) and (5.8) one easily 
derives the sought-for expressians for the excess 
internal and free energies per unit area of the 
region 111: 

The remaining integration constants A’, B’, Ci, Di, 
I$i, Ci, Li, and M’ (i = 1, 2) arc to be determined 
fram the boundary conditions (3,2X). After some 
calculations one obtains 

T a 

(5.10) 

where 

,,d l+e-l 
c? [ m WJ (- 2% 1 Ii 
C e-1 

I 84-1 
- - exp (- 2otbz) 1 (.w 

and the variables b2, R, /3 and 8 are given by Eqns 
(3.5), (3.11) and (4.‘7) as functions 
can define 

&“‘(k, 5) - Cb”‘(k, 0 - @(k, a”) 

of k. Then one 

x exp C-V(bt -I- b2 - &I (fj.6) 

where gu is the limiting value of g for h + 00: 

(567) 

see also Eqns (4,9) and (5.5). Analogously to 
Eqn (4,3X) in Part 1 we; define the excess ~uctuation 

6. Numerical dater. and discussian 

The excess correlation free energy per unit area 
of the film, dfcQr, can be calculated by substituting 
from Eqns (3.34), (4-l 1) and (S,lO) into Eqn (2.5). 
The algorithm of calculations is described in the 
Appendix, The ion-correlation component of the 
disjoining pressure nFor can be calculated by 
nume~cal differentiation in accordance with 
Eqn (2.4). 

Figure 3 illustrates the effect of the surface charge 
density and Stern layer on dL,,. Let us denote by 

&or 
ooao- 

-0001 

T=208K 

Cd = 0.001 mol/l 

E = 18.4 

h [ml 

Fig. 3. Film excess c~~~lat~~~ free encrg,y d&,, vs film thickness 
I, at two difbmt values of the area per unit surface charge A. 
The full and da.shed lines correspond to tr! = 2 ,& and w = 0, 
respectiveIy. 
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A the area per unit surface charge at one of the 
film surfaces and let w be the width of the Stern 
layer. Each pair of one full and one dashed line in 
Fig. 3 represents the dependence of d&, on film 
thickness h for a given value of A: (A = 1 nm2 and 
A = 5 nm2) and for two different values of w (w = 0 
for tke dashed line and w = 2 A for the full one). 
One sees that the increase of the surface charge 
density (the decrease of A) leads to an increase of 
the magnitude of the correlation free energy dA,,.. 
As could be expected, df,,, is negative and cosres- 
ponds to attracti’on between the two film surfaces 
(negative disjoining pressure). The small difference 
between the dashed lines in Fig. 3 and the respec- 
tive full lines implies that the effect of the Stern 
layer is small and can be neglected. All curves in 
Fig. 3 are calculated for an electrolyte concen- 
tration C el = 0.001 mol 1” in the aqueous phase, 
temperature T = 298 K, dielectric permittivities 
L = 78.4 for water and cl = 35 for the film 
substance. 

The variation of the film dielectric permittivity 
c1 affects strongly the value of the ion-correlation 
energy df,,,. This effect is illustrated in Fiz. 4 for 
four different values of cl. The greater cl, the 
greater the magnitude of df,,,. Hence the contribu- 
tion of the ion correlations into the film free energy 
is more pronounced for emulsion films with a 
fi!m pbase of greater dielectric permittivity, like 
nitrobenzene. 

In contrast to the effect of cl, the effect of the 
electrolyte dissolved in the aqueous phases turns 

oooo- 
Afcor 

./ - 
-0001 .’ 

f-- 

/ 
I mS/m I / - taBDK.r~B1 B.‘,CJ7 9 

-0002 / - Tk323K. r=m.7. r,=no 5 

-0 003 CEl = 0.01 mol/l 
w = 0.2 nm 

-0 004 A-inm’ 

-0 005 
20 

Fig, 5. Plot of dfEDr vs h for different temperatures T. 

out to be negligible. We varied C,, between 10T4 
and 10V2 mall-” without any pronounced effect 
on the df,,,, vs 1. curves. A symmetrical 2 : 2 electro- 
lyte provides a slightly greater magnitude of d&, 
compared with a 1: 1 electrolyte at the same con- 
centration. 

Figure 5 illustrates the effect of temperature on 
the dependence of df,,, vs h. To determine the 
system, the film substance was assumed to be 
nitsobenzene and the temperature dependence of 
the dielectric pesmittivities t and cl was taken into 
account. One can see that increasing the temper- 
ature affects slightly the effect of ionic correlations 
and leads to an increase in the magnitude of Ahor. 

In Fig. 6, df;,, is compared with the van des 
Waals excess free energy per unit ar?a of an 
emulsion film, df,,_,. To calculate dfVw we used the 
well-known equation (see for example Ref. [SJ). 

dfvw = - & 

0 000 
AfC.X *_--- 

I jF- 
_____,,... ;.zr*; --i‘i” 

E, =2 ,’ c’;*-- 
/ ,. ,‘_’ 

-0 001 ,..;‘;’ 

t mN/m 1 
El=5 ./ ,?.’ , 

.’ , Cd = 0.001 mof/l 

T=298K 

A=lnm2 

E = 78.4 

w = 0.2 nm 

0 5 

h rnrz 

15 20 

Fig. 4. Film excess correlation free energy df,,, vs film thickness 
h a? several dif’Terent values of the film dielectric permittivity c 2. 

I : 

I ;’ c,=m 
I :: r-784 

I : w = 0.2 nm 

Fig. 6. Correlation and van der Wasls excess frer energies, Aj,,, 
and AfVw, and their sum, AS,,, -t- df,,, plotted against the film 
thickness h. 
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with Hamaker constant Au = 5 l 1O-21 J, which is 
a typical value for emulsion films. One sees in 
Fig. 6 that for the specified values of the parameters 
used, dfCot is about 50% of dfVw. Hence in some 
cases d&,, can contribute considerably to the 
energy of attraction in thin liquid films. 

Concluding remarks 

This paper considers a dielectric thin film of 
charged surfaces, which intervenes between two 
electrolyte solutions. A typical example is an oil 
film formed between two aqueous droplets in a 
water-in-oil emulsion. The fluctuations of the ionic- 
charge density in the two aqueous phases interact 
through the thin oil film. The correlations between 
these fluctuations give rise to an additional attrac- 
tion between the thin film surfaces, which can be 
characterized by the excess free energy of ion 
correlations per unit area of the film, df,,, 

(Eqn (2.3)). 
We derived analytical expressions for calculating 

df,,, by using the theoretical method developed in 
Part 1 [l]; see Eqns (2.5), (3.34), (4.11) and (5.10). 
The algorithm of the numerical calculations is 
described in detail in the Appendix. We studied 
numerically the role of various factors on the 
magnitude idf,,,f of the correlation free energy. 

It turns out that Idf&,I depends strongly on the 
dielectric permittivity cl of the film as well as on 
its surface charge density; see Figs 3 and 4. How- 
ever, df,,, is insensitive to the width of the Stern 
layer and to the concentration and valency of the 
ions in the two aqueous phases. Besides, ILI_&,,I 
slightly increases when increasing the temperature 
(Fig. 5). 

In the case of an emulsion oil thin film of 
relatively high dielectric permittivity (iI = 35) df,,, 
can be about SO% of the excess free energy Ltf;,,, 
due to the van der Waals forces (Fig. 6). Hence the 
ionic correlations can provide a sigmficant contri- 
bution to the attraction between the two film 
surfaces and to influence the value of the emulsion 
thin film contact angle, cf. Eqn (5.2) in Part 1. 

In conclusion, it is instructive to compare the 

273 

effects of the ion correlations in the case of inner 
(Part 1) and outer (present paper) electric double 
layers, corresponding to oil-i. -water and water-in- 
oil emulsions, respectively. 

(i) In both cases the ion correlations lead to 
attraction between the film surfaces. However, 
Id_&,,,l is much larger in the case when the electric 
double layers are inside the film. 

(ii) In both cases df,,, is sensitive to the surface 
charge density; compare Fig. 13(a) in Part 1 with 
Fig. 3 in the present paper. 

(iii) For inner double layers dfeor depends 
strongly on the ion concentration and valency, 
whereas such eflects are not observed with outer 
double layers. 

(iv) For outer double layers 4f,,, depends mark- 
edly on the dielectric permittivity cl of the oil 
phase, whereas there is no such effect with inner 
double layers; compare Fig. 6 in Part 1 $ -d Fig. 4 
above. 

(v) In both cases df,,, can be comparable with 
dfv,,, and can affect the magnitude of the thin tilm 
contact angle. 

We believe the present study of the ionic correla- 
tion forces in thin liquid films will contribute to a 
better quantitative description and explanation of 
the thin film contact angles and emulsion stabili:y. 
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Appendix: Algorithm for calculating the film excess 
free energy avid the disjoining pressure 

1. The input parameters are: area per umt ~,rlace 
charge, A (cm 2); bulk electrolyte concentration, no 
(era- 3); number of charges per ion, Z; temperature, 
T (K); dielectric permittivities of the aqueous and 
oil phases c and el; width of the Stern layer, w 
(cm); electron charge, e = 4.803.10- mo CGSE units. 

2. The parameters a, a~_, 1%, x. and x.  are 
calculated by using steps 2-5 of the algorithm in 
Appendix B of Ref. [1]. 

3. For a given value of the film thickness h one 
carries out numerically the integration with respect 
to k and T in Eqns (3.34), (4.11) and (5.10). For 
that purpose, for each given couple (k, T) one 
calculates ,:. from Eqn(3.11); b~ and b2 from 
Eqn (3.5); :t and fl from Eqn (3.2); z from Eqn (3.20); 
v, v~ and co from Eqns (3.25)-(3.28) and (3.32); 
Gl(v, oJ, b~) and Gl(v~, o~,bl) from Eqn (3.23) 
GUfO, b2,~,fl) and Gn(O~, b2, ~,fl) from Eqns 
(4.5}-(4.7) and (4 9); g and g~. from Eqns (5.5) and 
(5.7). 

4. After carrying out the integration in Eqns 
(3.34), (4.11) and (5.10) one obtains Af¢o, from 
Eqn(2.5). By varying the film thickness h one 
calculates the plot of Af~or vs h. 

5. In accordance with Eqn (2.4) one calculates 
the ionic correlation component of disjoining pres- 
sure,//co,, by differentiating numerically Afoot with 
respect to h. 

The integrals in Eqns (3.34), (4.1 !) and (5.10) a;e 
of the type 

i dT I= J T~- j dk kF(k, T) 
TO 0 

(AI) 

where the integrand F depends on T through the 
Debye screening parameters h0(T), •,(T) and 
x,,(T). To calculate numerically the integrals we 
used the following dimensionless variables: 

I T o 
u - 1 + (k/xoo) 2' v = -~- (A2) 

where 

h'oo -- xo(To) (A3) 

Js a constant. Then Eqn (AI) transforms to read 

1 1 

I = ~ o  dv --u2 F •oo - l ,  Tov (A4) 
o o 

One can check, that 

limu-.o I F  ~Coo - 1, Toy = const. (A5) 
ti 2 

Hence there are no problems about the con- 
vergency of the integrals in Eqn (A4). 


