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Abstract 

An approach to the calculation of the ionic-correlation free energy per unit area of thin liquid films is developed. The 
Poisson-Boltzmann ion charge distribution inside the film is replaced by an equivalent stepwisc model distribu:ion. In 
this way comp;lratively simple expressions for calculating the correlation free energy and disjoining pressure are derived. 
The results are in good agreement with numerical data of other authors. The dependence of the ionic-correlation free 
energy on various factors (dielectric ~~ittivities, width of the Stem lager, electrolyte concentration, ionic charge, 
sc;face charge density, temperature) is examined. In all cases the ionic correlations give rise lo an attractive contribution 
to the disjoining pressure, which often exceeds the contribution due to the van der Waais forces. In the case of 2:2 
electrolytes the combined action of ion;,: correlations and van der Waals attraction can prevail over the electrostatic 
repulsion and a net attraction between the two film surfaces takes place. 

Keywords: Disjoining pressure, excess free energy: ionic correlations; thin liquid films. 

1. Hntroductiora 

In spite of the facr that the Derjaguin-Landau- 
Verwey-Overbeek (DLVO) theory was found to 
be the main theoretical concept in the field of 
colloid stability [l-5], this theory often does not 
exhibit g>od agreement with experiment. For 
example, unreasonably large values of the 
Hamaker constant (AH - lo-l9 J) are needed for 
interpreting the data from coagulation of colloids 

L-671. 
The existing problems about the agreement 

between theory and experiment can be overcome, 
at least in part, if the effects of the ionic correlations 
in the electric double layers are tak,;l into account. 

Correspondence to: P.A. Kralchevsky, Laboratory of Thermo- 
dynamics and Physico-Chemical Hydrodynamics, Faculty of 
Chemistry, University of Sofia, Sofia 1126, Bulgaria. 

Debye and Hiickel [S] were the first who accounted 
for the contribution of the ionic correlations in 
the free energy of uniform electrolyte solutions. 
Considerably later, ionic correlations in non- 
uniform and non-isotropic solutions were studied. 
~artynov [9f considered the contribulion of the 
ionic correlations and image forces into capaci- 
tance of an electric double layer. His approach was 
based on the Bogolyubov-Born-Green-Yvon set 
of equations for the correlation functions. Later 
Outhwaite and co-workers [lo-121 treated the 
same: probIem by means of the hypernetled chain 
(HNC) equation. Another approach is based on 
computer simulations, see for example Refs Cl3 
and 141. 

In the case of two overlapping electric double 
layers (a thin film), ionic correlations contribute to 
the disjoining, :ssure of the thin film. To calculate 
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the respective contributions, Derjaguin [S] and 
Muller and Derjaguin [15] used a model of the 
counterion atmosphere. According to this model, 
the counterions are located on two planes, which 
are parallel to the respective film surfaces 
~Helmholtz model). These authors concluded that 
the ionic-correlation disjoining pressure compo- 
nent is comparable to the electrostatic component 
only at very small film thicknesses (ii - 2 nm). 
However, at such small him separations the finite 
size of the ions should also be taken into account. 
In the case of an electrolyte film between two 
uncharged surfaces, ionic-correlation effects were 
studied by Gorelkin and Smilga [16], Mitchell and 
Richmond [ 173, Richmond [18,19], and Carnie 
and Chan [20]. 

In the case of charged film surfaces the situation 
is more r;amplicated because of the non-uniform 
distribution of the ions inside the film. In this case 
quantitative results were obtained by Guldbrand 
et al. [Zl] by means of the Monte Carlo method. 
These authors established the following two effects 
due to ionic correlations. (i) The ions are located 
closer to the film surfaces, which results in a 
decreased overlapping of the two counterion atmo- 
spheres; (ii) the ionic correlations give rise to 
attractive forces, similar to the van der Waals 
forces. Under some conditions the net attractive 
force can exceed the electrostatic repulsion. 

An alternative approach to the correlation effects 
in thin films was proposed by Kjeliander and 
MarEelja [22]. They developed a computer method 
for solving the integral equations of the statistical 
mechanics in the framework of the HNC-closure. 
They studied separately the cases without eiectro- 
lyte [23] and with electrolyte [24]. These authors 
found that in some cases the effect of the ionic 
correlations inside the film can be accounted for 
by using the conventional DLVO theory with an 
effective surface charge lower than the real one 

1241. 
An alternative to the above numerical methods 

was proposed by Attard et al. [25,26], who devel- 
oped an analytical approach called the Extended 
Poisson-~oltzmann theory (EPB). This approach 

allows calculation of the excess film free energy 
and disjoining pressure from the ionic charge den- 
sity distribution inside the film. In particular, for 
solutions without electrolyte they cbtained a corre- 
lation disjoining pressure ncor - Ii-* for large film 
thickness h E253. Exponential decay of JIcor was 
established for electrolyte-containing solutions 
[26]. In spite of its elegant form, the EPB theory 
is not easy to apply numerically because of its 
complex mathematics. 

The numerical results show that the attractive 
forces due to the ionic correlations inside the thin 
films can be in the order of the known van der 
Waals forces, and even larger. However, as a rule, 
the effect of ionic correlations is not taken into 
account when interpreting experimental data for 
disjoining pressure or contact angles, see for exam- 
ple Refs [3,27 and 281. We believe this situation is 
due, at least in part, to the complicated and 
inaccessible form of the existing theories of the 
ionic-correlation disjoining pressure. That is why 
our aim in the present study is to develop a 
conceptually and mathematically simpler approach 
to the ionic correlations in thin liquid films at the 
cost of some model simplifications. Such a model 
approach is possible because the excess correlation 
free energy is an integral of the respective free 
energy density between the thir film surfaces. Then 
one can replace the real continuous charge density 
distribution inside the film (expressed by elliptical 
functions) by an appropriate simple stepwise model 
distribution. Fortunately this model approach 
turns out to give not only simpler expressions but 
also numerically correct results (see Section 5 
below)_ 

This paper is organized as follows. Section 2 
presents the theoreticai method. The model of the 
charge density distribution is introduced in Sec- 
tion 3 and the calculation of the correlation internal 
and free energies is described in Section 4. Eiectro- 
lyte-containing films between two similar dielec- 
trics as well as conductor phases are considered. 
The effect of different factors (electrolyte concen- 
tration, surface charge density, dielectric permittivi- 
ties, Stern layer, etc.) on the ionic-correlation 
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disjoining pressure is examined in Section 5. 
Appendix A contains derivations of some equa- 
tions, whereas Appendix I3 presents the algorithm 
for computer calculations. 

As mentioned above, the prcseni paper deals 
with elecrrolyte-containing films, i.e. electric double 
layers are present inside the film. This is the case 
for foams, suspensions, or oil-in-water emulsions. 
The ionic-correlation effects in water-in-oil emul- 
sions, where the electric double layers are situated 
outside the liquid film, are investigated in Part 2 
of this study; Ref. [29]. 

2. Theoretical method 

Our treatment of the correlation energy is based 
on the equation [9,20,30] 

4n 
~2+‘-KZfD=-Tqgb(r) (2-l) 

where ‘p is a fluctuation polarization electrical 
potential due to the presence of the electrical 
charge q at the point v = 0; 

K2 4x 
= -c %t&(r) 

ck,T m 
(2.2) 

where c is dielectric permittivity, kB is the 
Boltzmann constant, T is temperature, pt,, is the 
numerical density of the mth ion species, 

qm=Z,e (2.3) 

is the respective ion charge with e being the charge 
of the electron. 

For a homogeneous electrolyte solution, n, and 
K do not depend on r. Then, by using Fourier 
transformation, one can represent Eqn (2.1) in the 
form 

(2.4) 

where k = lkl. The inverse Fourier transformation 
yields 

q,(r) = 2 exp (- fcr), r = fri (2.5) 

where the subscrinr “m” refers to the mth ion 
species. 

The bulk density of the correlation internai 
energy is [31] 

w5) 

Finally, from Eqns (2.2), (2.5) and (2.6) one obtains 
the known formula of Debye and Hiickel [S] 

(2.7) 

Then the bulk density of the free energy is [8,31 J 

(2.8) 

In the case of a plane-parallel thin liquid film 
j”it: =f$,\(z), where the z-axis is oriented perpen- 
dicularly to the film surfaces. Our aim below is to 
calculate the free energy per unit area of the thin 
film: 

h 

where the planes z = 0 and z = h are the two film 
surfaces. The ion concentration is not constant 
inside the film: n, = n,(z). However, &,, is an 
integral quantity, which is not too sensitive to the 
local behavior of the functions n,{z). This fact 
enables one to use an appropriate model stepwise 
distribution for n,(z). For each step n, = const. 
and then the formalism for deriving Eqn (2.8) can 
be extended and applied. As a result one can obtain 
an explicit analytical expression for fO,_ With this 
end in view we consider an appropriate stepwise 
model of the ion distribution in the next section. 

3. Stepwise model ion distribution 

3.1 Singfe interlace 

Let us consider a single, plane, charged interface 
with surface charge density 6. The aqueous phase 
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is a solution of symmetrical electrolyte; the charge 

of a counterion is q1 = Ze, whereas the charge of 

a co-ion is q2 = - Ze (Z = f 1, +2, _..). Here and 

subsequently the indices 1 and 2 will refer to 

counterions and co-ions, respectively. The concen- 

trations of both ion species are equal to lzo far 

from the interface. 

At given 0, Z and tie the classical electric double 

layer theory provides explicit expressions for the 

ion distritutions rri(z) and ri*(z); see Appendix A. 

The bulk charge density is 

2 

p(z) = Ze[n, (z) - nz(z)], 
s 

p(z)dz= --G 

0 

(3.1) 

As mentioned above, for calculating the ionic- 

correlation energy It is convenient to replace the 

continuous real charge density distrinution p(z) 

with an idealized (model) one: 

P’ for Oczta 

pid(z) = p” for a<z<a, (3.2) 

0 for z > c! I_ 

(see Fig. 1). Here the plane z = 0 represents the 

interface and p’, p”, a and n, are four parameters 

of the model. We determine them from the 

following [our equations, expressing conditions for 

equivalence between the idealized and real charge 

0 a cl, 2 

Fig. I. Sketch of the ion-charge distribution in an electric double 
layer: the smooth and the stcpwise prolilcs represent the real 
and model charge distributions, p(z) and pid(z). respectively. 

density distributions: 

5 30 

s pid(z)zj dz = s p(z)z’ dz E Ij, j = 0, 1, 2 (3.3) 

0 0 

PiduN = P(O) (3.4) 

Equations (3.3) establish equivalence between the 

two distributions with respect to three integral 

moments. Equation (3.4) calibrates the two distri- 

butions and ensures realistic description of the 

image forces (see below). By substittiting Eqn (3.2) 

into Eqns (3.3) and (3.4) after some algebra, one 

derives explicit expressions for the parameters of 

the model: 

a, flz.3 = & C.--B t_ (B2 - 4AC)“‘l (3.5) 

where a equals the smaller root, and a, equals the 

greater root, 

A = IS’ - 21i p(0); B = 31,p(O) + 2110; 

c = 42: + 31,a (3.6) 

(In view of Eqns (3.1) and (3.3), IO = - a.) In 

addition one obtains 

P’ = P(O)> p’l= (211 + aa)/[a,(a, -a)] (3.7) 

The parameter CI represents the width of the 

layer of high counterion concentration close to the 

interface. However, the parameter a= provides a 

measure for the total width of the electric double 

layer. When two approaching double layers are 

separated at a distance Ii < 2u,, the overlapping 

of the two counterion atmospheres becomes sig- 

nificant and noticeable repulsion between the two 

interfaces takes place. Values of n aud a, calculated 

for different 1 : 1 electrolyte concentrations are 

given in Table 1 (temperature 298 K, e/a = 

3.5 * lo-” cm*). One sees that both a and 

a, decrease with increase of the electrolyte 

concentration. 
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TABLE I In Table 1 their reciprocal values are compared 

The model parameters u and a,, and the model Debye lengths with a, a, and with :he Debye parameter 

of the double electric layer as a function of electrolyte 
conccntra~ion K2= 8nZ2e2 

0 tkB T fl0 (3.13) 

c,, :?” ._ f a (cm) a, (cm) h-; ’ (cm) rqy ’ (cm) h-g’ {cm) 
(x IO”) (x 10’) (x 108) (x IO’) (x IO’) for the bulk of the solution. 

0.01 5.04 8.22 5.41 2.58 3.04 
0.02 4.64 6.14 5.32 I.95 2.15 
0.03 4.39 5.16 5.26 I.64 1.75 
0.04 4.20 4.55 5.18 1.45 1.52 
0.05 4.04 4.13 5.10 1.31 1.36 

T= 298 K, A = 3.5 rm2, I:1 electrolyte. 

Similarly to Eqn (3.2) one can write 

i 

& for Otzta 

1$(z) = n; for a<z<a, (3.8) 

0 for z>a, 

tit = 1, 2. We determine 11: and n\ from the 
equations 

1 nz = 112(O), n: = n: + p’/(Ze) (3-9) 

where n,(O) is the Poisson-Boltzmann subsurface 
concentration of the co-ions. The first Eqn (3.9) is 
a counterpart of Eqn (3.4), and the second Eqn (3.9) 
expresses the balance of the electrical charge. 

The other two parameters, n:’ and 11’: we deter- 
mine from the equations 

(3.10) 

n: = n’: + p”f(Ze) (3.11) 

The parameters i,, I,, p(O), ~~(0) and 
nz[(n + a,)/2] can be easily calculated from the 
Poisson-Boltzmann ion distribution as described 
in Appendix A. 

At known ionic concentrations one can calculate 
the Deb:re parameters kr and fcII for the respective 
two regions 

(3.12) 

3.2 Thin liquid film 

The overlapping of the two counteri~)n atmo- 
spheres in the thin film changes the distribution of 
the ion species as compared with the case of single 
interface considered above. The model stepwise 
distribution of the charge density in a flat symmet- 
rical film is sketched in Fig. 2. 

a1 
p’d(z) = 

P for s/2 < lzl <a + s/2 
(3.14) 

P -” for lzi < s/2 

The coordinate plane z = 0 is placed in the middle 
of the film for the sake of convenience. The width 
of the subsurface layers is equal to a by definition. 
However, the electrical charge densities @’ and 6” 
in general differ from the respective densities p’ 
and p” in the case of the single interface, compare 
Figs 1 and 2. The thickness of the aqueous core 
of the film is 

h=s+2a (3.15) 

P(Z) ) 

Fig. 2. Sketch of the ion-charge distribution inside a thin liquid 
film: the smooth and stepwise proiiles represent the Poisson- 
Boltzmann and the idealized (model) charge density distribu- 
tions, p(z) and pid(s). 
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We determine 8’ and 6” from the equations 

h/Z hi2 

1 p’d(z)dz= 1 p(z)dz, ~id(~/Z)=~(~/2) 

0 0 

(3.16) 

which are counterparts of Eqns (3.3) and (3.4). 
Equation (3.16) can be transformed to read 

opl+ffii+ 8’ = M/2) (3.17) 

where Eqn (3.14) and the electroneutrality condi- 
tion are taken into account. 

Similarly to Eqn (3.8), for the distribution of the 
ion species inside the thin film, one can write 

I iit, for 
#(z) = 

s/2 e 121 < a + s/2 

iii for lzl < s/2 
(3.18) 

The model ionic concentrations $,, and iti (m = 
1,2) are determined analogously to the case of a 
single interface: 

ti\ = n2(h/2), fi: = fi’, + @/(Ze) 

fit21 = n,(s/4) 

fit:’ = til: + fi”/(Ze) 

(Compare with Eqns (3,9)-(3.1 l).) 

(3.19) 

(3.20) 

(3.21) 

Expressions for the parameters of the Poisson- 
Boltzmann distribution &h/2), n2(h/2) and n,(s/4) 
are given in Appendix A. 

Comparison of Figs 1 and 2 shows that the 
stepwise model of the ionic distribution depicted 
in Fig. 2 makes sense for 

2a<h<2a, (3.22) 

However, this is just the region of physical 
interest. Indeed, for h > 2a, the overlapping of the 
two interfaces (and thus the film excess correlation 
energy) is negligible. Besides, for h < 2a special 
effects due to the finite size of the ions become 
significant, see for example Refs [4,32]. 

The Debye parameters 3, and ii-,, for the respec- 

tive regions inside the thin film are 

12; = 
4nZ2e2 
q+“: + C), Y = 1, II (3.23) 

B 

4. Excess correlation energy of a thin liquid film 

For an electrical charge located at r= r,, 
Eqn (2.1) reads 

p”q-&p= 
47t 

- t q&r - r0) 

It is co~lvenient to choose the coordinate system 
in such a way that 

r. = (0, 0,5) (4.2) 

where as usual the z-axis is perpendicular to the 
film surfaces. It is convenient to apply a twc- 
dimensional Fourier transformation: 

1 
4% z) = (2n)~ dx dy exp (- ik l r)cp(r) 

-s -z 

(4.3) 

where 

r = (s, y, z) and k = (k,, k,, 0) (4.4) 

In view of Eqns (4.2)-(4.4) the Fourier transform 
of Eqn (4.1) reads 

(4.5) 

where k2 = kf + kfZ. 
The system of interest is sketched in Fig. 3. The 

regions I, II and III are the three homogeneous 
zones inside the film shown in Fig. 2. (Note that 
the regions I and III are similar.) The regions I-III 
represent the diffuse part of the electric double 
layer. The two narrow layers Sl and S2 represent 
the Stern layers at the two film surfaces. The 
regions IV and V are the two outer phases of the 
same dielectric permittivity cl (in general cl #c). 
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S2 2a t s 
a., .,,, *..*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *.. 

III ii, a+s 
““““““““““““““““““““““““““““““““”””” 

E II ii,, 

a 
-*---“-““----“c-“-*“““““*““~“-““”””” 

1 G () 

. . ..*1.*1.... . . . . . . . ..1............~..... . . . . ** ..,,. ..,. * ..,,..,..,,.. . . . . . . . . . . . . . . . . . . . . . . . 

S1 -w 

&, v 
Fig. 3. Sketch of the regions of uniform ion-charge density in 
our model. Regions I, II, and III are the same as in Fig.2; 
regions IV and V are two bulk phases adjacent to the Mm 
surfaces; regions St and S2 represent the two Stern layers. 

4.1 Correlation energy of region Z 

When the point Y= v. is located in region I, 
Eqn (4.5) reads 

a24 
-is?--- n%#J= -$qz-r, 

tials in the remaining regions: 

#‘i(k, u) = C, exp (- u) + C2 exp u, 

b+c<u<2b+c 

41v(k, u) = D, exp(- tu), u>2b+c+G 

(p’(k, u) = R2 exp(tu), u -z - 3 

(PSI (k, u) = F1 exp (- fu) + I;, exp (ru), 

-\$<U<O 

where @‘(k, u) = G1 exp (- zu) + G2 exp (zu), 

j-2 = /it + 2; (4.7) 

(Compare with Eqn (3.23)) By using the variables 

11 = l.2; 5 = /l[; El = 4/(2&J 

one transforms Eqn (4.6) to read 

(4.8) 

a24 
--#J= 
du2 - 2E, 6(u - 5), O<c<b (4.9) 

The solution of Eqn (4.9) for region I reads 133-j 

$‘(k, U) = Br exp(-u) -t B2 exp u 

- E, sgn (u - i) sinh (u - 0, 

O<u<b (4.iO) 

where Bi and B, are constants, and the function 
sgn(x) is the sign of x. Note that [34] 

$ sgn (x) = 26(x) (4.11) 

Since r. belongs to region I, the right-hand side 
of Eqn (4.5) is zero in region II and K = r?,, in this 
region, Then one finds 

#‘(k, u) = Al exp (- au) + Az exp au, 

b<u<b+c (4.12) 

where Al and Az are constants and 

a2 = (a:, + k2)/rZ2, b = IZa, c= r2s (4.13) 

Similarly one can calculate the fluctuation poten- 

2b+c<u<2b+c+G 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

where Ci, i)i, Fi, Gi (i = 1,2) are constants, 

r = k/A, G=Iw (4.19) 

and w is the width of the Stern layer. The inte- 
gration constants are to be determined from the 
standard boundary conditions 

4 Yl= 4Y2 and cY1 C$Z = ,,,z (4.20) 

imposed at each boundary between two regions 
Y 1 and Y2. After some tedious but simple calcula- 
tions one obtains 

a 

s #‘(k, <) d< = 1E f [b,‘;c2 + H’fb, /I, v)] 

0 

(4.21) 
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where 

z-P@, j3, 11) = & 11 - PI? + [2(8 - l)(v - l)b 
1 

- 1 + PI?] exp (- 2b) > (4.22) 

P,=(l+~)(l+~)-(l-/3)(1-v)exp(-2b) (4.23) 

1-P l--y 

V=“!l +K 
P = A exp (- 2rrc), 

l+% 

11-e 
z=- 

al+8 

pl-P 1 - ,I 
--exp(-2b), P=-----T 

1+8 1+71’ 

c-c, 
.* - - exp (- 2kw) 
II-ML1 

(4.24) 

(4.25) 

The variables i., u, b, c and T are defined by Eqns 

(4.7), (4.13) and (4.19) as functions of k. 

The inverse Fourier transformation of Eqn (4.2 1) 

yields 

a 
x (k2 + g31/2 

-I- ff(b, P, 19 1 
(4 26) 

where 

r2 = (x, y, G), r2=lr21 ( ) 

and Jo is a Bessel function. With the help of Refs 

[35 and 361 one finds 

a 

s q a exp(-C,r,) 
$tr2, i) di = ; r L r2 

0 

5 

+ s dk kJo(‘ik)H’(b, 8, ~‘) 1 (4.28) 

0 

At the limit s+ co (the upper film surface in 

Krulcherskq. V.N. Paunov/Colloids Surfices 64 (1992) 24.5-264 

Fig. 3 is replaced at infinity) the fluctuation poten- 

tial cp’(rz, [), tends to a function q&(r2, i), repre- 

senting the fluctuation potential in region I of a 

single electric double layer, see Fig. 1. In the same 

limit Cy --, xy (Y = I, II) and Eqn (4.28) transforms 

into 

a 

s 
0 

where 

b, = u(k” + ~f)l’~, 
l--j ka 

fi5=------ 
l+‘lb, 

and 

I - ;(k2 + x$1/2 cc- 
x 

are the respective limiting values of b, /I and v. 

The excess fluctuation potential at r. = (0, 0, [) 

due to the finite thickness of the film is 

&'(i)= !,i,"o lMl.2,&- dAr2,Cl (4.3 1) 

Then from Eqns (4.28)-(4.29) and (4.3 1) one obtains 

a m 

s d&,(C)di:= F -(&-~‘)a+ 
I s 

dk 

0 0 

x kW'(h /Ad--'(b,, B,, v,)I 

(4.32) 

where the subscript “WI” refers to the lnth ion 

species, compare with Eqn (2.5). The excess correla- 

tion internal energy per unit area of region I reads 
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{Compare with Eqns 12.6) and (4.31).) Finally, the 
combination of Eqns (2.3), (3.23), (4.3 1 j and (4.33) 
yields 

#“(k, u) = A 1 exp (- atr) + A, exp (au) 

- E2 sgn (u - Q) sinh a(u - e), 

bcucb-i-c 

where 

(4.37) 

+ 
s 

dk kCH’@, B, v) - H’@,, S,, v,Il 
1 

0 

(4.34) 

The integral in the right-hand side of Eqn (4.34) is 
to be solved numerically. By using the relation 
between internal and free energy (see Eqn (2.8)), 
from Eqn (4.34) one derives 

Equations (4.14)-(4.18) also hold in the present 
case. The integration coIlstants A,, Bi, Ci, Di, Fi 
and Gi fi = 1,2) can be determined from the bound- 
ary conditions (Eqn (4.20)). The result of these 
simple but tedious calculations reads 

a+s 

J 

* 

cfi”(k, 5) dc = ai.& [c/(al,)” + Eil”(c, CL, x)] 

m m a 
(4.38) Iz: 

Af km= 8n ka T ---,)a+ T 
dT s s TZ 

0 0 

(4.35) 

where Af:,, is the excess correlation free energy 
per unit area of region I. The function H’ is given 
by Eqns (4.22)-(4.23) above. The term proportional 
to (rZ1 - ~,)a accounts for the contribution of the 
usual Debye-Hiickel screening in a homogeneous 
solution, whereas the integral term in Eqn (4.35) 
accoun’cs for both the image forces and solution 
inhomogeneity (see a!so thr: discussion in Sec- 
tion 4.3 belowj. It is worthwhile noting that H’ 
depends on T through K~ and R,, see Eqns (3.12) 
and (3.23), where the concentrations zz’, and iit, 
(m = 1,2) must be kept conztani during the inte- 
gration with respect to T. 

dk 

4.2 Correlation energy of region II 

In this case b -=z 4 < b -+ c. Instead of Eqns (4.10) 
and (4.12) one has 

#‘(k, u) = BI exp (- U) + 5, exp (u), Otu<b 
(4.36) 

where 

H”(c, ff, x) = -& (1 -x2 + [Zac(l - # - 1 +x2] 
2 

x exp (- 201~) ) (4.39) 

P 2 = c?[(l +x)~ - (1 - x)’ exp(-2ac)J (4.40) 

and the variables 1, a, c and x are defined by Eqns 
(4.7), (4.13) and (4.24). By using the inverse Fourier 
transformation one derives a counterpart of 
Eqn (4.28) for region II: 

04-s 

s 
a 

co 

-I- s dk kJo(r2 k)H”(c, cc, x) 
I 

0 

(4.41) 

AL the limit s + co the fluctuation potential 
rp”(r,, [) tends to a function cp’&(rz, 0, representing 
the fluctuation potential in region II of a single 
electric double layer, see Fig. 1. In the same limit, 
1 
fCy==Ky (Y = I, II). Then the integral over 
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ais 

s 
a 

00 

+ dkkJo(r2k)H”(c,,a,,xoo) s 1 
0 

(4.42) 

where 

c, = sJi?X, u, = (sIc,)JzG$, 

Xm _!_.’ 
u, I+& 

e 1-P - Lexp(-2b,) m- 1+p, 

(4.43) 

(4.44) 

b, and J?, are given by Eqn(4.30). Similarly to 
Eqn (4.31) one can define the excess fluctuation 
potential at the point r. = (0, 0, 5) in region II: 

A@‘(5) = Jj90 C&z?, i) - cp!&, 01 (4.45) 

Then analogously to Eqn (4.34), by integrating 
A@(5) one obtains the excess correlation internal 
and free energies per unit area of region II: 

A& = 2 kB T -(I?,, - ic,,)s 

‘I 

+ s dk WW, a, x) - ff’k,y ~19, xx)] 
0 

(4.46) 

A_%= 
iz:, 
&d- 

2 
- $R,, - K,,)s + T 

mdT x 

s s 
T2 dk 

7 0 

x k[f%, Q, xl- H”(c,, x,, xz )I (4.47) 

The function H” is defined by Eqns (4.39)-(4.40). 

Since region III is similar to region I (see Figs 2 
and 3) the total excess internal and free energies 
per unit area of the film are: 

‘4 UC,, = 2Au;,, -t At&,, AL = 2Af :or + Af,‘b, 
(4.48) 

The derivative of Af,,, with respect to the film 
thickness equals the ionic-correlation component 
of the disjoining pressure: 

n car = - C~(A.L)l~~rlr 

The numerical data (see 
that both Af,,, and ncor 

(4.49) 

Section 5 below) show 
have negative sign, i.e. 

they correspond to attraction between the film 
surfaces. Hence Af,,, and R,,, are to be compared 
with the respective contributions of the van der 
Waals attractive forces [5,37]: 

Afw=-3. AH ll,,=-- 
w 61ch: 

h, is the equivalent water thickness of the film 
accounting not only for the diffuse double layer 
but also for the two Stern layers and the two 
surface monolayers, see for example Ref. [38]. A 
comparison shows that the ion-correlation effect 
often exceeds in magnitude the effect of conven- 
tional van der Waals forces (Section 5 below). 

4.3 .Efict of the image forces 

The contribution of the image forces is automati- 
cally incorporated in Eqns (4.35) and (4.47). To 
visualize this consider the case when there is no 
Stern layer: \v = 0. If such is the case, from 
Eqn (4.25) one obtains 

dv=o=A~, Al23 
c +c1 

(4.51) 

Then Eqns (4.28)-(4.29) can be represented in the 
form 

A, 
+ -j- K0(4r2) 
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m 

-t- 

1 
dk kJ,(r,k)l’(b, fi, 11) 1 (4.52) 

0 
(4.48) 

m 

+ dkkJotr2k)L’tb,,P,,v,) s 1 
0 

(4.~3) 

where the integral terms are regular at rz + 0; 

-t- [26(/l - I)(v - 1) - I + /Iv-j 

x exp (- 2b)/P, 
1 

(4.54) 

where Pi is given by Eqn (4.23). K. is a modified 
Bessel %nction which is logarithmically divergent 
at r2 --, 0. Nevertheless, the excess fluctuation 
potential, A$([), turns out to be finite (see 
Eqn (4.3 1)) and the expression for dfr,,, Eqn (4.35), 
is also regular: 

x In(R,/r+) f T s s mdT mdk 
TZ 

T 0 
\ 

for \v=O (4.55) 

One can prove that the terms in Eqns (4.52), 
which are divergent proportionally to (l/rz) and 
In(r,), are due to the electric charge at the point 
(0, 0, [) and its image at the point (0, 0, -<), respec- 
tively. Then the first and second terms in the braces 
in Eqn (4.55) can be attributed to the Debye screen- 
ing and to the image forces, respectively. For a 
film formed from aI1 aqueous solution between two 

air or oil phases d i > 0 and R, > 7~~. Then the 
logarithmic term in Eqn (4.55) gives a negative 
contribution to Afk,,. In other words, the image 
forces lead to an effective attraction between the 
film surfaces. However, this is not the case for films 
between conductors, as shown below. 

When phases IV and V (see Fig. 3) are conduc- 
tors of electricity, the boundary conditions at the 
film surfaces are 

c$lu=o = plu=2.h = 0 (4.56) 

i.e. one is dealing with a Dirichlet boundary prob- 
lem. Af,,, can be found in the same way as for a 
film between dielectrics. That is why we skip the 
details and give the final expressions for Afk,, and 
As&,, in the case w = 0 (negligible Stern layer): 

t;-: 
4ft,, = 8_r kn T 

I 

al iij 

dT 
x in@!/~r) + T T2 s s dk 

T 0 

x k[D’(b, 01, k) - D’jb,, c1,, k) - G’(k)j 

(4.57) 

x k[D”(b, LX, k) - D’;(b,, E,, k) - G”(k)] 
> 

(4.58) 

where 

D’(b, a, k) 
a2 

=-(1 --a+[1 +o!-4b(l --a)] bzQ, 

x exp (- 2b)) (4.59) 



256 P. A. Kralchersky, Y. N. Paunoti/Colloids StcrJaces 63 ( 1592) 245-264 

Q, =2[1 -I-GL-;-(1 -Ct)exp(-22b)] 

SE(k) = 2aI[tanh b - b/cosh2 b]n2/(b2 Qz) 

Qz = (1 + a tanh b)’ - (1 - z2 tanh2 b)l 

(4.60) 

(4.61) 

(4.62) 

I = A(b, cc) exp (- 2crc), h(b, ct) = 
1 --CL tanhb 
1 +cr tanhb 

(4.63) 

D”(b, a, k) = [ 1 - exp (- sJm;-J 

x A(b, ct)/(k’ + Li’i) (4.64) 

D’&fb,,cz,,k)=[:I -exp(-sJm)] 

x Jb,, dl(k2 -I- d) (4.65) 

1 
G”(k) = 1 + g $$-$[I -exp(-arc)] . 

x [exp (- GX) -I- g] - 2sg/(;lr) 1 (4.66) 

g = A 2(b, CY) exp (- 2ac) (4.67) 

The total excess correlation energy is given again 
by Eqn (4.48). It is worthwhile noting that the term 
proportional to ln~~,/~~~ in Eqn (4.57) gives a 
positive contribution to df,,,. Hence in the case 
under consideration the image forces give rise to 
effective repulsion between the film surfaces. In 
spite of that df,,, is still negative, but smaller in 
magnitude compared with the case of film between 
dielectrics (see Fig. 9 below}. 

5. Numerical data and discussion 

The equations derived in the previous section 
enable us to study the role of different factors on 
the correlation excess free energy of the film, dj’&. 
The latter is to be compared with the excess free 
energies dfe, and dfV,, which are due to the 
electrostatic and van der Waals interactions, 
respectively. The total excess free energy df per 
unit area of the film is 

Af = AL, + A./iv -I- A.&,, (5.1) 

Af is simply connected with the contact angle 8, 

which is an experimentally measurable parameter 
[28,39,40]: 

cos 0 = I -t A//(20) (5.2) 

where 0 is the solution surface tension. The disjoin- 
ing pressure 

8A.f nz- - ( > a1 * 
(5.3) 

is another quantity given by experiment, see for 
exami ,: Refs [5,27 and 281. Similarly to Eqn (5.1) 
one can write 

n = nc, + ~vw + ncor (5.4) 

where Zi’,,, I’?,, and ncor are the electrostatic and 
van der Waals and correlation components of 
disjoining pressure; compare with Eqn (4.49). 

To caiculate df=, in Eqn (5.1) we used the rigor- 
ous formuia of Muller; see Eqn (A27) in Appen- 
dix A. AJ,,, was calculated by means of Eqn(4.48) 
along with Eqns (4.22)-(4.25), (4.30), (4.35), 
(4.39)-(4.40), (4.43)-(4.44) and (4.47); see Appen- 
dix B for the algorithm of calculation. dfyw was 
calculated by means of Eqn (4.50), where we used 
the expression 

11, = It -t Ah (5.5) 

where, as usual in this paper, It is the thickness of 
the diffuse electric double layer inside the film, 
whereas Ah accounts for the two surface layers. 
For foam films stabilized with ionic surfactants, 
Ah is very close to the equivalent water thickness 
of the ultrathin Newton black films ccmsisting 
practically of two surfactant monolayers [28,39]. 
That is why in our numerical ~alcu~atio~ls we use 
Ah = 4 nm, which is a quantity of the order of the 
thickness of such ultrathin films. 

In Fig. 4 the sum I7,, -I- ncor is plotted as a 
function of 11, calculated by means of our model 
(the solid curve), and compared with results of 
other authors for electrolyte concentration C,, = 
0.002 mol 1 - 1 and area per unit surface charge 
A = 0.6 nm”. (By !l:lit charge here and subsequently 
we understand the charge of the electron.) The 



P.A. Krulc~evs~~, WV. Fuunov/Co~l5ids Surfaces 64 (1992) 245-264 257 

Fig. 4. Plot of (II,, + n,,,) vs film thickness h at 0.002 mol I- ’ 
1: I electrolyte concentration. Short dashed curve, ReDr = 0; 
solid curve, our model; long dashed curve, EPB theory [26]; 
the points (+B) represent numerical results of HNC-closure. 

algorithm of our calculations is described in 
Appendix B. In particular, L!,, is calculated by 
means of Eqn(A28)-see the short-dashed curve 
in Fig. 4, The long-dashed curve represents 
n,, + ncor calculated by means of the EPB theory 
of Attard et al. [26]. The points represent numerical 
data of Kjellander and Mareelja obtained by means 
of HNC-closure; see Fig. 3 in Ref. [26]. A good 
agreement between our model and the HNC data 
is observed, This result confi~s our suggestion 
that the real smooth ionic charge distribution can 
be replaced by a model stepwise distribution with- 
out decreasing the accuracy of calculation of integ- 
ral quantities like d&,, and Z7cor, 

This conclusion is confirmed by the comparison 
with other numerical data given in Ref. [26]. 
Namely, for concentration C,, = 0.1 mol l-l, 1: i 
electrolyte, A = 5 nm* and It = 5 nm, the calculated 
values of J7,, + flcor are the following: 
0.96 l lo* N m-’ from HNC, 1.09 l lo4 N mm2 
from EPB and 1.01 l lo* N m -2 from our theory, 
The difference between HNC and our theory 
is probably due to the effect 
size, which is not taken into 
our theory, or in EPB. 
n 01= 1.20+10dNm-2. 

of the finite ion 
account either in 
For comparison 

We also compared our approach with the theory 
of Muller and Derjaguin [5,15]; see Fig, 5. The 
pronounced difference between the results of these 
two theories is probably due to the very simplified 
model used by Muller and Derjaguin, 

00 

h 60 

2. 
- 40 

t 
t r* 20 

5 s 00 

Fig. 5. Plot of ncor vs h calculated by means of our approach 
(dashed curve) and by the theory of Mulbr and ikrjaguin 
[S,l5] at C,l=O.O1 molI_* ~n~nt~tion of 1: 1 electrolyte 
and area per unit surface charge A = 3.5 nm2. 

To study the effect of the outer-phase dielectric 
permittivity, tit on A&,,, we varied cl between 0 
and 78.4. As seen in Fig. 6 this variation does not 
result in a considerable effect on J&,,. In particular, 
the curves with tl = 0 and cl = 1 practically eoin- 
tide. Hence for foam films (c t = 1) one can use the 
Neumann boundary condition (cr = 0, L # 0); com- 
pare with Eqn (4.20). 

The effect of the width, w, of the Stern layers at 
the two film surfaces, is examined in Fig. 7. 4f,,, 
is calculated for two different values of w: \v = 0 
and M’ = 0.3 nm. The curve with w = 0.6 nm is very 
close to that corresponding to w = 0.3 nm and 
cannot be visualized in Fig. 7. In general, the effect 
of Stern layer thickness \P is more pronounced 
than the effect of the outer-phase dielectric permit- 
tivity; compare Figs 6 and 7. It is worthwhile 
noting that the excess free energy 4f,, is finite at 
the limit )v 3 0. This is due to the exact cancellation 

A&r 000 

tmN/ml 
-005. 

-0 10 A = I ntn: 

-015. 
T = 208X 

.c = 78.1 

-020. w = 0.2 nm 

Fig. 6. Excess correlation free energy df,, vs film thickness h 
at different dielectric permittivities of the outer phase. 6 I. 
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Fig. 7. Excess correlation free energy Af,,, vs film thickness h 
at different widths of the Stern layer, IV. 
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Fig. 8. Isotherms of the correlation excess free energy. Af,,,, 
and internal energy Au,,,, per unit area of a thin film vs the 
film thickness /I. 

of the two logarithmic divergencies due to the 
image forces; see Section 4.3 above. 

The plots of the free correlation energy dfi,, and 
of the internal correlation energy LIu,,~ vs film 
thickness h are compared in Fig. 8. One sees that 
under the same conditions AU,,, is systematically 
larger in magnitude than df,,,. 

Figure 9 shows that the magnitude of As,,, is 
markedly Iarger in the case of gaseous outer phases 
(the Neumann boundary problem: dq/dz =0 at 
the boundaries) compared with the case of metal 
outer phases (the Dirichlet boundary problem: 
cp = 0 at the boundaries). This result is connected 
with the fact that the contribution of the image 
forces has opposite signs for the Dirichlet and 
Neumann problems; see Section 4.2 above. 

According to Eqn (? .1) the total excess free 
energy per unit area f)f the thin film, df, is a 
superposition of the contributions due to the 
electrostatic, van dcr Waals and ionic-correlation 

Afro, 
0 “0 

r . . . . 3 ,... 1 r 

/ 

T =ZDfl K 

-” 2” c =‘/a..: 

IV =o 

-0 30 ___ Dirichlcl’s probtcm 
- Kcumnnn’n problcnl 

Fig. 9. Correlation excess free energy Af,,, vs the film thickness 
h for two different boundary conditions: Dirichlet problem (film 
between two elcctroconducting phases) and Neumann problem 
(film between two gaseous phases). 

interactions. The different components of df are 
compared in Fig. 10 for the case of C,, = 
0.01 mol 1-l 1 : 1 electrolyte concentration, area 
per unit surface charge A = 1 nm2, T = 298 K, 
L = 78.4 cr = 1, w = 0.2 nm. dfVw and df‘,, are calcu- 
lated from Eqns (4.50) and (A27). Here and subse- 
quently for calculating 4fVw and l7,, we use the 
Hamaker constant 1In=4.5*10-~~erg and 
4h = 4 nm, which are typical values for foam films. 
(For emulsion films A,, and hence dfVw and I7,,, 
is Iess by one order of magnitude.) One sees in 
Fig. 10 that ]4JEoTI turns out to be considerably 
larger than Idf,,I, both of them corresponding to 
attraction between the film surfaces. In spite of 
that, the electrostatic repulsion is strong enough 
to determine the positive sign of Gf in the range 
of film thicknesses considered. 

In Fig. 11 the role of the electrolyte concen- 

- 150 
E I 2 ‘; 

(1) AI’ 

2 c (2) Jfs.1 

Fig. 10. The total e:;cess free energy Af and its electrostatic 
(Af,,), van der Waals (A,<,) and ionic-correlation (Af;,,) 

components vs the film thickness h. 
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Fig. I I. Dependence of (a) the excess correlation free energy AS,,, and (b) the total disjoining pressure f7 on the film thickness h at 
different electrolyte concentrations, Ccl. 

tration in the bulk solution, Ccl, is examined. 
Figure 11 (a) shows that the magnitude of the corre- 
lation excess free energy df,,, is larger for the lower 
electrolyte concentration. However, the same is 
true for the electrostatic free energy df,,. Since for 
a 1: 1 electrolyte dfet exceeds Id&,(, the total 
excess free energy df and the disjoining pressure 
correspond to repulsion (Fig. 1 l(b)). 

The situation changes considerably for a 2: 2 
electrolyte. As shown in Fig. 12(a), II7,,,I is larger 
for a 2 : 2 electrolyte than for a 1: 1 electrolyte at 
the same bulk concentration, C,,. Moreover, the 
total disjoining pressure II turns out to be negative 
for a 2: 2 electrolyte, whereas it is positive for a 
1 : 1 electrolyte; see Fig. 12(b). Negative values of 
I7 have been also obtained by other authors [21] 
with 2 : 2 electrolytes. 

Figures 13(a)- 13(b) illustrate how the magnitude 
of the surface charge density, 101, affects the excess 
free energy. As earlier, we use the area per unit 

00 

Ilcnr )’ 1 o-0 
-03 

[ N/m” 1 
-I 0 

d,!tf0~, 
,/'T = 290 K 

I’ 
a.=4.3 nm ,I’ 

E = 78.4: E, = 1.0 

A = I nm”: w = 0.2 nm 

a’ C,, = 0.005 mol/l 

0 00 0 25 0 5c 0 75 I 00 

(a) i>/( 2 b 1 

surface charge, A = e&l, as a measure for the 
surface charge. One sees that in Fig. 13(a) the 
greater the surface charge density (the smaller A), 
the greater the magnitude of the attractive correla- 
tion free energy df,,,. However, the repulsive elec- 
trostatic energy AS,, strongly increases with the 
increase of the surface charge. So, it turns out that 
the total free energy df is repulsive and increases 
with the increase of the surface charge density at 
the same bulk concentration C,, = 0.01 mol 1 - 1 of 
a 1: 1 electrolyte; see Fig. 13(b). 

The temperature enters the expression for the 
ionic-correlation free energy Af,,,, both explicitly 
and implicitly, through the dielectric permittivity 
of the medium L Figure 14 represents the plot of 
df,,, vs h for two different temperatures. The 
respective experimental values of L are taken from 
Ref. [41]. One sees that, in spite of the compara- 
tively great temperature interval (40 K), the change 
in df,,, is not too !arge. At the end of this section 

50 

n s 10-s 1. 

[N/m’] 3o 
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IO 

00 
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T = 29Qh: 

c = 70.4 

Fig. 12. Plots of (a) the ionic-correlation and (b) the total disjoining pressures, Ifcor and I? vs the film thickness h for I : I and 2:2 
electrolytes at the same electrolyte concentration. 
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Fig. 13. Plots of(a) the ionic correlation and (b) the total excess free energies, Af~o¢ and d f, vs the film thickness h at different values 
of the area per unit surface charge, A. 

we recall that the algorithm for calculating the 
excess free energy Af and disjoining pressure/7 is 
given in Appendix B. 

6. Concluding remarks 

Our aim in the present study is to calculate the 
contribution Afco¢ of the ionic correlations to the 
excess free energy per unit area of thin liquid films 
formed from electrolyte solutions. From the expres- 
sion for Af~or one can easily calculate the ionic- 
correlation contributions to the disjoining pressure 
and contact angle; see Eqns (4.49)and (5.1)-(5.2). 
Af~o~ accounts for the following effects: 

(i) energy of formation of Debye counterion 
atmosphere around each ion in the film; 

(ii) energy of deformation of the counterion 
atmosphere due to the image forces, i.e. to the fact 
that unlike a bulk solution, the film interior is not 
an isotropic uniform phase; 

(iii) energy of the long-range correlations 

3f,.or 
-0 I ~ 5 mol / l  

[ r a N / m ]  ~ / . . "  A = ! r i m  ~ 

w = ,q.~ rdx~ 

-0 ~ - -  T=28:3K, ~ =8366 

I / . . . . . .  T : 3~3 K, ~ = 69.73 

- 0 4  
0 5 10 I% 20 

h [ n m ]  

Fig. 14. Plot of the iomc-correlation free energy Afoot vs the 
film thickness h at two different temperatures. 

between charge density fluctuations in the two 
opposite electric double layers. 

The above three effects can be related to the 
three terms in the right-hand side of Eqn (4.55). 

The method we used to calculate Afoot is an 
extension of the Debye-Hiickel method based on 
Eqn (2.1). Utilizing the fact that Afoot represents 
the integral of the bulk density of the correlation 
free energy along the transversal to the film sur- 
faces, we used a stepwise model ion-charge distribu- 
tion inside the film; see Fig. 2. The stepwise model 
profile is equivalent to the continuous Poisson- 
Boltzmann charge density distribution with respect 
to several integral characteristics (Eqn (3.3)). By 
solving Eqn (2.1) for each uniform region of the 
model charge density profile, along with appro- 
priate boundary conditions, we arrived at compar- 
atively simple expressions for the excess correlation 
internal and free energies dU,~o~ and A.~o~; see Eqns 
(4.34)-(4.35) and (4.46)-(4.48). Numerically these 
expressions turn out to be closer to the HNC-data 
of Kjellander and Mar~elja than to the EPB theory 
of Attard et al. r26], who have used the continuous 
Poisson-Boltzmann charge distribution at the cost 
of much more complicated mathematics; cf. Fig. 4. 

The expressions derived were then applied to 
examine the effect of different factors on Afoo, and 
//co, The main conclusions are the following. 

(1) When the two outer phases are dielectrics of 
permittivity El, the variation of q between 0 and 
80 does not affect Afco, significantly; see Fig. 6. 

(2) When the outer phases are metals or conduc- 
tors, Afoot is considerably smaller than in the case 
of dielectrics; see Fig. 9. 



P.A. Kralchevsky, V.N. Paunov/Colloids Surfaces 64 (1992) 245-264 26I 

(3) The increase of the width, w, of the Stern 
layer between 0 and 3 A can change dfco, up to 
5-10%; see Fig. 7. Further increase of w does not 
cause appreciable changes in Afcor. 

(4) In all cases examined Afro, is negative and 
corresponds to attraction, which in many cases 
exceeds the van der Waals attraction; see Fig. 10. 

(5) The increase of electrolyte concentration 
decreases the magnitude of df~or (Fig. 11 (a)). 

(6) In the ease of a 2:2 electrolyte the attractive 
forces can prevail and the total free energy Af and 
disjoining pressure can be negative (Fig. 12). 

(7) The increase of surface charge density 
increases the magnitude of Afoot (Fig. 13). 

(8) The increase of temperature leads to a slight 
increase of IAf~orl, (Fig. 14). 

It should be noted that all these conclusions are 
valid for film thicknesses much greater than the 
ion diameter, because we used the concept for 
point ions. 

In conclusion, the effect of ionic correlations 
yields an important contribution to the balance of 
different surface forces in thin liquid films. This 
effect gives rise to an attractive force, which can 
be comparable with, or even considerably greater 
than, the van der Waals attraction. 
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Appendix A: Equilibrium distribution of the charge 
density 

Our aim is to specify the expressions for calcu- 
lating some parameters of our model, which are 
connected with the ion density distribution. First 
we will briefly consider the case of the electric 
double layer, and then we will pay some attention 
to a modified version of the Poisson-Boltzmann 
theory of the thin liquid film. 

The parameters I,, ZZ, p(O) and ~~(0) can be 
calculated from the electrostatic potential Y(z), 
The latter satisfies the Poisson-Boltzmann 
equation 

d2$ 
dz2 

= tii sinh $, 
ZeY 

$ = - 
kgT (Al) 

where tie is given by Eqn (3.13). The boundary 
conditions are 

lim $ = 0 and iim(d$jdz) = 0 for z -+ CC 

From (Al)-(A2) we derive (see e.g. Ref. [6]): 

drCl 
dz- 

- - 2x0 sinh (tjf2) (A3) 

642) 

t&z) = 4 arctanh [tanh ($,/4) exp (- Koz)] (A4) 

where $, is the surface potential (at z = 0). From 
the electroneutrality condition (the second 
Eqn (3.1)) one obtains [6] 

(d$/dz),=, = KS, 
K = 4nZeo 
9 - - 

ckB T (A3 

The combination of Eqns (A3) and (AS) yields 

4%= - 2 arcsinh [K,/(~K~)] (A6) 

According to the Boltzmann equation 

n*(z) = n0 ev II- 1 )“W)I, t11 = 1,2 tA7) 

From Eqns (3.1) and (1.7) one obtains 

iW = - 2Zeno sinh t&z) (A8) 

The integrals I, and I2 are calculated numeri- 
cally by substituting from Eqns (A4), (A6) and (AS) 
into Eqn (3.3). n[(a +a,)/21 is calculated from 
Eqns (A4), (A6) and (A7) by setting z = (a -t- a,)/2. 
Finally, from Eqns (A7j and (A8) one obtains 

n2@) = n0 ew k 

p(O) = - 2Zeno sinh +, 

Thin liquidjibn 

(A9) 

(AlO) 

Let us choose the plane z = 0 to be located in 
the middle of the film, as shown in Fig. 2. In 
contrast with the conventional DLVO theory (see 
e.g. Refs [2 and S]) we choose the potential to be 
zero in the middle of the film: # = 0 for z = 0. (As 
demonstrated below, this choice leads to simpler 
analytical expressions.) Then according to the 
Boltzmann equation, the ion concentrations read 

h,(z) = rrmcexp C(-l)“$(z)l~ m=l,2 (Al 1) 

where nlo and nzo are the concentrations of the 
counterions and co-ions at the middle of the film. 
Since the solution inside the film is supposed to 
be in electrochemical (Donnan) equilibrium with 
the bulk solution outside the film, one can write 

n10n20 = nt: 6412) 
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or alternatively 

“lo = nO/m1/2, n20 = f10m’12 6413) 

where by definition 

m = nz0lnr0 (A14) 

In these notations the Poisson-Boltzmann equa- 
tion reads 

d2$ fig 
- = - pCexpW)--m ew(JI)l dz2 (Al3 

The boundary conditions are 

I,!I=O and d~~dz=O for z=O (AJ6) 

The electroneutrality condition yields 

(dl///dz)l =h,z = - K, (A17) 

(see Fig. 2 and Eqn (A5)). The first integration of 
Eqn (Al 5) along with Eqn (Al 6) yields 

1 dy -- 
Y dz 

= s[y- 1 +m(l/y- 1)]‘j2 (AW 

where by definition 

Y=exp(-$) 

On integrating Eqn (A18) one obtains 

(Al9) 

z(y) = -m 2 1’4Wmh 
y- 1 

1’ = arcsin - 
( ) 

112 

k’0 y - m 

6420) 

where ~(~~rn) is an elliptic integral of the first kind 

II421 

I 

F(Y I4 = s (1 -m sin2f?)-1’2 de (A21) 

0 

We calculated F(u1m) by using the convenient 
method of the arithmetic-geometric mean; see 
Eqn (17.6.9) in Ref. [42]. At the film surface z = h/2, 
Y = yN and Eqn (A20) yields 

h(m) = -m 4 1’4F(&Im), 
y, - 1 

k’0 
ys = arcsin - 

( > 

1’2 

YS - m 

(A221 

An equation for determining y8 can be derived 
from Eqns (A17)-(A19): 

p2m’12 = ys - 1 +mWys- 11, P=l~&ol 

(A231 

From Eqn (A23) one obtains 

y,= *(p2mi12+m+ 1 

+ f(p2mi’2 + m + 1)2 - 4m]1’2} (A24) 

Note that Eqns (A22) and (A24) represent h as an 
explicit function of m. The parameters 

n2(~/2) = ~~rn~12J~~ 

and 

are also explicit functions of m. To find the last 
parameter, n2(s/4), from Eqn (A20) we first deter- 
mine y as a function of z and then set z = s/4 

S 
n2 - 0 nOrnit 

4 =y(s/4)==nom 
112 _ 

1 - sn2(x41m) 

1 - msn2(xolm) 

(AW 

where x4 = K~s/S and sn (xolm) is the elliptic sine 
of Jacobi, see e.g. Ref. [42]. 

‘To calculate the electrostatic excess free energy 
per unit area of the film we used the rigorous 
expression due to Muller [43]; see also Ref. [S]: 

A.&E,, = - i7,, h + 4no kB TI/tq, (~27) 

where 

n Cl = n,,kgT[m1’4 - tt~-‘~~]~ (A28) 

is the electrostatic component of the disjoining 
pressure and 

c 

Z=4(5:+ l)~‘2-4+4~~~~ln ‘O+(’ ?I + ‘) 
$12 

5, + (C + I)“2 

(A29 
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where 

&,, = - sinh($,,,/2), 5, = - sinh ($, /2), 

co = - sinh ($,/2) (A30) 

‘II/, = j In t”, I// ~ = - 2 arcsinh (p/2), 

eclo = lCIm - In ~1~ (A31) 

and J’~ is given by Eqn (A24). The integral in the 
right-hand side of Eqn (A29) we calculated 
numerically. 

The algorithm of our computer calculations is 
given in Appendix B below. 

Appendix 3: Algorithm for calculating the film 
excess free energy and the disjoining pressure 

Since the number of parameters and equations 
in this work turned out to be large, we propose 
below an algorithm for calculating the excess free 
energy per unit area of the film d_T and the 
disjoining pressure I7. 

1. Input parameters: area per unit surfaec charge 
A (cm’); bulk electrolyte concentration ttO (cme3), 
number of charges per ion 2, temperature T(K), 
dielectric permittivities L and c 1, width of the Stern 
layer w (cm). 

2. Calcula.tion of ~~ from Eqn (3.13), K, from 

Eqn (A5), $, from Eqn (A6), p from Eqn (A23) and 
D = _Le/A (e = 4.803 l IO-” CASE units); the sign 
of (T depends on whether the s’ rface is positively 
or negatively charged. 

3. The integrals I’ and I, are calculated by 
numerical integration from Eqns (A4), (A6), (A8) 
and (3.3). 

4. Calculation of nz(0) from Eqn (A9), p(O) from 

Eqn(Al.0); a, a,, P’ and p” from Eqns (3.5)-(3.7); 
H: and ‘1’2 from Eqn (3.9); 12; and 12:’ from Eqns 
(3.10)-(3.11); K’ and K” from Eqn (3.12). 

5. ‘~~[(a + a,)/21 is calculated by setting 
z = (a + a,)/2 in Eqn (A7) and by using Eqns (A4) 
and (AG). 

6. Some value of the parameter 1’2 is input. Each 
value of 172 corresponds to a value of the film 

thickness 1’ (see point 7) 0 < ‘7’ < 1, 0 < I’ < co. By 
varying I” one can calculate the dependence of df 
and 17 on the film thickness I’. 

7. ys is calculated from Eqn (A24), ys and the 
fiim thickness h from Eqn (A22). 

8. rz,(s/4) is caiculated by means of Eqn (A26); 
to calcufatc sn (.L’I”‘) we used Eqn (16.4.4) in 
Ref. [42]. 

9. t’,(h/2) and &h/2) are calculated from 
Eqn (A25); li: and ilz from Eqns (3.18)-(3.21) and 
Rv from Eqn (3.23); Y = I, ii. 

IO. dzrl,,, and df!,, are calculated from Eqns 
(4.34)-(4.35). The integrals with respect to .4 and T 

are calcuiated numerically. For each value of k 
one determines i., 3, b, c and T from Eqns (4.7), 
(4.13) and (4.19); then H’(b, /I, V) and H’(b,, /3,, \rp) 
are calculated from Eqns (4.22)-(4.25) and (4.30). 
When w = 0 one can use Eqn (4.55) instead of 
Eqn (4.35). 

IO*. When the film is formed between two 
electro-conductors (Dirichlet problem) we use Eqns 
(4.57)-(4.67) to calculate .4JEnr. 

11. Au!\, and df:,,, are calculated from Eqns 
(4.46)-(4.37). The integral term is calculated numer- 
ically. For each value of k one determines i., a, b, 

c, T and /3 from Eqns (4.71, (4.13) and (4.19). The 
function H”(c, Q, 2) and H”(cur a,, i.,) are calcu- 
lated from Eqns (4.39)-(4.40). 

12. The excess free energy due to ionic correla- 
tions is determined by using Eqn (4.48). 

13. The excess free energy due to the van der 
Waals forces, 4fVw is calculated from Eqn (4.50) 
with h, given by Eqn (5.5). 

14. The excess free energy due to the electrostatic 
forces, df,., is calculated from Eqn (A27) along 
with Eqns (A28)-(A31). 

15. The total excess free energy, bJ, at a given 
film thickness 1’ is calculated from Eqn (5.1). By 
varying the parameter I” (point 6 above) with a 
given step, one calculates dJ= df(m), 12 = h(m) and 
then one can draw the plot of dJ vs 12. 

16. The disjoining pressure isotherm I!(k) is 
calculated in accordance with Eqn (5.3) by numeri- 
cal differentiation of the plot of df vs 12. 


