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The perturbation approach of Barker and Henderson is applied to some dynamic processes 
in suspensions of charged Brownian particles. Analytical formulae are obtained for the first 
order correction of the diffusion coefficient, and sedimentation velocity, with respect to the 
particle volume fraction. For this purpose, the perturbation approach is combined with the 
theory of Felderhof. In the case of strongly charged particles (i.e. high surface potential) a 
simple computation procedure, involving the nonlinear Poisson-Boltzmann equation, is 
developed. The angular dependencies of the static and dynamic structure factors are also 
examined. The perturbation method allows the derivation of analytical formulae for the 
latter, from the general expressions of Ackerson, and Pusey and Tough. Some comparisons 
with numerical calculations are presented. Light scattering experiments were performed, and 
are analyzed by means of the proposed model. 

1. Introduction 

The statistical mechanical properties of a colloidal suspension, both equilib- 
rium and nonequilibrium, depend on the particle concentration due to inter- 
particle interactions. The equilibrium characteristics of a colloidal system, such 
as osmotic pressure and static structure factor, may be due to hard sphere, 
Coulombic, van der Waals or some other type of particle interactions [1, 2], 
while the dynamic properties (diffusion, sedimentation, and viscosity.) include 
h y d r o d y n a m i c  in te rac t ions  as well [3-7].  

The  B r o w n i a n  m o t i o n  of non in t e rac t ing  colloidal particles has been  s tudied 

long ago, s tar t ing with the p ionee r ing  work of E ins te in  [8]. A general  approach  

for t r e a t m e n t  of a suspens ion  of in terac t ing  Brown ian  particles was deve loped  
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by Batchelor [5, 6] and Felderhof [4, 9-12]. These authors presented the first 
order correction terms for the sedimentation and diffusion coefficients of hard 
spheres as a sum of different contributions, expressed as integrals over the 
radial distribution function of the particles. The final results for pure hard 
sphere interactions, stemming from both theoretical approaches [6, 10], coin- 
cide. The experimental verification, performed with uncharged spherical par- 
ticles, also confirms the theoretical predictions [7, 13, 14]. Explicit theoretical 
expressions for the diffusion and sedimentation of particles, including short 
range attraction, are also available [5, 15]. They were used in the interpretation 
of dynamic light scattering (DLS) data for microemulsions [15]. 

Some numerical calculations, concerning the diffusion in colloidal systems 
with screened Coulomb interactions were performed by Ohtsuki and Okano 
[16]. Analytical models were also developed, based on the concept of an 
effective hard sphere (EHS) radius, which is due to the electrostatic repulsive 
forces (see e.g. the review article of Pusey and Tough [3], the monograph of 
Russel et al. [7] and also the recent publication of Cichocki and Felderhof 
[17]). However, the EHS approach introduces parameters which have not been 
explicitly related to the basic quantities characterizing a colloidal suspension as: 
particle charge, potential and radius, concentration of microions, dielectric 
constant of the solvent, and temperature. Such an analysis, concerning weakly 
charged Brownian particles, was performed recently [18]. The theory predicts 
[3, 17, 18] that in most cases the near field hydrodynamics contributions can be 
entirely neglected, and only the virial osmotic and far field hydrodynamic 
Oseen terms are important. 

The structure and diffusivity of a suspension of interacting Brownian par- 
ticles are closely related to the light scattering phenomena, occurring in such 
systems. For both methods, static (SLS) and dynamic (DLS) light scattering, 
the general theoretical results are expressed as integrals over the equilibrium 
radial distribution function g(r) (cf. e.g. refs. [3, 4]). The simplest case is that 
of particles with low surface potential and charge. Then, the exponential radial 
distribution function and the Poisson-Boltzmann equation can be linearized 
and different statistical mechanical quantities can be obtained in an analytical 
form [18, 19]. Most of the real systems (micelles, latexes), however, are 
strongly charged, and for quantitative treatment, the nonlinear Poisson- 
Boltzmann equation (PBE) should be used. The use of the linear PBE in these 
cases cannot give a proper relation between the radial distribution function and 
the particle charge, or potential [20]. 

For treatment of small angle neutron scattering results from micellar solu- 
tions, the theory of Hayter and Penfold [21] and Hansen and Hayter [22] for 
calculation of the static structure factor of the system was proposed. This 
method is known as rescaled mean spherical approximation (RMSA). It yields 
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a good description of the static structure factor even for strongly charged 
particles and finite concentrations, but the calculated particle charge and 
potential should be regarded as effective values. Only by solving the nonlinear 
PBE a reliable relation between the measured quantities and the real charge 
(or surface potential) can be obtained [20]. The radial distribution function 
g(r), calculated by means of RMSA or some other closures such as the 
hypernetted chain or Rogers-Young, can be used for numerical evaluation of 
the dynamic properties of colloidal suspensions [23, 24]. 

In the present study we propose an approach for calculating the dynamic 
properties of strongly charged particles, based on the perturbation theory of 
Barker and Henderson [25]. The radial distribution function we used allows 
obtaining not only the static structure factor, but also analytical expressions for 
the diffusion coefficient and sedimentation velocity of strongly charged par- 
ticles. The angular dependence of the effective diffusion coefficient, measured 
by DLS, is also appropriately analyzed in terms of the present model. Explicit 
relations between the measured quantities and the charge (or potential) of the 
particles and ionic concentration are obtained, using the nonlinear PBE. Only 
systems at low volume fraction are considered, but the generalization for 
higher concentration of the particles is straightforward. We will not account for 
the van der Waals attraction between the particles, because it can be entirely 
neglected in charged suspensions with not very high concentration of added 
electrolyte [1, 2]. 

The paper is organized as follows: the next section presents the derivation of 
an approximate expression for the radial distribution function of charged 
particles consisting of two parts: one corresponding to the reference system of 
effective hard spheres (RHS) and second, accounting for the long range 
electrostatic perturbation (ELP); in section 3 this function is used for calcula- 
tion of the static structure factor; the treatment of the diffusion is performed in 
section 4 and of the DLS in section 5; an interpretation of illustrative DLS 
experiment is performed in section 6; the concluding remarks are summarized 
in section 7. 

2. Pair interactions in suspensions of charged particles 

2.1. Perturbation approach for determining the radial distribution function 

The knowledge of the radial distribution function g(r) is of principal 
importance for obtaining both equilibrium (see section 3), and nonequilibrium 
(see sections 4 and 5) statistical mechanical properties of a given system. We 
can write g(r) in terms of the pair potential of the mean force W(r) [19, 20]: 
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{ W(r)~ 
g(r) = e x p ~ - - - - ~ ]  , (2.1) 

where k T  is the thermal energy. 
For weakly charged particles, with radius a, and charge number z 0, the 

exponential in eq. (2.1) can be linearized, and the result reads [18] 

If 
' r<~a'  

g(r) = (z0e) 2 e 2Ka e -  Kr 
r > a  

e k T  (1 + Ka) 2 r ' 
(2.2) 

e is the elementary charge, e is the dielectric constant of the disperse medium, 
and K is the screening parameter, defined by 

z =  4area Z niz~, (2.3) 
K e/~---T i 

where hi, and z i are the microion mean concentration and charge number, 
respectively [20]. 

In the case of strongly interacting particles, g(r) (see eq. (2.1)) cannot be 
linearized, and the exact analytical calculation of quantities, as structure 
factors, virial coefficients, or diffusivities is impossible. In order to overcome 
this problem, we follow the concept of Barker and Henderson [25, 26] for 
presenting g(r) as a sum of a reference and perturbation terms: 

g(r) = go(r) + ~ g.(r)  . (2.4) 
n = l  

According to refs. [25, 26], the first order perturbation is given by the following 
expression: 

Wl(r) 
g(r)--~ go(r) - go(r) k T  (2.5) 

Eq. (2.5) presents the splitting of g(r) into reference and perturbation parts, 
where W 1 is the perturbation part of the potential of mean force. 

For electrostatically repelling particles, the pair interaction potential W(r) 
can be split into reference hard sphere (RHS),  and electrostatic perturbation 
(ELP) parts, in the manner proposed by Barker and Henderson [25, 26], and 
Levesque and Verlet [27]: 

W(r) = W R"s + W ELP , (2.6) 
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where 

= ~ W ( r ) ,  r<~ o', (2.7) wRrIS(F) ( 0 ,  r > ~ r ,  

and 

{ 014~( r < ~r, (2.8) W, --= wELP(r)= r ) ,  r~>o-. 

The value of o- should be chosen in such a way, that wEEP(r)/kT < 1 for every 
value of r. Still, the choice is arbitrary to some extent [25, 26]. We choose the 
distance ~r by imposing the following condition: 

W(r = ~r) 1 

kT 2" 
(2.9) 

The use of eq. (2.9) for the determination of or leads to a remarkable 
coincidence between the proposed perturbation model and the numerical 
calculations of the system properties as static structure factor (see section 3), 
and collective diffusion coefficient (see section 4). There is also some physical 
notion in the condition (2.9), defining or as the distance at which the repulsive 
energy W(r) equals the Brownian kinetic energy kT/2. In fact, the latter is 
responsible for the approach of two particles in absence of any external force. 

In the perturbation approach or is a finite distance and the radius of the 
particles of the reference system a RHs is determined by the condition [19, 25, 
26]: 

c r  

a R"s = ~ f dr  [1 - g(r)] .  
0 

(2.10) 

The radius of the reference hard sphere a RHs is larger than the actual particle 
radius a, and accounts for the low probability of approaching of two spheres 
beyond the distance 2a Rns. For diluted suspensions the radial distribution 
function of the reference system go(r) is 

0 ,  r < 2 a  Rr~s 
go( r ) 1 , r~>2a RHs i (2.11) 

The choice of o-----~ w in eq. (2.10) leads to the simple effective hard sphere 
(EHS) model [3, 28]: 

[ 0 ,  r < 2 a  Ells 
g(r) 1 , r />2a  EHs '. (2.12) 
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This model has been widely used for obtaining analytical results for the 
collective diffusion coefficient of charged particles (see ref. [3], p. 146-148). As 
we will show below, this approach is not always appropriate for calculation of 
the angular dependence of the so called effective diffusion coefficient DEFv [3], 
and the static structure factor (see sections 3 and 5). 

The splitting of the radial distribution function (see eq. (2.5)) allows also to 
split the integrals over g(r) into two parts (see also eq. (2.11)): 

; 2af HS f W ELP 
F = dr  [1 - g(r)] f(r)  ~ dr  f(r) + dr - ~ -  f ( r )  -=- F Rrts q- F ELP , 

0 0 o- 
(2.13) 

where f ( r )  and F are arbitrary functions. 
Eq. (2.13) will be used in our calculations below. 

2.2. Pair energy o f  interaction 

For determination of the pair interaction energy W(r) between strongly 
charged particles, the nonlinear PBE needs to be involved [20]: 

47re 2 
V2y - ~ niz i e x p ( -  ziy ) , (2.14) 

e k T  i 

where y = e q t ( r ) / k T  is the dimensionless potential. For spherical particles eq. 
(2.14) cannot be solved analytically to give the potential distribution. Hence, 
no explicit expression for the interaction energy W(r) can be obtained, but the 
asymptote at r--~ m is known to have a Yukawa form [20]: 

2 - K r  
e e 

- -  for lY] ~ 1. (2.15) Y ( r ) - - ~ - e ~  37 r ' 

37 is a quantity, which can be obtained exactly by numerical intergration of eq. 
(2.14), and matching the boundary condition at r = a: 

[-~r]r=a - z°e2 (2.16) 
e k Ta 2 • 

From a practical viewpoint, it is convenient to perform the numerical 
integration of eq. (2.14), starting from a point r=, disposed at large distance 
from the particle surface (r~ > (1 + Ka)/K) with boundary conditions (cf. eq. 
(2.15)), 
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e 2 e - K r =  

- -  ( 2 . 1 7 )  Y( r~ ) = e-k--f 37 r~ ' 

[dr I e 2 (  )e'r  
d r  . . . .  E k r  37 K + l__ (2.18) 

r~  r~  

If the particle charge z 0 (or potential ~,) is known, 37 is considered as a 
parameter,  determined by the requirement that the solution of the PBE must 
satisfy eq. (2.16). 

For large distances, where eq. (2.15) holds, the energy of pair interaction 
can be expressed in the following manner [20]: 

W ( r )  _ W o 2a e 2Ka e - ~ r  ( 2 . 1 9 )  
k T  k T  r ' 

where 

Wo _ e2y 2 e 2Ka 

k T  2ekTa  
(2.20) 

Combining eqs. (2.9), (2.15), (2.19), and (2.20), we obtain 

y(o'/2)=(\ekT~r/2e2 ]1/2 < \~-/(0"69)1/2 , (2.21) 

where a is expressed in nanometers. Hence, for particles with radius greater 
than several nanometers l y(~r/2)[ ~ 1, and the effect of the nonlinearity of the 
PBE (eq. (2.14)) on the potential distribution y(r) is significant at distances 
where the radial distribution function is essentially zero. For that reason we 
can use eqs. (2.9), (2.10), and (2.19) for calculation of the distance or and a RHs 
However,  for  computation o f  the real surface charge, or potential f rom the 
interaction energy, the nonlinear PBE  should be used. 

In fig. 1, the calculated values of o'/2a and y = aRHS/a for Wo/kT between 1 
and 200, and for a set of values of Ka between 0.2 and 5, are shown (see eqs. 
(2.1), (2.9), (2.10), and (2.19)). It can be seen that for small Wo/kT and large 
Ka, both o'/2a and y tend to unity, which corresponds to pure hard sphere 
interaction. However, at K a ~  < 1 and large values of Wo/kT, ~r/2a and 3' 
become much larger than unity. 

For particles with low surface potential ~ ,  the linear PBE can be used: 

V2y = Key, (2.22) 

to obtain [20] 
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Fig. 1. a/2a (full curves) and y (dashed curves) versus Wo/kT for: (a) Ka = 0.2; (b) Ka = 0.4; (c) 
Ka=0 .6 ;  (d) K a = l ; ( e )  K a = 2 ; ( f )  K a = 5 .  

e ~ ( r )  _ z o e 2 e ~a e -Kr  

y ( r ) - -  k T  e k T  l + Ka r 

zoe  = ~ s e a ( 1  + Ka)  

(2.23) 

(2.24) 

and 

Wo_  (Zoe) 2 1 
k T  2 e k T a  (1+  Ka)  e " 

(2.25) 

A comparison of eq. (2.25) with eq. (2.19) shows that for particles with low 
surface potential, the quantity W 0 presents the energy of pair interaction at the 
point of contact between the particles. For particles with extremely low charge 
number z 0 (e.g. some proteins), W o / k T  < 1 and eq. (2.1) can also be linearized 
(cf. eq. (2.2)), which leads to great simplification of any further calculations 
[18]. Usually this is a very drastic assumption. We should mention that even 
the use of the linear PBE does not necessarily give the possibility for 
linearization of g(r ) .  

3. Static structure factor for suspension of strongly charged colloidal particles 

In this section we show how the proposed perturbation approach can be used 
for derivation of the static structure factor for a suspension of strongly charged 
Brownian particles. 
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The static structure factor is defined as [3, 19] 

S(q) = 1 - --T dr  r2[1 - g(r)] sin (qr______~) 
a qr 

0 

(3.1) 

where 4) is the particle volume fraction and q is the magnitude of the scattering 
vector: 

4,n'n 
q =  -~- s in(0 /2) ,  (3.2) 

n is the refractive index of the solution, A is the wavelength of the incident 
beam in vacuo and 0 is the scattering angle. At q--~ 0 we have 

S(0) = 1 - Av~b, (3.3) 

where A v is the second osmotic virial coefficient (see eq. (4.4)). 
Usually, for interpretation of DLS results at low volume fractions, the EHS 

approach (see eq. (2.12)) is used [3, 17], which gives qualitatively correct 
results. In this case for S(q) one obtains [17, 29] 

s E H S ( q ) = I - - q 5 ( 2 4  [sin(yEUSp) - yEHSp COs(yEHSp)]), (3.4) 

where 

E H S  aEHS/a and p = 2 q a ,  (3.5) = 

'Y EHS is the ratio of the effective and the real hard sphere radii of the particles. 
In fig. 2 the EHS-approach (eq. (3.4), the dashed curve), and the result from 
numerical integration of eq. (3.1) together with eqs. (2.1) and (2.19), are 
compared.  The following values for the parameters were used in the computa- 
tions: radius a = 10 nm, screening parameter  Ka = 1, and Wo/kT = 87.3. The 
v a l u e  .ylEHS = 2.985 was evaluated by means of eq. (2.10) with o----~ ~ and eq. 
(3.5). The difference between the two curves is significant. For example, the 
value of A v calculated by the EHS-model  is 11% lower than the exact value. 
Much higher is the error  in the slope of the dependence of S(q) on q2 for small 
scattering angles - see the inset in fig. 2. It turns out that the exact value of the 
slope is 1.5 times higher than the calculated one by the EHS-model .  These 
facts show that the simple EHS-model  is not accurate enough to allow 
quantitative t reatment  of S(q).  
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Fig. 2. Static structure factor S(q) versus 2qa. The full lines presenting the numerical calculations 
(eq. (3.1)) coincide with the results of the perturbation model (eq. 3.6). The dashed lines 
correspond to the EHS model (eq. (3.4)). The inset shows the dependence S(q) vs (qa) z at small 
scattering angles, a = 10 nm, Ka = 1, and Wo/kT = 87.3. 

Now,  we can in t roduce  into eq. (3.1),  the approximate  expression (2.5) for  

g(r) ,  ob ta ined  by the pe r tu rba t ion  method .  Splitting the integral in eq. (3.1),  in 
the same m a n n e r  as was shown above  (cf. eq. (2.13)),  we obtain  two integrals, 

which can be evalua ted  explicitly to yield 

S ( q )  = 1 - ~b(2~43 [sin(3"p) - 3"p c os (yp )  l 
- p  

K 
sin(qo-) 

q 
+ cos(qo-) ,  

+ 2 ~ exp[K(2a - tr)] a2(K 2 +-q--~ ) .  (3.6) 

H e r e a f t e r  we adopt ,  for  simplicity, the nota t ion  

3" ~- 3RHS = aRUS/a . (3.7) 

Using  the above  values for  a, Ka and W o / k T  , we obtain:  tr/a = 6.0547 and 
3' = 2.7893. For  that  purpose  eqs. (2.9) and (2.10) were used. The  curve for  
S ( q ) ,  calculated by means  o f  eq. (3.6),  practically coincides with the full curve 

( the  exact  result)  in fig. 2. The  relative errors  o f  the values of  hv and the slope 
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of S(q)  on q2 for small q, are less than 1%. Hence, eq. (3.6) together with eqs. 
(2.10), (2.19), and (3.7) can be used for accurate computation of the static 
structure factor at low particle concentrations. The quantity W 0 can be related 
to the real charge and potential of the particles by solving the nonlinear 
P B E - s e e  eqs. (2.14), (2.16)-(2.18), and (2.20). With the given values of 
Wo/kT, a, and Ka, we obtained z o = 150.7 and e~s/kT = 3.98. 

4. First order correction of  the diffusion coefficients D c and D s  s, and the 
sedimentation velocity U 

Following the theoretical approach of Felderhof [4, 10], we can write 

D c = Do(1 + XO), (4.1) 

where 

/~ : /~V "[- ~ O  "+- ~ A  -~- /~S + /~D " (4.2) 

D c is the collective diffusion coefficient which multiplies the concentration 
gradient in Fick's law, and D O is the diffusion coefficient at volume fraction 
q)--> 0. The latter may differ from the Stokes-Einstein value [8] 

k T  
D s E -  6 ~ / a  (4.3) 

when charged Brownian particles are considered. The reason is the deforma- 
tion of the counterion atmosphere due to the Brownian motion of the particles 
(see refs. [18, 30, 31]). The different contributions in eq. (4.2) are [4, 10] 

Av = 2 dr  [ 1  - g( r ) l r  2 , (4.4) 
0 

which is the second virial osmotic coefficient, 

Ao _ 3 f dr  [1 - g(r)]r (4.5) 
a d 

0 

is the Oseen term, taking into account the far field hydrodynamic contribution, 

~c 

6 f tt A A -- a T~ dr[o~u(r)+2[3tltx(r)] g(r) r 2 (4.6) 
0 



N.D.  Denkov ,  D .N .  Petsev / Diffusion o f  charged particles 473 

and 

( -- Ot 12(r) + 2 f l  12(r) -- g(r) r ( 4 . 7 )  A s a2 dr  tt tt 2 

0 

accoun t  for  the near  field hydrodynamics .  The  scalar t ranslat ional  mobil i ty 
funct ions  tt tt file(r) (i = 1, a li(r ) and 2) in eqs. (4.6) and (4.7) can be obta ined  
with an arbi t rary  accuracy as power  series expansions of  the ratio a/r,  by using 

the numerica l  a lgori thm,  deve loped  by Schmitz and Fe lde rhof  [32-34] (see also 

refs. [11, 12]). Thus ,  A g and A s can be evaluated  (see tables I and II in ref. 
[12]): 

A A = ~ dx [ - 2 . 5 x  -4 + 2.25x -6 + 5.3334x -8 - 61.42x -1° - 94.24x -12 

0 

+ 134.58x -14 - 248.46x 16 _ 1587.4x 18 

+ 727.2x 20 d- ~ ( X  22)] g(x)  x 2 (4.8) 

and 

As = f dx [18.751-7 - 7.5x -9 - 89.39x -11 + 215.5x -13 + 843.8x -15 

0 

+ 435.9X -17 + 4164X -19 + ~ ( X - 2 1 ) ]  g(x)  X 2 , (4.9) 

where  x = r/a is the dimensionless  distance be tween  the particle centers.  The  
terms up to x -2° have been  taken into account .  

The  last t e rm in eq. (4.2),  

A D = 1 ,  (4.10) 

is a force dipole part.  All  these quanti t ies were  evaluated  for  hard  spheres  
HS yielding [10] A H s =  8, A H s =  - 6 ,  A H s =  - 1 . 8 3 1 ,  A s = 0.285, and 

D c = D0(1 + 1.454th).  (4.11) 

It  was shown in ref. [10] that  taking only the first te rm in the expansion for  
h s, one  can obta in  a hard  sphere result  (A s = 0 . 2 9 3 )  close to the exact  
a sympto t i c  value ( h  s = 0.285). For  hA, however ,  we need  some higher  o rder  
te rms  to  obta in  a sufficient accuracy.  
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For weakly charged particles, where the expression (2.2) for the radial 
distribution function can be adopted,  the diffusion coefficients D c and D s s, and 
the sedimentation velocity can be expressed as a sum of hard sphere and 
electrostatic terms: A Hs and A EL [18]. Thus, for the collective diffusion coeffi- 

cient D c we have 

[ (  (z0e)2 1 3 1 ]  
D c = D ( ,  1 +  1 .45+ e k ~  l + K a  (Ka) 2 4' • (4.12) 

It was shown, in ref. [18], that eq. (4.12) describes very well the experimental 
results of Anderson et al. [35] for the diffusion of protein molecules (bovine 
serum albumin), without using any adjustable parameter.  The electrostatic 
terms A~, L and As zL are neglected in eq. (4.12), because their contribution is less 
than 3% for any value of Ka and z o [18]. However,  for the short time 
self-diffusion coefficient we have [3, 10, 17] 

D s = Do(1 + AA4' ) (4.13) 

or in the framework of the approach in ref. [18] (see also eq. (4.8)): 

I ( (z°e)2 e 2K° 
D s = D 0 1 - 1.83 ekTa (1 + Ka) 2 [0.9375 E3(2Ka ) 

-- 0.2109 Es(2Ka ) -- 0.125 E7(2Ka ) + 0.3599 Eg(2Ka ) 

+ 0.138 E~l(2Ka ) -- 0.04928 E13(2Ka ) + 0.02275 E~5(2Ka ) 

+ 0.03633 Elv(2Ka ) - 0.00416 E19(2Ka)])4' ], (4.14) 

where E.(x) is an integral exponent  of order  n. 
The sedimentation velocity U can be expressed as follows (the terms )t EL and 

A EL are negligible again [18]): 

m 3 4, U = U o [ 1 - ( 6 . 5 5 +  (z°e)2 1 ~-a) 1" (4.15) 
ekTa (1 + Ka) 2 

U 0 is the sedimentation velocity of a single colloidal sphere. 
For colloidal systems which consist of strongly charged particles some 

difficulties arise because the colloid-colloid radial distribution function cannot 
be linearized (see eq. (2.1) and the comments below it). Still, a hard sphere 
radius, corresponding to the reference system a RHs, can be defined according to 
the procedure  described in section 2. Splitting the integrals (4 .4)-(4.9)  (see eq. 
(2.13)), we can obtain a reference hard sphere (RHS),  and electrostatic 
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perturbat ion (ELP)  parts. In some particular cases the RHS contribution could 
dominate  that of the electrostatic tail. However ,  for most real systems, the 
RHS,  and the ELP  Yukawa terms lead to comparable contributions. For such 
situations we can write the collective diffusion coefficient in the form (cf. eqs. 
(4.1) and (4.2)) 

RHS = IRHS q_ AS )(~]  Dc Do[1 + ( A v  + Ao + AD + "'A (4.16) 

where 

W 0 e~(2 a ,~) 3(1 + Ko-) 
A v = 87 3 + 2 ~ ( r a )  z (4.17) 

W 0 eK(2a_o- ) 3 (4.18) A o = - 6 T  z - 2 ~ K--a ' 

15 + 9 -5 ) ,  
-- - - -  3 + (7(7 (4.19) ~RHS -- 

A 8y 643' 

/•RHS -- 75 - 6 )  , 
S 4 + t~(7 (4.20) 

256y 

A n = 1. (4.21) 

For  not very large values of Ka, when Y ~> 1.2 (see fig. 1), the terms 
corresponding the near field hydrodynamics can be omitted in the sum (4.16). 
Thus,  we obtain 

W0 e,,~2a_,~) ( (1 + Ko" ) 1 )  A = 8 y  3 - 6 " , / 2 + 6 ~  (Ka) 2 ~aa " (4.22) 

For  the short time self-diffusion coefficient (cf. eq. (4.13)) the coefficient A A 
needs to be calculated: 

A A - 
15 9 W0 2~, (Ka)2 (~_5 E3(Ko. ) 

- - 8-y + 6--~y3 + 2 k--T e (Ko.)2 
27 (Ka) 2 Es(KO.)) 
8 (Ko-) 2 

(4.23) 

We kept only the first two terms in the expansion for the RHS and the ELP 
parts, but the generalization involving higher order  terms is trivial. For  strongly 
charged particles, however,  the latter ones are even less important.  

Finally, the sedimentation velocity can be written in the form 
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[ ( 15 9 3 7 5  4 W0 eK(2,_,~ ) 3 ]  
U = U  o 1 -  6 T 2 - 1 + ~ y  6 4 - y  256-y + 2 ~  ~a)~b . 

(4.24) 

)LELP and ,~ELP In eqs. (4.16) and (4.24), the terms "'A ' "'S are neglected, because 
their contribution in the correction term A is less than 3% [18]. 

An illustration of the adequacy of the present perturbation model is given in 
fig. 3. The solid curve (a) presents the exact numerical calculations of A (cf. 
eqs. (2.1), (2.19), (4.2) and (4.4)-(4.10)) at different values of the parameter 
W 0, and Ka = 1. These exact results (curve (a)) coincide entirely with those, 
obtained with the approximate perturbation model (eq. (4.22)). The broken 
curve (b) is obtained by using the EHS approach (see eq. (2.12)). The values 
of a EHS w e r e  calculated by means of eq. (2.10) with o--~ ~. Curve (c) in fig. 3 
corresponds to the linear approximation (4.12) for weakly charged particles 
(see also eq. (2.25)). It is seen that the linear approximation is reasonable for 
W o / k T  <~2. 

Another  check of the proposed perturbation model (eq. (4.22)) is the 
comparison with the numerical calculation for the collective diffusion coeffi- 
cient at different electrolyte concentrations, performed by D'Aguanno et al. 
[23], which is presented in fig. 4. The radius of the particles is a = 2.5 x 
1 0  - 7  c m  and the charge number is z 0 = 20. The solid curves are the results from 
ref. [23] while the broken straight lines are obtained using eqs. (4.1) and 
(4.22). For calculation of the values of Y and or in eq. (4.22), we used eqs. 
(2.9), (2.10), (2.19), and (3.7). The values of W 0 were obtained by numerical 

200 , / 
i I 

I i 
i / 

i / 

(c),' 
100 ,' / / /  

eK / . /  i 
/ 1 1 1 ~ . / ,  I ' /  

I I i ,  I" j 

o 1 lO lOO 

Wo/kT 

Fig. 3. First order correction of the collective diffusion coefficient A versus the interaction 
parameter Wo/kT. The full line (a) presents the numerical results (eqs. (4.4)-(4.10)), coinciding 
with the perturbation results (eq. (4.22)). The curve (b) is obtained using the EHS model. Curve 
(c) is calculated from the linear model (eq. (4.12)). 
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I / / /  Ill . . . . . . . . . .  
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0 0.05 0.1 0.15 

qb 

Fig. 4. Comparison between the results for the collective diffusion coefficient D c versus ~b from 
ref. [23] (full curves) with our model (eq. (4.22), dashed curves). The particle radius is a = 2.5 n m ,  

charge z U = 20. The different curves refer to: (a) Ka = 0.2626; (b) Ka = 0.3714; (C) Ka = 0.5872; 
(d) Ka = 0.8306; (e) Ka = 1.7460; (f) Ka = 2.6265; (g) HS result. 

integration of the nonlinear P B E - s e e  eqs. (2.14),  (2 .16) - (2 .20) .  It is well 
seen that a very good agreement at low volume fraction is reached without any 
adjustable parameters. The collective diffusion coefficient is seen to be very 
sensitive toward the electrolyte concentration (or Ka), and particle volume 
fraction ~b. Fig. 4 gives also some idea about the range of validity of our model 
for calculation of D c at different parameters of the system (some of these 
parameters  are summarized in table I). It is seen from fig. 4 and table I that 
our  model is valid fo r  ~RHS _ (])/,)/3 ~<0.1. 

Table I 
Results for particles with radius a = 2.5 x 10 7 cm, and charge z 0 = 20 at several 
values of Ka (cf. ref. [23]). The surface potential ~, and the parameter W 0 are 
obtained by numerical integration of the nonlinear PBE (see eqs. (2.14)-(2.20)). 
The values of tr, % and A are calculated by means of eqs. (2.9), (2.10), (3.7), and 
(4.22). See also fig. 4. 

Ka e ~ J k T  Wo/kT  o-/a 3' A 

0.2626 4.05 26.6 10.73 4.62 1491 
0.3714 3.67 21.6 8.31 3.61 633 
0.5872 3.14 15.8 6.01 2.64 209 
0.8306 2.73 12.0 4.78 2.13 92.8 
1.1746 2.32 8.8 3.88 1.75 42.8 
2.6265 1.45 3.6 2.64 1.23 8.8 
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5. Dynamic light scattering from electrostatically interacting particles 

In DLS experiments one usually measures the field autocorrelation function 
of the scattered light [3]: 

gO)( q, r) = (Es(q ,0 )  E~( q, r)) / (IEsl2) , (5.1) 

where Es(q, t) is the amplitude of the electric field on the detector at the 
moment t, the angular brackets denote time averaging and the asterisk mean 
complex conjugation, q is the magnitude of the scattering vector (cf. eq. (3.2)). 
For a system of N identical scattering particles g(1)(q, r) can be written as 

g~)(q, r) = F(q, r ) /S (q) ,  (5.2) 

where S(q) is the static structure factor and the dynamic structure factor F(q, 
r) is defined by (see e.g. ref. [3]): 

1 N 

F(q, r) = ~ ~ ( exp ( iq . [ rk (0 ) -  rj(r)]}).  (5.3) 
k , ] = l  

Here rk(t ) is the position vector of particle k at the moment t. 
Ackerson [36] and Pusey and Tough [3] showed that for a system of 

interacting particles an appropriate analysis can be performed in terms of the 
cumulant expansion: 

In g(1)('r) = E Kn (-r)-------~ (5.4) 
n n! ' 

where K n is the nth cumulant. 
By assuming pair-wise additivity of the potential and hydrodynamic interac- 

tions between the particles, Ackerson [36] and Pusey and Tough [3] demon- 
strated that the first cumulant K 1 defines an effective diffusion coefficient DEFF, 
which at low particle volume fraction is written 

DZFF(q ) _  K,2 - D° [1+~b(6 o + 6  D + 6  A+6s)  ],  (5.5) 
q S(q) 

where ~b is the particle volume fraction and 

f ( sin(qr) cos(qr) sin_(qr) 
6 0 = - 9 a  -2 drr[1-g(r)]  qr + (qr) 2 (qr) 3 ] '  

o 

(5.6) 
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6 D = l - 3 f  d r [1  g ( r ) l J 2 ( q r  ) 
r 

0 

(5.7) 

~A ~'~ ~A ' (5.8) 

225 4fd_~ (sin(qr) 
6s = - -4-  a g (r )  r qr  

0 

- -  + 2 cos(qr) _ 2 sin(qr) 
( qr)  2 ( qr)  3 / "  (5.9) 

In deriving of eqs. (5.5)-(5.9) the analytical expression for the two particle 
mobility tensors obtained by Felderhof [9-12] were used. For the evaluation of 
6 s, only the first term in the expansion (4.9) was considered, j2(x) in eq. (5.7) 
is the spherical Bessel function. For small values of ~b we can write (cf. eq. 
(3.1)) 

DEFy(q) = D0(1 + 640, (5.1o) 

6 = 6 v + 6 o + 60 + 6 a + 6 s , (5.11) 

where 6 v is given by 

3 f sin(qr) (5.12) 8 v = ~ 3  d r r 2 [ 1 - g ( r ) ]  qr  

0 

The general expressions (5.5)-(5.12) give the angular dependence of the 
effective diffusion coefficient measured by the initial decay of the dynamic 
structure factor F(q, "r) in DLS experiments. At small scattering angles, where 
q ' " ~  0 ,  t~i""~ /~i and DEFF---> D c- 

For interpretation of the measured values of DEF F and D c in case of charged 
particles, one usually applies the simple EHS model (cf. eq. (2.12)). The 
effective radius of the charged spheres a Ens is determined either via eq. (2.10) 
with o----> oo [28] or by the expression [17] 

EHS /~V)I/3 a = ½a( , (5.13) 

where A v is the second osmotic virial coefficient (cf. eq. (4.4)). 
Below, we apply the perturbation approach and obtain simple analytical 

formulae for DEFF(q) at small scattering angles ( q a ~  1). We start with the 
case of noncharged hard spheres because some of the results are necessary for 
the further consideration. 
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5.1. Calculation of DEFv ( q) for a hard sphere suspension 

By using the hard sphere radial distribution function (eq. 
E H S  a = a), one obtains [17] 

(2.12) with 

Hs 24 
6 v = ---5 [sin(p) - p cos(p)] ,  

P 

6H s _ 18 o 3 [sin(p) - p cos(p)] ,  
P 

3 HS 
= -3 [sin(p) p cos(p)] ~ D  - -  ' 

P 

(5.14) 

(5.15) 

(5.16) 

H S  = /}tA , (5.17) 

a~s _ 225 1 
3 [sin(p) - p cos(p)] 

224 p 

225[ l1 
+ 4 ~  sin(p) P 

_ _ _ _  1 _ p2 p4 
12 p + ~ ) + c o s ( p ) ( ~  ~ ) -  ~-~ ci(p)]  

(5.18) 

where p = 2qa and ci(p) is an integral cosine function. Even for such a simple 
radial distribution function, the results cannot be expressed in terms of 
elementary mathematical functions. Much more complicated are the integrals 
when electrostatic repulsion must be taken into account. For that reason, 
asymptotic expansions of 6i(q) for small scattering angles might be useful. The 
results read 

~HS = 8 -- 4p2 + ~5p4 + C ( p 6 ) ,  ( 5 . 1 9 )  

3 4 6~ s = - 6 +  3 p 2  l~6P + •(p6) , (5.20) 

1 4 6~ s = 1 - ~p2  + 2~6P + ~ ( p 6 )  , (5.21) 

HS a~ s = A  A = - 1 . 8 3 ,  (5.22) 

p4 In(p) 15 4 " S  
- -  2-3ggg P + 6 ( P 6 )  • (5.23) 

Keeping only the terms of orde r  p2 we obtain 

6Hs = Ai~s _ 1.903(qa)2 + ~(p4 In p ) .  (5.24) 
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The latter expression is compared in fig. 5 with the result obtained by Russel 
and Glendinning [29] for arbitrary angles by means of numerical evaluation of 
DEV F and using the exact, numerically calculated values for the two particle 
mobility tensors [5]. For qa < 0.75 the exact results and the expansion (5.24) 
practically coincide. The magnitude of q in the real light scattering experiments 
is of the order of 105cm -~. Hence, the simple expression (5.24) can be 
successfully applied for uncharged particles with diameter 2a < 150 nm. 

Eqs. (5.19)-(5.23) show that for hard spheres all the contributions of the 
four terms 6 v, 6 o, 6 D and 6s, in the angular dependence of DEF F are significant 
and none of them can be neglected. 

5.2. Calculation of DEFF(q)  for charged particles at small angles 
The expansion of the integrals in the right-hand sides of eqs. (5.6)-(5.9),  

and (5.12) for small values of q gives 

6 v = A v - ½(qa) 2 f dx x411 - g(x)] + [~(q4a4) , (5.25) 
0 

6 0 = A 0 + 3(qa)2 f dx x311 - g(x)]  + (~(q4a4) , (5 .26)  

0 

•D = A D  - -  1 (qa)Z f dx x[1 - g(x)] + 6(qaa4) , (5.27) 
0 

6 A = A A , (5.28) 

0 
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q Q  

Fig. 5. Comparison of eq. (5.24) (dashed curve) with the exact numerical result of Russel and 
Glendinning [29] (full curve) for hard spheres. 
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a 

6, = A, - g (qa)‘+ 6(qa)* 
I 

dL3g,(x)+ 6(q4a4), (5.29) 

0 

where x = r/a is the dimensionless distance between the centers of the two 
particles. The expansion (5.29) can be performed only if gi(x) is decaying 
exponentially with x, because in the other cases the expansion is not con- 

vergent. 
For strongly charged particles we must use the radial distribution function 

stemming from the perturbation treatment-see eqs. (2.5) and (2.13). In this 

case we obtain 

S, = S ,:us + S ,FLP ) i=V,O,A,D,S, (5.30) 

S tHs = 87” - ;p2ys + &p4y7 + B(p6y”), (5.31) 

S zHS = -6y*+ $p2y4 - &,p4y6 + B(p6ys), (5.32) 

S ;HS = l- &p2y2 + &jp4y4 + 6(p6yh) ) (5.33) 

S;us = ~;us = _ L&-i + &~3 + Q(~-~), (5.34) 

RHS 

Ss =& 
-4 

- &P2Y -* + o( p”) . (5.35) 

These expansions are convergent only if py 3 < 1. Usually, for strongly 
charged particles and low or moderate electrolyte concentrations, y 3 2 (see 
fig. 1 and table I). One can estimate that, in this case, the effect of S EHS, SzHS 
and SFHS (i.e. near field hydrodynamics) can be neglected. Therefore, as a 
good approximation we obtain 

s RHS = 8y3 - 6y2 - (qa)*y’ y 
c i 

1 - 5 + a( q4a4). (5.36) 

Sometimes the hydrodynamic term So can be neglected in comparison with 
6, [3]. Eqs. (5.31) and (5.32) show that the contribution of SEHS can be 
neglected only if y 2 10, which corresponds to high 
small values of tea (see fig. 1). 

For SCFLp we obtain 

surface potentials and very 

ELP 
2w, eKWq) 

6” =A,ELP-(qa)* - 4 [&(K@)‘+ ;( 
kT (Ku) 

KU)’ + 3KU + 31 , (5.37) 
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hELP = ,~ELP 2W0 e'~(2a-°') 
~0 "'0 + 6(qa)  2 k r  (Ka) 3 [½(r°')2 + t o - +  1] 

2W 0 e,~(2a_o. ) 1 ~D's ELP = 1 -- ~ (qa)  2 - - ~  K--a 

• E L P •  ELP 
A " 'A ' 

(5.38) 

(5.39) 

(5.40) 

a E L P  = hELP 2W0 (Ka)  3 
s "-s  + qa) 2 e2KaE4(kO') (KO.)3 • (5.41) 

The numerical calculations show that ~ ELP and a ELP v S v A can be neglected in the 
sum o f  6/ELP. A D can be also omitted in comparison with "'v)tELP and "'o'~ELP- Hence,  

we derive (see also eqs. (4.17) and (4.18)) 

3ELP hELP hELP 2W0 = "v  + " o  + (qa) 2 - - ~  G(Ka, K~),  (5.42) 

where 

G(Ka, Ko-)= - -  
eK(2a-a) 

(Ka)  4 { - - [ I (Ko ' )  3 Jr- 3(KO') 2 -t- 3to" + 3] 

6 1 + sKa[~(ro ' )  2 + Ko'+ 1 ] -  l ( K a ) 3 }  . (5.43) 

Eqs. (5.42), (5.43) together with eqs. (5.10), (5.30), and (5.36) determine 
the angular dependence of the effective diffusion coefficient in case of strongly 
charged particles. 

For  weakly charged particles, eqs. (5.25)-(5.29) lead to 

a i = 6S s + 6~ zL i =V, O , A ,  D, S (5.44) 

where 6ff s has been determined above (see eqs. (5.19)-(5.23)) ,  and 6 EL can be 
obtained from eqs. (5.37)-(5.41)  by imposing ~r = 2a and W 0 given by eq. 
(2.25). 

The final result is 

2 W 0 ( 9  1 + 1 8  1 ~3 = A Hs + A EL - 1.903(qa) 2 - (qa)  2 - - ~  ~ K----a 5 (Ka) z 

24 1 3 45 exp(2Ka) E4(2Ka)) (5.45) 
+ 5 ( r a )  - - - - 5  + ( r a )  ~ 64 

The  numerical check shows that for not too large values of Ka (Ka < 2) the 
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hard sphere contribution and the last term in the braces in eq. (5.45) can be 
omitted. The contribution of 60 can be neglected only if K a ~ 1. 

Eqs. (5.25)-(5.29) show that the expansion of 6 at small angles keeps only 
the even powers of qa. This fact can be used for the interpretation of DLS 
experimental data [18] (see section 6). 

6. Dynamic light scattering experiments 

The aim of this section is to demonstrate how the theoretical results, 
obtained above, can be used for interpretation of light scattering experiments. 

The measurements were performed with three suspensions of different 
concentrations of latex particles in 2.25 x 10 -4 mol/l  NaC1. The radius of the 
particles was calculated by means of the Stokes-Einstein r e l a t i on - see  eq. 
(4.3). The diffusion coefficient DsE = 1.93 x 10 -7 cm2/s, was measured at low 
latex concentration in excess of electrolyte (0.01 mol/ l  NaCI, ~b = 5 x 10 -4) in 
order to avoid the influence of the particle interaction and the effect of the 
deformation of the counterion atmosphere [30, 31]. Thus, we obtained a = 
12.7 nm for the hydrodynamic radius of the particles. The volume fraction of 
the latex particles in the experiments was below 10 -3. 80, we neglected the 
contribution of the counterions dissociated from the particles in the value of 
the screening parameter K. Thus, Ka was calculated to be equal to 0.632. As it 
is proved below, the surface potential of the particles is greater than 25 mV and 
the perturbation theory with nonlinear PBE is to be applied for interpretation 
of the results. 

The equipment we used was a Malvern 4700C system (Malvern Ltd.,  
England),  supplied with a K7032 CE 8 Multibit correlator. The light source 
was an Argon laser (Innova 70, Coherent) operating at 488 nm wavelength of 
vertically plane polarized light. The temperature of the samples was automati- 
cally kept at 25---0.1°C. Details for the sample preparation and measurements 
are described elsewhere [18]. 

For a given concentration of latex particles we measured the autocorrelation 
function g( l ) (q ,  r) at different scattering angles. Using the first cumulant K~ 
(cf. eq. (5.4)) we calculated the effective diffusion coefficient DZFF( q, 4)) from 
each g~1)(q, ,c) curve. In fig. 6 are shown the values of DZF v (the points) 
determined in this way for three different latex volume fractions: ~b = 3.33 x 
10 -4, 6.67 x 10 4, and 10.0 x 10 -4. Each of these three sets of data was fitted 
with a polynomial of the type (see eqs. (5.36) and (5.42) and ref. [18]): 

DEFF(q) = D c + b , ( q a )  2 + b2(qa)  4 , (6.1) 
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Fig. 6. Effective diffusion coefficient DEF F versus the scattering vector q for charged polystyrene 
latex particles in 2.25 × 10 4 rnol/l NaC1. The points are obtained by DLS measurements,  and the 
curves are calculated by the least squares method (see eq. (6.1)): (a) ~b =3.3  × 10-4; (b) 
~b = 6.7 × 10-4; (c) ~b = 10.0 × 10 -4. The dashed curve is obtained by linear extrapolation of DEF F 
toward zero particle volume fraction at given q. 

where the coefficients Dc, b 1 and b 2 w e r e  determined by means of the least 
squares method. The respective curves are shown in fig. 6 with full lines. The 
dashed curve in fig. 6 is obtained by linear extrapolation of DEvv to zero 
particles concentration at a given scattering angle. It is briefly discussed at the 
end of this section, where the effects due to the finite diffusivity of the small 
ions on the particle diffusion and light scattering are considered. The values of 
D c, and b~ are summarized in table II. The higher the volume fraction ~b, the 
higher the collective diffusion coefficient D c. In accordance with eq. (4.1), 
from the slope of the plot of D c versus ~b we determined the interaction 
coefficient A = 520-+ 20. The intersect gives the single particle diffusion coeffi- 
cient D o = 1.86 × 10 -7  c m 2 / s .  The latter value is slightly lower than the value 
DsE = 1.93 × 10 -7 cm2/s, which is due to the deformation of the electric double 
layer of the particles [18, 30, 31, 39]. The comparison of eq. (6.1) with eqs. 
(5.10), (5.36) and (5.42) shows that b~ can be expressed in the following 

Table II 
Results for latex particles with radius a =  12.7nm, Ka =0.632. D c and b~ are 
determined from DLS experiments,  b~ values are calculated for Wo/kT= 110.5. 
For more  details see the explanations in the text, See also fig. 6. 

q~ ( % )  D c x 107 (cm2/s) b I x 1012 (cm2/s) b~ x 1012 (cm2/s) 

0.033 2.20 - 5 . 4  - 5 . 0  
0.067 2.44 - 8 . 0  - I 0 . 0  
0.100 2.84 -11 .1  -15 .0  
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manner:  

b~ = -Dog~I3.2ys(1- ~ )  + 2 - ~  G(Ka, mr) ] . (6.2) 

We have three experimental values for b~ (table II) and one for A, which 
must be fitted with uniform set of parameters.  The problem can be divided into 
two consecutive parts: 

(i) determinat ion of parameter  of interaction energy W 0. For that purpose 
we used the method of trials and errors to find the value of W 0 which 
corresponds to the experimentally obtained value of A (or b l) - see eqs. (4.22), 
(5.30), (5.36), (5.42), and (5.43). Besides, the value of y and o- are evaluated 
using eqs. (2.9), (2.10), and (3.7); 

(ii) calculation of the particle charge and potential from W 0. This was 
performed by numerical solution of the nonlinear PBE (2.14) together with the 
boundary conditions (2.17), and (2.18) (see also eq. (2.20)). 

Using the above procedure and for A = 520, a = 12.7 nm, and Ka = 0.632, we 
obtained the following values for some parameters of the system: Wo/ 
kT = 110.5, ~r/a = 8.29, y = 3.78, z 0 = 136.2, and e~/kT = 3.82. With these 
values of the parameters,  we calculated the coefficients b T. The results are 
shown in the last column of table II. The comparison with the measured value 
for b l evidences that the agreement is satisfactory. We should mention that the 
use of the linear theory (see eq. (4.12)) for such strongly charged colloidal 
particles leads to calculation of effective values for the particles charge and 
potential  which are smaller than the real ones [18, 37, 40, 41]. For example, by 
introducing the same value for A in the linear theory (eq. (4.12)) we obtain 
z 0 = 45.6 and eqtJkT = 1.5. 

Some difficulties arise in the experimental investigations of systems of 
strongly charged particles, which are related to the high sensitivity of the 
results toward the value of Ka. For example, the increase of Ka with 10% may 
lead to a several times increase in the calculated z 0 and ~ (cf. fig. 6 and table 
II). This means that small errors in Ka may lead to large deviations of the 
calculated particle charge and potential from the actual values. The polydis- 
persity of most of the real samples produces inevitable uncertainty for Ka, used 
in the computations. 

The coupling between the colloid-colloid, and colloid-small ions interac- 
tions was neglected in the present consideration. In principle it can be 
accounted for by using the coupled mode theory [40, 41]. It was shown by 
Belloni and Drifford [40] (see also ref. [18]) that the effect of the small ions on 
the coefficient A is proportional to the ratio Do/Ds~ (Ds~ is the small ion 
diffusion coefficient). Hence,  it can be neglected in most cases. 
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Another question which can arise is whether the presence of small ions 
affects significantly the angular dependence of the effective diffusion coefficient 
DEFy(q). Considering our experiment (cf. the dashed line in fig. 6) we have not 
detected remarkable influence of the small ions. 

7. Concluding remarks 

In the present article, we have applied the perturbation statistical mechanical 
theory of Barker and Henderson [25] for determining the diffusion coefficient 
and sedimentation velocity of collodial particles. For this purpose, the equilib- 
rium radial distribution function was split into two parts, corresponding to a 
reference system of effective hard spheres and to an electrostatic interaction 
perturbation. One should distinguish between this method and the effective 
hard sphere model which ascribes all charge effects to the effective particle 
excluded volume [3, 17]. The present article is a further development of our 
previous study [18], where a system of real hard spheres with low surface 
charge was examined. 

By involving the theory of Felderhof [4, 10] into our considerations, we 
obtained analytical expressions for the first order correction of the diffusion 
coefficients and sedimentation velocity with respect to the volume fraction of 
particles (see eqs. (4.22)-(4.24)). The results were compared with exact 
numerical calculations, and also with the predictions of the EHS model (see fig. 
3). Numerical results of other authors [23] were also used to check the 
accuracy, and range of validity of our model (see fig. 4 and table I). 

The angular dependencies of the static and dynamic structure factors were 
examined. By introducing the perturbation approach into the general expres- 
sions given by Ackerson [36], and Pusey and Tough [3], we obtained analytical 
formulae for the static structure factor S(q) (at arbitrary q), and dynamic 
structure factor F(q,  ,c) (at small q). They were compared with numerical 
calculations- see figs. 2 and 5. 

The proposed theory (eqs. (3.6), (4.22)-(4.24)), (5.36) and (5.42)) allows 
the prediction of the diffusion coefficient and structure factors, if the particle 
size, charge, potential, ion concentration, and other parameters of the system 
are known. The equations we derived also give the opportunity to determine 
some of these parameters from light scattering experimental data. An illustra- 
tion of such consideration is presented in fig. 6 and table II. From the 
measured by dynamic light scattering angular dependence of the effective 
diffusion coefficient Dnvv(q), particle charge and potential have been calcu- 
lated. We neglected the van der Waals attractive interaction in the present 
study because it is negligible for strongly charged particles at low concen- 
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trations of electrolyte. However, this interaction can be easily incorporated in 
our model. 
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