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New experiments with air bubbles floating at the surface of aqueous solutions of sodium dodecyl 
sulfate have been carried out. At a given size the spontaneous shrinking of  such a bubble has been stopped 
by regulating the pressure inside the cell. The relaxation of the contact line radius with t ime has been 
recorded by taking photographs. The film curvature was measured by utilizing a precise differential 
interferometric technique. The data allows independent calculation of the film and line tensions, y and 
~. For a "stopped" bubble both 3/and ~ relax with time: ~ tends to zero and 3t tends to its equilibrium 
value known from other experiments. The results suggest that for this system one can introduce the 
concept of  dynamic line tension, which arises because of the mot ion of the contact line. This effect can 
be important  in all cases when the interactions between fluid colloid particles a n d / o r  biological cells are 
accompanied with formation of a three-phase contact line. © 1992 Academic Press, Inc. 

1. INT R ODUC T ION 

The importance of the line tension for the 
interactions between small fluid particles in 
emulsions, foams, and biological systems is 
well recognized. On the other hand, the ex- 
perimental information about the values of the 
line tension and its effect on the three-phase 
contact angles is still scanty and controversial. 
Some of the problems, connected with the 
measurement of the line tension are reviewed 
in Part I of the present study (Ref. ( 1 )), where 
new experimental data for the contact angle 
of  small floating bubbles were also presented. 
It was established that the shrinking of the 
contact line leads to a deviation of the contact 
angle from its equilibrium value. When the 
shrinking of a bubble has been arrested, the 
contact angle relaxes and reaches eventually 
its equilibrium value. This study is continued 
in the present paper. This time the relaxations 
of the film and line tensions, 3' and K are in- 
vestigated experimentally. The additional ex- 
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perimental information needed for indepen- 
dent calculation of 3" and K is obtained by dif- 
ferential interferometric measurements of the 
curvature of the thin foam film at the bubble 
cap. Since the effect of K is small, special at- 
tention is paid to the accuracy and reliability 
of this interferometric optical technique. 

In the system studied by us the interfaces 
are fluid and the processes are very slow. That 
is why the surface roughness and the viscous 
flows have probably negligible effect. 

2. EXPERIMENTAL PROCEDURE 

The experimental cell with variable pressure 
and the materials used are described in Section 
2 of Part I (Ref. ( 1 )). That is why we give 
below only a description of the interferometric 
technique for measuring the radius of curva- 
ture Re of  the thin film at the cap of the bub- 
b l e - F i g .  1. 

The experiments were carried out with a 
differential microscope (Epival Interphako, 
Carl Zeiss, Jena) using objective (×  12.5 ). The 
light source was a high-pressure mercury lamp 
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FIG. 1. Sketch of a small bubble attached to a liquid- 
gas interface; re, R, and Rf are the radii of the contact 
line, bubble equator, and film curvature, respectively. 

(HBO-50W) combined with a filter transmit- 
ting only the green spectral line of wavelength 
546 nm. In order to produce an interference 
pattern of better contrast we used an illumi- 
nation screen grid of constant 48 #m, the same 
as in Ref. (2).  The principle of the differential 
interferometry and the construction of the 
microscope are described in detail in Refs. (3, 
4). The application of  the shearing method 
for measuring curvature of fluid interfaces is 
given in Refs. (2, 5, 6). 

A shearing distance d --- 24 #m was fixed at 
the beginning of each experiment and was not 
changed during the experiment. A bubble was 
formed as described in Ref. (1) and the ex- 
perimental cell was hermetically closed. Such 
a bubble shrinks spontaneously because of gas 
diffusion across the thin film. At a given size 
its shrinking was stopped by regulating the 
pressure inside the cell as described in Ref. 
( 1 ). Then the relaxation of rc and Rf atfixed 
R was studied. 

We need the dependence of  R, rc, and Rf 
on time t. The experimental information 
needed was obtained in the following way. At 
suitably chosen time intervals three consecu- 
tive photographs were taken one immediately 
after another at time moments tl, 12, and t3. 
At moments  tx and t3 photographs of the bub- 
ble, allowing the determination of its equa- 
torial diameter, were taken in transmitted 
light. At the intermediate moment  t2 a pho- 

tograph of  the differential interference pattern 
due to the monochromatic light reflected from 
the film and liquid surface surrounding it was 
taken. Exposure time of 7 s was used with a 
photographic film HR II Fuji of sensitivity 6 
ASA. Rf(t2) and rc(t2) were determined di- 
rectly from this photograph, whereas the re- 
spective value of R was calculated from the 
dependence R(t)  by means of the linear in- 
terpolation 

R(t2) 

R(t3) - R(q)  
= R(q )  + ( t 2 -  11). [1] 

t3 - tl 

This procedure allows determination o fR  (t2) 
with a good accuracy, because the data from 
independent visual measurements of R vs t 
correlate very well with a straight line within 
time intervals of the order of (t3 - tl). After 
the disappearance of  the studied shrinking 
bubble, the radius of  curvature, Ro, at the top 
of the convex liquid meniscus in the cylindri- 
cal container with the solution was measured. 
For this purpose we used microscope objective 
(×6.3)  and after removing the upper glass 
cover of the cell we took a photograph of the 
differential interference pattern created by this 
convex meniscus. The role of the latter is to 
keep the bubble immobile at the center of the 
liquid surface. 

A typical photograph of the differential in- 
terference pattern created by the cap of the 
bubble is presented in Fig. 2. Just as in Refs. 
(2, 7 ) three kinds of interference fringes, called 
the "streaks," "rings," and "moustaches," are 
observed. In comparison with the experiments 
in Ref. (2) we used a longer-distance objective 
(×12.5) ,  instead of (×25) ,  because of  the 
presence of an upper glass cover on the ex- 
perimental cell. The change of  the objective 
led to the appearance of a greater number of 
streaks and rings than in Ref. (2).  

As it is shown in Refs. (2, 7 ) the streaks are 
due to interference between the two images of 
the spherical film, whereas the rings are due 
to interference between the superimposed film 
and meniscus surfaces. One sees in Fig. 2 that 
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FIG. 2. Differential interference pattern in light reflected 
from the cap of a floating bubble and the liquid meniscus 
around it. 

the streaks appear on a darker background 
than the rings. This can be explained by the 
higher retlectivity of  the meniscus surfaces. It 
turns out that as a result of  this the tings yield 
the value of  Rf with better accuracy at shorter 
exposure times than the streaks. That  is why 
in the present work we used the rings for cal- 
culating Rf. The better accuracy is achieved 
at the expense of  more complicated calcula- 
tions than in Ref. ( 2 ) - - s e e  below. In all cases 
when Rr was independently determined from 
streaks and tings on the same photograph, co- 
incidence of the results was established in the 
framework of  the experimental accuracy. 

3. PROCESSING OF THE 
INTERFERENCE PATTERN 

The procedure for calculation of  Rr pre- 
sented below is a generalization of a similar 
procedure published in Ref. (2).  In general, 
the interferometric microscopes, like Epival 
Interphako, allow both "horizontal" and 
"vertical" splitting of the image. The "hori- 
zontal" splitting consists in the appearance of 
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two equivalent images displaced at a distance 
d from each other. The "vertical" splitting is 
realized by means of  an optical wedge inside 
the Max-Zehnder  interferometer built in the 
microscope. The position of  the wedge can be 
changed by using a screw. This leads to 
changes in the positions of  the dark and bright 
interference fringes. The "vertical" splitting 
can be represented schematically as a vertical 
shift, h, between the left- and right-hand side 
images of  the reflecting surfaces--see Fig. 3. 
Because of the condition for interference this 
changes the positions of  the fringes of  different 
brightness. For example, a shift h = X/8 leads 
to an exchange of the dark fringes with bright 
ones and vice versa. 

The origin of  the coordinate system in Fig. 
3 is chosen at the center of  curvature of  the 
left-hand side image. The horizontal splitting 
of magnitude d is along the X axis. The profiles 
of  the left- and right-hand-side images are de- 
noted by Zffx) and Zr(X), respectively. The 
fringes of  m a x i m u m  or m in imum intensity 
are loci of  points for which the distance be- 
tween the reflecting surfaces satisfies the re- 
quirement 

I z l  - Z r l  = 1,------ k - .  [2] 
4 

The order of  interference k is odd for the dark 
fringes and even for the bright ones. The two 
spherical "caps" in Fig. 3 satisfy the equations 

X 2 q- Z 2 = R 2 [ 3 ]  

(Y  - -  d )  2 + (Z r q- h )  2 -~ R 2.  [4]  

Z 

L rc 
~ h  

d)i" ~ X ) 

FIG. 3. A sketch of the cross-section of the reflecting 
surfaces shifted horizontally at a distance d, and vertically 
at distance h; O is the center of curvature of the left-hand 
side bubble cap. 
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The elimination of Z~ and Z,  between Eqs. 
[ 2 ] -  [ 4 ] yields the following expression for Rf: 

R~ = x 2 + I . ( d -  2xk)d + ( k -  1 
Here Xk is the abscissa of the intersection point 
between the X axis and the kth streak. Equa- 
tion [ 51 allows the calculation of Rf for each 
streak. The substitution Xk = X~ + d/2, h = 
0 reduces Eq. [5] to Eq. [101 in Ref. (2). In 
accordance with the least squares method the 
most probable value of Rf corresponds to a 
minimum of the function 

N 

• (h )  = R (xk; h)] 
k = l  

where Rf(Xk; h) is calculated from Eq. [ 5 ] and 
N 

Rf = ~ Rf(Xk; h)/N. 
k = i  

The summation is carried out over all streaks. 
In our experiments the "vertical" splitting 

was adjusted manually to be zero, which makes 
the left- and right-hand-side parts of the inter- 
ference pattern symmetrical. However, this ad- 
justment cannot be f)erfect: this leads to a min- 
imum value of ~(h) at some very small, but 
still nonzero, value of h (h ~ X / 8 ). 

It turned out that the computer minimi- 
zation of/I~( h ) (as defined above ) and of q~(a') 
as defined by Eq. [18] in Ref. (2) yields nu- 
merically coinciding results. 

For the right-hand-side rings (r~ < Xk < rc 
+ d)Rf can be calculated in the following way. 
Let us denote the distance between a point of 
the external meniscus generatrix and the plane 
of the contact line by Q(x)--see  Fig. 3. Then 
for x > re one has 

Z 1 = ~ f f  - -  r 2 - Q ( x ) .  [ 6 1  

The substitution of Zr and Z~ from Eqs. [4 ] 
and [ 6 ] into Eq. [ 2 ] leads to 

2 [ r 2 - D 2 - ( x k - d ) 2 ]  2, 
R 2 = r~ + 2Dk 

r c < x k < r c + d ,  [7] 

where 

Dk = lk-- Q(Xk) + h. [8] 

For the left-hand-side rings (re - d < I xk[ 
< re), instead of Eq. [6], one has 

2 Zr= V ~ r - r o - Q ( x + d ) - h .  [9] 

Then the substitution of ZI and Zr from Eqs. 
[ 3 ] and [ 9 ] into Eq. [ 2 ] yields 

[ 2  E ~ _  x212 R 2 =  r2 + ro -- 
2Ek 

r e - d <  Ixkl [10] 

where 

Ek = lk -- Q(xk + d) - h. [11] 

Both Eqs. [ 7 ] and [ 11 ] reduce to Eq. [ 13 ] in 
Ref. (2) by means of the substitution Xk = 
X~ + d/2, h = O. 

The function Q(x) determines the profile 
of the liquid meniscus surrounding the bubble. 
The procedure for calculating Q(x) is given 
in the Appendix. It turns out that Q depends 
also on rc and R0: 

Q = Q(x; re, Ro) [12] 

Then Eq. [7] or [10] yields Rf = Rf(xk; h, rc, 
R0). To find the most probable value of Rf, 
the dispersion 

• (h, re, Ro) 

N 

= ~ [ / ~ f -  Rf(Xk; h, r¢, R0)] 2, [13] 
k 1 

was minimized numerically by means of the 
Hook-Jeeves method ( 8 ) (see also Ref. (6)). 
Here 

N 

l~f = ~ Rf(xk; h, rc, Ro)/N [141 
k=l 

and the summation was carried out over all 
left and right hand side rings. The values of rc 
and Ro corresponding to the minimum of 
in all cases are very close to the directly mea- 
sured values of these quantities. For example, 
the difference between the calculated ro, and 
rc measured from a photograph of the inter- 
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ference pattern, like Fig. 2, did not exceed 1 
#m. The respective difference for R0 is less than 
5 cm (Ro ranges from 18 to 25 cm in our ex- 
periments). Of  course, the relatively smaller 
accuracy of calculation of R0 is due to the slight 
effect R0 has on the interference pattern. 

The independent calculation and measure- 
ment of rc and R0 provide a control (and 
proof) of  the accuracy of the differential in- 
terference measurements of Rf. 

4. ACCURACY OF THE INTERFEROMETRIC 
MEASUREMENTS 

In contrast with the directly measured con- 
tact and equatorial radii rc and R, the radius 
of curvature of  the thin film, Rf, is measured 
indirectly by processing the data for the inter- 
ference pattern, as explained above. To be 
certain about the reliability of the values of Rf 
thus obtained we checked the accuracy of the 
interferometric measurements in several in- 
dependent ways. 

As mentioned earlier (see also Ref. (2)) Rf 
can be calculated independently from streaks 
and rings on the same photograph. Table II 
in Ref. (2) shows that the values of Rf calcu- 
lated from streaks and tings coincide in the 
framework of  the experimental accuracy. The 
latter is observed also with all processed pho- 
tographs in the present study. 

Another verification was presented in Ref. 
(5).  The radii of  curvature at the top of small 
aqueous and mercury drops of known size 
were measured interferometfically. The results 
show that there is no systematical error of the 
differential interference measurements in the 
range of curvatures studied (radii between 190 
and 310 #m). The inevitable random error is 
due mostly to the error involved by the mea- 
surements of the positions of the fringes of 
maximum or minimum intensity. The preci- 
sion of these measurements is limited by the 
resolution power of  the microscope (the latter 
is 1 um for objective (×12.5)  as calculated 
from Eq. [97.8] of Ref. (18)).  Because of the 
low reflectivity of the thin film, only the 
brightest parts of the fringes appear on the 
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photographs of  bubbles. In fact this leads to 
an increase of the precision of  measurement 
of the values of  Rf. 

We paid so much attention above to the 
analysis of the reliability of  the differential in- 
terferometry measurements in Refs. (2, 5), 
because we believe that the existing contro- 
versy with the line tension measurements is 
to a large extent due either to the lack of  such 
analysis or, whenever it is available, to its ne- 
glect when the experimental data are dis- 
cussed. Instead, different qualitative arguments 
are invoked in order to explain the apparently 
incredible results. For example, Platikanov et 
al. (9) contended that "the values of the film 
tension 3' are incorrectly determined in Ref. 
(10), probably because of  wrongly measured 
Rf." In Ref. ( 11 ) these authors specified that 
"when interpreting this interference picture 
one must also take into account the reflectivity 
of the lower bubble surface. This has not been 
done in Refs. (2, 10) and this could be one of 
the possible sources of systematic error." 

Since these statements cast some doubt on 
our results, we will discuss below the possibility 
for the light reflected from the bottom of the 
bubble to distort the interference pattern from 
the film. 

(i) The interference pattern, like that in Fig. 
2 is due to light reflected from the "black" 
thin film. To verify that such a reflection is 
strong enough to be observable we formed a 
"bubble without bottom" by using film formed 
on the tip of a capillary--see Fig. 4. We ob- 
served the same interference pattern as with a 
bubble with the typical fringes: "streaks," 
"rings," and "moustaches." Hence, as low as 
the reflectivity of the thin film could be, it is 
high enough to create the observed interfer- 
ence pattern. 

(ii) In our previous experiments ( 10 ) a mi- 
croscope objective (?<25) with aperture num- 
ber 0.5 and focal depth of 2 #m was used. The 
focal depth is about 3 ~tm with the objective 
(×12.5)  used in our experiments with the 
variable pressure cell (1).  In both cases the 
focal depth is much smaller than the bubble 
diameter (the latter vary from 100 to 600 ~m 
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FIG. 4. Sketch of a thin foam film formed at the tip of  
a capillary that is immersed in a surfactant solution. 

in our experiments). That is why it is possible 
to focus either at the film level or at the bottom 
of the bubble and the two images will not in- 
terfere. This is demonstrated by the following 
series of photographs (20, 21 ). 

When focusing at the bottom of the bubble 
(point O1 in Fig. 1 ) we observe distinct inter- 
ference "streaks" only with large bubbles (R 
> 150 um)--see  Fig. 5a. "Rings" and "mous- 
taches" are not observed. When moving the 

focus level upwards, the image from the bot- 
tom disappears and the picture becomes fuzzy. 
Only when a position, corresponding to point 
Fb in Fig. 1 is reached, can one again observe 
distinct image (Fig. 5b). This is the image of 
the illumination screen grid reflected from the 
bottom of the bubble. In fact point Fb is the 
focal point of the bubble bottom, which acts 
as a concave mirror. 

The next distinct image (Fig. 5c) can be 
seen at the level of point Ff- - the  focus of the 
convex mirror, which is the thin liquid film. 
This image of the illumination grid confirms 
again the fact that reflections from the "black" 
thin film can be observed and recorded pho- 
tographically. Finally, when focusing at the 
level of the film (point Oz in Fig. 1 ) we observe 
the already familiar interference pattern (Fig. 
5d) due to the reflection from the film and 
meniscus surfaces. 

(iii) Let us assume now that Platikanov et 
al. ( 11 ) are correct in claiming that the light 

FIG. 5. Photographs of the images observed when focusing the microscope at the levels of the points O~ 
(a), Fb (b),  Fr (c )  and 02 (d),  which are shown in Fig. 1. 
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FIG. 6. Sketch of the differential interference pattern 
(in the middle) and of its interpretation (a) according to 
Ref. (2) and (b) according to Ref. ( 11 ). 

reflected from the bot tom of the bubble also 
contributes to the formation of  the frirges ob- 
served at the film level. I f  such were the case, 
this light should interfere with the light re- 
flected from the meniscus--see Fig. 6. We will 
show now that the interference pattern that 
should immerge is very different from that ob- 
tained by reflection from the film and no con- 
fusion nor supperposition between the two is 
possible. It is observed experimentally that 
when the bubble diminishes all rings shrink 
with t ime and, one by one, disappear when 
they reach the inner contact line. The inter- 
ference order of  the rings due to reflection from 
the bubble bot tom would be k ,~ 4R/X, where 
X is the light wavelength. In accordance with 
Fig. 6b the rate of  ring disappearing can be 
estimated as 

dk 4 d R  
- [ 1 5 1  

dt X d t  

By using the experimental data for dR~dr 

(note that they were obtained without using 
differential interferometry) one can calculate 
dk/dt  from Eq. [ 15 ] and compare it with the 
rate of  disappearance of the rings observed ex- 
perimentally. The data presented in Table ! 
demonstrate that the hypothesis for reflections 
from the bubble bot tom is not confirmed: Eq. 
[ 15 ] predicts considerably faster movement  of  
the rings than is observed experimentally. We 
have never observed such rapidly moving 
rings. 

(iv) The experiment shows that each ring 
is matched at the contact line with a streak 
(or a moustache ) - - s ee  Figs. 2 and 6. This is 
in agreement with our interpretation (the up- 
per part of  Fig. 6), corresponding to contin- 
uous reflecting surfaces (i.e., to gradual tran- 
sition from the film to the outer meniscus).  
On the contrary, if the pattern is interpreted 
as shown at the lower part of  Fig. 6, then the 
rings are not bound to match with the streaks 
(moustaches), because there is a discontinuity 
of  the reflecting surfaces. 

An additional method for verifying the re- 
liability and precision of  our interferometric 
measurements is presented below. 

5. THE DOUBLE MIRROR METHOD 

Both Fig. 5b and 5c represent images of  the 
same object- - the  illumination screen grid. 
However ,  they have different sizes because 
they were obtained from two spherical "mir-  
rors" (the bot tom of  the bubble and the film) 
of different curvatures. In general, if/i  is some 
characteristic length of an image produced by 
a spherical mirror of  radius Ri, then 

TABLE I 

Rate of Interference Rings Disappearance 
in Seconds per Ring 

C a l c u l a t e d  E x p e r i m e n t a l  

R f  [ t t m ]  f r o m  E q .  [ 1 5 ]  v a l u e s  

155 3.3 980 
100 2.1 320 
60 0.5 36 
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It is supposed in Eq. [16] that the subject is 
far enough from the mirrors, as it is in our 
case. Equation [ 16 ] provides a simple method 
(20, 21 ) for measuring the curvature of the 
film if the curvature b of  the bubble bottom 
is known 

If 
Rf = ~b b, [17] 

where/ land lb are liable to direct measurement 
(the subscripts " f "  and "b" refer to the mirrors 
due to the film and the bubble bottom, re- 
spectively), b is calculated from the directly 
measured equatorial radius R by means of Eq. 
[ A.4 ] or numerically--see Appendix. 

In our experiments If and lb were the re- 
spective images of the (shortest) distance be- 
tween the two openings of  the illumination 
slit--seee Fig. 7. The three parameters in the 
right-hand side of  Eq. [16] were recorded ex- 
perimentally as functions of time in the fol- 
lowing way. At suitably chosen time intervals 
photographs of the images formed by the two 
"mirrors" were taken. In addition, visual 
measurements of R and interferometric mea- 
surements of Rf (from streaks) were carried 
out periodically, as described in Ref. (10). The 
illumination slit was exchanged with the il- 
lumination grid of constant 48 #m during the 

interferometric measurements of Rf. Mono- 
chromatic light (X = 546 nm) and black and 
white photographic film of sensitivity 6 ASA 
(HR II Fuji) were used. The exposure time 
used when taking photographs of lb and If was 
4 and 15 s, respectively. The plots of lb vs b 
and If VS Rf turned out to be straight lines pass- 
ing through the coordinate origin. (The exis- 
tence of nonzero intersect would be an indi- 
cation that the image had been overexposed 
or underexposed.) 

In Fig. 8 Rf is plotted vs time. The filled and 
the open circles are obtained by means of the 
interferometric and the double mirror method. 
The random error of the double mirror 
method turned out to be higher. One sees that 
the results of the two methods are in very good 
agreement. This fact in conjunction with the 
results of the previous section demonstrates 
that there are no reasons for any doubt about 
the reliability of the interferometric measure- 
ments of  Rf. 

6. EXPERIMENTAL RESULTS 
AND DISCUSSION 

The vertical and the horizontal projections 
of  the Neumann- -Young  force balance pro- 
vide two equations for independent calcula- 
tion of the film tension, % and the line tension, 
K (see Eqs. [ 6 ] - [ 7 ]  in Ref. (10)):  

~/ = ¢(sin ~Pc + sin ~bc)/sin 0 [18] 

FIG. 7. Photograph of the image of the illumination slit reflected from the thin film (a) and from the 
bubble bottom (b). 
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FIG. 8. Radius of  thin film curvature, Rf vs t ime t: data 
from differential interference measurements ( • )  and from 
the double mirror method (©).  

K = ~rc[cos ~o + cos ~bo 

- (sin ~c + sin ~ ) c o t  0]. [ 19] 

Here ~ is the solution surface tension, 

0 = arc sin(rc/RO, [20] 

and the angles ~'c and ~p~ are calculated as de- 
scribed in the Appendix from the experimental 
values of  rc and R. 

The experimental data presented below are 
obtained with "stopped" bubbles, i.e., at fixed 
equatorial radius R. During the experiments 
the temperature was kept (22 + 0.5)°C. We 
Used two solutions: with 0.25 and 0.32 mol /  
liter NaC1, both of them containing 1.73 × 
10 -3 mol/ l i ter  sodium dodecyl sulfate. The 
surface tension, ~, of the solutions was 32.4 
and 31.7 mN/m, respectively. 

The coordinate origin in Figs. 9-11 corre- 
sponds to the time moment  when the equa- 
torial radius of an initially shrinking bubble is 
fixed by regulation of the pressure inside the 
experimental cell. The relaxations of r~ and 
Rf of  a stopped bubble were measured as de- 
scribed in Section 3. After processing the data, 
-y and K were calculated by using Eqs. [18] 
and [19]. 

The open and the filled circles in Fig. 9 are 
measured with two stopped bubbles of  radii 
R = 282/~m and R = 265 #m, respectively. 
The filled and open triangles correspond to 
two smaller bubbles, both of  them of radius 
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FIG. 9. Relaxation of the line tension K (a) and of the 
film tension 3/ (b)  with time t at fixed equatorial bubble 
radius: open circles, R = 282/~m; filled circles, R = 265 
/tm; open and filled triangles, two bubbles each of radius 
R = 152 # m  (0.25 mol/ l i ter  NaC1). 

R = 152 #m. Each of  these four bubbles has 
been formed in the solution with 0.25 tool /  
liter NaC1. Each point corresponds to a pho- 
tograph of the differential interference pattern. 
The data demonstrates that both the film ten- 
sion, % and the line tension, K, exhibit relax- 
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FIG. 10. The data for the film tension ~f from Fig. 9b 
presented in a log scale vs t ime t. 
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FIG. 11. Relaxation of the line tension ~ (a) and of the 
film tension 3" (b) with time t at fixed equatorial bubble 
radius: open circles, R = 185/zm; filled circles, R = 282 
#m (0.32 mol/liter NaC1). 

ation with time. K tends to zero in the frame- 
work of  the experimental accuracy. 3  ̀tends to 
its equilibrium value 3`0 = 64.4 m N / m ,  mea- 
sured by de Feijter (12) with macroscopic rec- 
tangular films. Obviously the smaller bubbles 
relax faster than the larger ones. 

Figure 10 represents the same data as in Fig. 
9b, but with a log scale on the ordinate axis. 
The slope yields a relaxation time rl ~ 50 
min for the larger bubbles and r2 ~ 10 min 
for the smaller bubbles. The respective contact 
radii measured after relaxation was complete 
are rd = 85 ~m and rc2 = 37 ~m. It is inter- 
esting to note that r z / r l  ~ 2 2 rc2/r~l ~ 0.19. 
The relaxation times calculated from the data 
for K (Fig. 9a) coincide with Zl and ~-2 as de- 
termined from the relaxation of 3  ̀(Fig. 9b). 

Figure 11 represents analogous data for the 
solution with 0.32 mol/ l i ter  NaC1. The equi- 
librium film tension in this case is 3'o = 62.7 
m N / m  (12) .  The filled and the open circles 
correspond to stopped bubbles with R = 282 
and 185 gm, respectively. The relaxation times 

determined from these two curves are rl  = 
130 min and r2 = 36 min. Again r2 / r l  

2 2 ----- = 500 #m), ro2/rcl ~ 0.26 (re1 100#m, rc2 
i.e., the larger the film area, the longer the re- 
laxation. 

The observed relaxation processes are 
probably due to some deviation from equilib- 
rium brought about the shrinking of the bub- 
ble. However, this is not a simple effect like 
relatively slow surfactant desorption during the 
shrinking, which can cause a decrease of the 
bubble surface tension. The latter effect has 
been already discussed and ruled out--see Ref. 
(10),  p. 139. 

The general conclusion from the present 
work is that the film and line tension, 3' and 
K of small floating bubbles have nonequilib- 
rium dynamic values when the three-phase 
contact line shrinks (advancing meniscus). 
They are in agreement with the findings in 
Ref. ( 1 ) that the contact angle, a, of a shrink- 
ing bubble acquires nonequilibrium values. 
This does not mean, that the values of 3, and 
K so measured are meaningless. They are real 
film and line tensions, but since the system is 
out of equilibrium, they are determined, at 
least in part, by dynamic phenomena. In this 
respect they are analogous to the "dynamic 
interfacial tension" and "dynamic contact an- 
gle." That  is why we believe it pertinent to 
introduce the concept of "dynamic line ten- 
sion." It is worthwhile noting that the equilib- 
rium line tension, as predicted by the theory 
(13, 16), is an extremely small quantity (of  
the order of 10 -11-10-12 N), so that it usually 
turns out to be below the threshold of the ex- 
perimental accuracy. On the other hand, the 
dynamic line tension can be many orders of 
magnitude greater; it can affect the value of 
the contact angle and the processes accom- 
panying the motion of a three-phase contact 
line. The processes giving rise to the dynamic 
line tension deserve a separate study. They are 
probably connected with local alterations of 
the interfacial shapes and tensions in a narrow 
vicinity of the three-phase contact zone. We 
believe the study of  these effects will be stim- 
ulated by their importance for the occurrence 
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of many phenomena like wetting, spreading, 
interactions of fluid particles, and biological 
cells. 

The contact angle o~ and the film and line 
tensions 3, and K are connected during the re- 
laxation by 

1 2 a  
+ -  = 0; [21] 

cos (a /2 )  3' 3"re 

cf. Eq. [1] in Ref. ( 1 ). The data in Fig. 11 (the 
larger bubble) shows that the change of the 
first term in Eq. [ 21 ] during the relaxation is 
-0.0015, of the second term is +0.0145, and 
of the third term is +0.0159. The conclusion 
is that the variations of the film and line ten- 
sions counterbalance each other in order the 
equilibrium condition, Eq. [21 ], to be satisfied. 
This confirms again our finding from Ref. (10) 
that the variation of the cos a term in [ 21 ] is 
negligible in comparison with the variations 
of the two other terms. The pronounced 
changes of 3" and K make it impossible to cal- 
culate the line tension from Eq. [21] as pro- 
posed by Platikanov et al. (9, 15 ). In contrast 
to our experimental findings these authors hy- 
pothesized that both ~, and K are constants 
during the bubble shrinking. Recently (22) 
they tried to confirm their hypothesis by direct 
measurements of the film tension of shrinking 
bubbles by using a method similar to the one 
described in Section 5 above. Apparently, they 
were able to show that the film tension is in- 
dependent of the bubble's radius and, thereby, 
of the time. However, this conclusion is due 
to misinterpretation of the experimental data. 
While their measurements of the radius of 
curvature of the film do not raise serious ob- 
jections, the calculation of the film tension is 
based on a wrong force balance: 

2a 23" 
- [ 2 2 ]  

b Rf" 

This equation is missing a hydrostatic pressure 
term. The correct balance is (see, e.g., Ref. 
(23) or Ref. (10), Eq. [12]) 

2a _ 23" 
pgL, [23] 

b Rf 

where L is the distance (along the vertical) 
between the levels of the bubble bottom and 
the solution surface (far from the bubble), p 
is the solution density and g is the gravity ac- 
celeration. Figure 12 is a modified version of 
their Fig. 7. The points are calculated by them 
using Eq. [22] and the horizontal line is their 
average value of  3,. To illustrate the effect of 
the gravity term, we have recalculated their 
data points lying close to the horizontal line 
by using the correct equation [23]. These data 
are shown by triangles and, not surprisingly, 
the shape of the curve drawn through them is 
very similar to our curve 3, vs t in Figs. 9b and 
1 lb. This is an indication that their data also 
confirm our finding about the nonequilibrium 
nature of the measured film tension of shrink- 
ing bubbles. It is also worthwhile noting that 
for large bubbles the film tension turns out to 
be larger than 2~r. This is also in agreement 
with our present and previous (10) results and 
does not substantiate the claims in Ref. (11 ) 
that "the measurements of 1, in Ref. (10) are 
not correct." 

7, CONCLUDING REMARKS 

(i) The new experiments with small air 
bubbles described in this paper confirm the 
large values of the film and line tension (3, > 
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FIG. 12. Plot of  the film tension I, vs the capillary pres- 
sure Pc. The points are calculated in Ref. (22) from ex- 
perimental data by using Eq. [22]; their mean  value is 
prescuted by the solid line. The latter transforms into the 
dashed line after a recalculation based on the correct Eq. 
[23]. 
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2~, K ~ - 1 0 0  nN)  measured in Ref. (10) with 
shrinking bubbles formed in 0.05% aqueous 
solutions of sodium dodecyl sulfate at 0.25 and 
0.32 mol/ l i ter  added NaC1 (see the values of 
3' and ~ in Figs. 9-11 at the earlier times). 

(ii) Similar to the contact angle oe = SO~ - 
~c, the film and line tensions, 3' and K, of the 
stopped bubble exhibit a relaxation. The re- 
laxation time is longer with the larger bub- 
b l e s -  see Figs. 9-11. 

(iii) The relaxing line tension K tends to 
zero in the framework of the experimental ac- 
curacy (+  15 n N). This experimental finding 
is compatible with the theoretical result of de 
Feijter and Vrij (13),  who calculated K = 
-0.001 n N  for equilibrium Newton black 
films. 

(iv) The relaxing film tension 3, tends to 
an equilibrium value, which agrees well with 
the value measured by de Feijter (12) with 
macroscopic equilibrium films. 

(v) The results for 3' are also in agreement 
with the experiments of Platikanov et al. ( 11, 
14), who recovered de Feijter's equilibrium 
values of  3' in experiments with bubbles fixed 
at the tip of a capillary (immobile contact 
line). 

(vi) A thorough check of the differential 
interferometry used in this study showed that 
it is a reliable and precise. The determined 
variations of 3' and K are real effects; they are 
not artifacts due to some systematic errors of 
the interferometric technique, as suggested in 
Refs. (9, 11). 

(vii) The results from the present study 
suggest that under dynamic conditions a "dy- 
namic line tension," analogous to the "dy- 
namic interfacial tension" should act at the 
three-phase contact line. 

APPENDIX 

C A L C U L A T I O N  OF A N G L E S  (Pc, ~c ,  A N D  OF 

T H E  M E N I S C U S  P R O F I L E  

(a) Profile o f  the Lower Bubble Surface 

The lower bubble surface (situated between 
the planes z = 0 and z = z~ in Fig. 1 ) is de- 

formed by gravity. In this case the Laplace 
equation 

1 d (xs inso)  = 2 X-~X b q- q2z [A.1] 

has no closed analytical solution. In [A. 1] SO 
is running slope angle of the bubble surface 
generatrix 

dz 
- tan So, [A.2] 

dx 

b is the radius of curvature at the bubble bot- 
tom, and 

q = ~ 2 x ~ q  [A.3] 

has a dimension of inverse length; 2xo is the 
difference between the mass densities of the 
liquid and gas phases, g is gravity acceleration 
and e is the surface tension of the solution. 

In our case q, r~, and R are supposed to be 
known. Then b can be determined by using 
the equation 

q2b2 q4b4 ]-1 
b = R  1 - ~ - - + - - ~ - - - ( l n 2 -  1/6)  , 

[A.4] 

which is valid for qb ~ 1--see Ref. (2).  Since 
our experiments R < 300 t~m, then qb < O. 15 
and Eq. [A.4] holds with a good precision. 
(The error of  calculation in b is less than 0.2 
t~m for the largest bubbles. ) Equations [ A. 1 ] 
and [A.2] form a set of two ordinary differ- 
ential equations for the functions x(SO) and 
z(SO). This set is integrated numerically by us- 
ing the RKF45 procedure based on Runge-  
Kutta method (19).  The integration starts 
from the bubble bottom (SO = ~-, x(~r) = 0, 
z(~r) = 0) and proceeds with appropriate in- 
crements in SO up to the point x = re, SO =SOc, 
z = zc. In this manner  SOc and Zc are determined 
from the known values of rc and R- - see  
Fig. 1. 

Instead ofEq. [A.4] a similar procedure can 
be used to determine b. The integration of Eqs. 
[A.1]-[A.2] starts from the bubble bottom 

Journal qf Colloid and lnzetface Science, Vol. 151, No. 2, July 1992 



474 'DIMITROV ET AL. 

(with a trial value of  b) and is carried out up 
to the point ~, = ~-/2. The procedure is re- 
peated with different b until the experimental 
value of R is found at ~, = a-/2. 

The volume of  the solution, Vb, which is 
displaced by the bubble, is calculated in the 
following way: 

f0 zc Vb = ~r x 2 ( z ) d z  

fo ~c dx = ~rr~zc - 2~r zx(z)  -~z dz. [A.51 

On the other hand, by integration ofEq. [ A .  11 

one obtains 

r~ I "~ dx 
r e s i n ~ = - ~ + q Z J o  zx(Z) dz  dZ. [1 .6]  

The elimination of  the integral term between 
Eqs. [A.5] and [A.6] yields (17): 

) Vb = 27r --~ qZr~z~ + ~ -- sin ~c • [1 .7]  

(b) Profile of  the Convex Liquid Meniscus 

As mentioned earlier, the studied small 
shrinking bubbles are kept immobile at the 
top of  a convex liquid meniscus. The subject 
of our interest below is the shape of this me- 
niscus after the disappearance of  the bubble--  
see Fig. 13. The radius of curvature at the top 
of the meniscus, R0, as well as the outer radius 
of  the glass cylindrical container, r0, are sup- 
posed to be known. The meniscus profile sat- 

h~ 

Z 

h,. 
v 

× 

FIG. 13. Sketch of the convex liquid meniscus in the 
cylindrical glass container after the disappearance of the 
bubble. 

isfies a set of  equations similar to Eqs. [A. 1]- 
[A.2], 

1 d 2 
x dx (x sin 0) = R00 + qzz [A.8] 

dz 
- -  = tan 0, [A.9] 
dx 

where 0 is the running slope angle. Equations 
[A.8 ] -  [A.9 ] are integrated numerically from 
the meniscus apex (0 = 0, x (0 )  = z(0)  = 0 -  
see Fig. 13) down to the point x = ro, 0 = 0o, 
z = ho at the edge of the glass container. In 
this way 00 and ho are determined from the 
known R0 and r0--see Fig. 13. The meniscus 
volume can be expressed as 

ro 
V0 = 2~- q2 

[1 2 h r0 sin 00) [A.10] x sq ro O+Ro- 

Equation [A. 10 ] is a counterpart of Eq. [A.7 ]. 

(c) Profile of  the Meniscus 
around the Bubble 

Let us now consider the case when there is 
a bubble at the top of  the convex meniscus--  
Fig. 14. Our aim is to determine the angle ~c 
and the function Q(x) governing the shape of  
the meniscus. The Laplace equation in this 
case can be presented in the form 

1 d 
xdx (XS in~p)=  2xP/a + q2Q(x), [A.11] 

where ~b is the respective running slope angle, 

dQ 
- tan ~, [A.12] 

dx 

Ap is the capillary pressure drop across the 
meniscus surface at the level z = 0 ( Q = 0 ) -  
see Fig. 14. Taking into account the capillary 
pressure drops across the thin film and across 
the bo t tom of the bubble Ap is expressed in 
the form 

A p -  231 2~ Apgz~. [A.13] 
Rf b 
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Qlx) ~ ' hi X 

FIG. 14. Sketch of the convex liquid meniscus with a 
small bubble attached at its apex. 

On the other hand, the vertical projection of 
the Neumann-Young  force balance equation 
yields 

rc 
7 ~ .  = a sin ~c + a sin ~c; [A. 14] 

see also Fig. 1. The combination of Eqs. 
[A.13]- [A.14]  leads to 

2 
A p / ~  = -- (sin ~ + sin ~bc) 

t" c 

2 
-- - -- q2z  c. [ A . 1 5 ]  

b 

We suppose that r~ and ro are known and 
that ~ ,  zc, b, Vb, and Vo are calculated as 
described above. Then the volume 

V1 = Vb + Vo [A.16] 

is also known. In addition, similar to Eq. 
[A.5], it is easy to derive 

f r  r° VI = 7rr~hl - 27r Q ( x ) x d x ;  [A.17] 
c 

see Fig. 14 for the notation. An integration of 
Eq. [ A. 11 ] yields 

O_(x)xdx = ~ -~- 

+ rosin ~0 - resin 7/c ] • [ A. 18 ] 

A substitution from Eqs. [ A. 15 ] - [ A. 17 ] into 
Eq. [ A. 18 ] leads to 

=2[ vb+ Vo 
sin ¢c ro q2 2~rro 

1 

2 

- -  + sin ~bo 

__ -- q2rohl + L (r2o _ r2c) 
ro 

X q2zc + b re ]J " 

The angle ~c and the function Q ( x )  are cal- 
culated in the following way. At given ro and 
re the parameters ~bo and hi are functions of 
~c, i.e., 

~o = ~o(~bc) and hi -- h l ( ~ ) ,  [A.20] 

the values of the latter two functions for a given 
~c are calculated by numerical integration of 
Eqs. [A.11]-[A.12] from the top of the me- 
niscus (x = r~, ~b = ~bc, Q = 0) down to the 
point x = r0, where ~ = ~bo and Q = hi. In 
view ofEq.  [A.20], Eq. [A.19] allows calcu- 
lation of the angle ~bc at known re, r0, q, Vb, 
Vo, b, zc, and ~p¢. We solved Eq. [A. 19] nu- 
merically by using trial values for f t .  A good 
zeroth approximation for ~bc is obtained by 
substituting ~o = 0o and hi = ho in the right- 
hand side ofEq .  [A.19]. 
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