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The role of surface viscosity in interfacial fluctuation-dissipation processes is studied. As a result, a new method for calculation 
of the correlations between interfacial dynamic variables is developed. It is applied to investigate the effect of the suppression of 
fluctuation capillary waves in thin liquid films on the value of the film contact angle. 

1. Introduction 

Since the pioneering work of Mandelstam [ 11, 
considerable progress in the study of fluctuation cap- 
illary waves has been achieved - reviews of the re- 
sults for a single interface are given in refs. [ 2,3 1, 
and for thin liquid films in ref. [ 4 1. However, the 
role of surface viscosity in the interfacial fluctua- 
tion-dissipation processes is still not well under- 
stood. The recent treatment of the surface stress ten- 
sor as an interfacial excess quantity [ 51 and the 
hydrodynamic theory of fluctuations [ 61 are applied 
(see section 2) to the fluctuation capillary wave 
problem. In particular, we follow the approach of 
Landau and Lifshitz [ 61, according to which the flow 
in the bulk of the liquid can be treated as the motion 
of an ideal fluid. As a result, a new simple method 
for calculating both the correlations between differ- 
ent couples of interfacial variables and the equilib- 
rium mean values is developed. It is applied to cal- 
culate the contribution of the surface corrugations to 
the interfacial free energy (section 3). In the case of 
thin films, this free energy is related to the film con- 
tact angle, which is an experimentally measurable 
quantity. In many cases, the measured contact angles 
are larger than the values predicted by theories, in 
which the only source of attraction is the van der 
Waals force, see the discussion in section 4. We be- 
lieve that in some cases this discrepancy between 

theory and experiment can be removed by taking into 
account the effect of the surface corrugations which 
increase the surface area, compared with its value for 
the macroscopically observable non-disturbed sur- 
face. Indeed, the repulsive forces in an equilibrium 
thin film damp the surface corrugations and thus 
make the surface dilation (due to corrugations) 
smaller for the film surface compared with a single 
surface. This leads to a decrease of the excess surface 
free energy and to an increase of the contact angle. 
The relevant equations are derived and discussed in 
this paper. 

2. Capillary waves and surface stress tensor 

It is assumed in the theory of surface waves [ 61 
that the surface is involved in wave motion, which 
decays in the depth of the liquid. In the case of fluc- 
tuation capillary waves, the wave motion is due to 
the random Brownian forces acting on the molecules 
of the interfacial layer. According to the hydrody- 
namic theory of fluctuations, the random Brownian 
forces (the random stress tensor) are constitution- 
ally related to the forces of viscous friction [ 6,7] and, 
therefore, to the interfacial stress tensor 2. The gen- 
eral component representation of r is [ 5,8,9] 
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(The Greek indices take values I and 2, and sum- 
mation over the repeating indices is carried out.) 
Here, a, and a, are the vectors of the surface basis, 
and n is the running unit normal to the surface. The 
components ratn) are called “transverse shear re- 
sultants” [ lo], The normal projection of the surface 
linear momentum balance reads 

7”(“),,+b,jTap- (T,‘““’ -T,‘,““‘) =o ; (2.2) 

see eq. (228) in ref. [ 51, eq. (3.40) in ref. [9] or 
eq. (12.13) in ref. [8]; cf. also refs. [ 1 l-141 for the 
mathematical formalism. Here, baa are the compo- 
nents of the surface curvature b= -V,,n with 
V,, =P(a/W) being the surface gradient operator: 
Tr(““) and Tf,““) are the normal components of the 
bulk stress tensor due to the two neighboring fluid 
phases. Eq. (2.2) is, in fact, a generalization ac- 
counting also for the viscous effects of the Laplace 
equation of capillarity (see e.g. ref. [ 21). (The mass 
of the interface is neglected in eq. (2.2). ) 

According to Striven [ 15 ] and Eliassen [ 121, r”@ 
can be expressed in the form, 

@=uaafl+&a@apud w 

+q,(2d@-a”flap”d ) w 1 (2.3) 

where aaa=ua.u8 is the surface metric tensor, 0 is 
the interfacial (surface) tension, 

d~Y=t(~P.Y+V~.l(_2b~YV(n)) (2.4) 

is the surface rate-of-strain tensor, 

v=a,v+ nv(“) (2.5) 

is the velocity of a surface point, and & and Q are 
the two-dimensional (surface) dilational and shear 
viscosities, respectively. 

Let us now consider capillary waves of small am- 
plitude C= c(x, JJ) on a horizontal interface (the plane 
xy coincides with the undisturbed interface). Then, 
by using eqs. (2.3)-( 2.5), one can prove that 

a2 a2 
n,=s+;i;;;. (2.6) 

One sees that the surface dilational and shear vis- 
cosities, & and I/~, do not contribute to the linear term 
on the right-hand side of eq. (2 6). 

On the other hand, the components of the surface 
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stress tensor PCn) have predominantly a viscous 
nature, see ref. [ 51 p. 114. Hence, by extending 
Newton’s law of viscous friction, one can write 

72) =x2 P’,px2 at , (2.7) 

(For amoregeneralform of eq. (2.7), see eq. (2.13) 
below.) Here, xZ is the coefficient of transverse shear 
viscosity and the relationship, 

VW)= 3 
at 3 (2.8) 

has been used. The physical meaning of ,Q is illus- 
trated in fig. 1, where the surface molecules are sche- 
matically depicted as small rectangles: the relative 
vertical displacement of the neighboring surface 
molecules during the wave motion gives rise to 
transverse viscous friction. 

According to eq. (4.26) in ref. [ 91, the energy dis- 
sipated per unit time due to the effect of the trans- 
verse viscous friction is 

SW,_ 
6t --(7 a%an): (v,,Y+u,,x W) , (2.9) 

where t is the time, U,, is the surface idemfactor and 
W is the surface angular velocity (one can write 
W=nx (dnldt), see ref. [ 141; the double scalar 
product, “ : “, of two dyadics is defined according to 
Gibbs - cf. also [ 14 I). In linear approximation with 
respect to i, eq. (2.9) reads 

6W 2_ 

6t 
_7a(n)V(n) 

,a . (2.10) 

Hence, the respective rate of entropy production is 

Fig. 1. Sketch of the relative displacement between the surface 
molecules (the rectangles) during the capillary wave motion. 
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(2.11) 

where S, is the entropy per unit area and T is the 
temperature; the integration is carried out over the 
surface, and eqs. (2.7) and (2.10) have also been 
used. In accordance with the theory of fluctuations 
in fluid dynamics [ 6 1, T can be considered as a mean 
stress tensor and a random surface stress tensor, s, 
can be introduced. The random counterparts of raCn) 
will be denoted here by s or(n), By following the stan- 
dard procedure (see ref. [ 61, chap. XVII, or ref. [ 7 1, 
chap. IX) from eq. (2.11) we derived the following 
equation for the correlations between the random 
transverse shear resultants s“‘(“): 

(+F)(r, f)sfl’“‘(r’, t’)) 

=2k,TXza”B6(r-r’)6(t-t’), (2.12) 

where r and r’ are position vectors of two surface 
points, t and t’ are two different time moments, k, 
is the Boltzmann constant, and S is the Dirac delta 
function. 

Eq. (2.9) suggests the following generalization of 
the constitutive relation (2.7): 

‘Ta cn) =x1( V(n),Lu +h&P+&,fiW’f) ) (2.13) 

where &aa is the two-dimensional alternator [ 11,121. 
Then, instead of eq. (2.11), one obtains 

= $(V s (n’,~tb&‘Pt~,8WB)2dA. (2.14) 

The linear approximations (with respect to C) of eqs. 
(2.13) and (2.14) coincide with eqs. (2.7) and 
(2.11), respectively. It is noteworthy that the more 
general eq. (2.14) leads to the same fluctuation-dis- 
sipation relationship, eq. (2.12), as eq. (2.11). 

According to Landau and Lifshitz [ 61, in the case 
of surface waves the dissipation of energy takes place 
mainly in a narrow interfacial zone and can be ac- 
counted for by PC”); for the definition of 7a(n) as 
surface excess see ref. [ 5 1. Thus, the liquid motion 
in the bulk phases can be treated as a potential flow 
of an ideal fluid, obeying the equation 

V2(kO) (2.15) 

where v is the potential of the velocity field, o=Vp. 
Then 

Tr(““) _ Ti,nn) = - (PI -I’,,) , (2.16) 

where P, and P,, are the pressures in the two neigh- 
boring fluids at the interface. By using eqs. (2.6), 
(2.7) and (2.16), one can represent eq. (2.2) in the 
form, 

P,,-P,=oA2c+xZA,,t +s a(n) .a J (2.17) 

where the random transverse shear resultants PCn) 
are also taken into account as required by the theory 
of hydrodynamic fluctuations [ 6,7 1. It is worthwhile 
noting that from the three surface viscosity coeff& 
cients &, q2 and ,y2, only the last appears in eq. (2.17). 

The combination of eqs. (2.12 ) and (2.17) en- 
ables one to solve different problems concerning 
fluctuation capillary waves. Examples are consid- 
ered below. 

3. Surface free energy and fluctuation capillary 
waves 

The increase of the surface area due to surface 
waves of small amplitude [(x, y) is [4,61 

(3.1) 

Then the mean surface dilation per unit area, (Y= 
M/A, and the respective capillary wave contribu- 
tion to the surface free energy, &_, are 

(3.2) 

Our aim below is to calculate, by using the approach 
developed in the present section, f,w in three differ- 
ent cases: (i) interface between two semi-infinite 
fluid phases, (ii) surface of a thin liquid film on solid 
substratum, and (iii) a free thin liquid film. 
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3.1. Single liquid surface 

For an interface liquid-gas, one can write [ 6 ] 

P, = -P&P; , PI, = const. , (3.4) 

(3.5) 

where p is the liquid mass density, g is the acceler- 
ation of gravity, the z-axis is directed vertically and 
the plane z=O corresponds to the undisturbed sur- 
face. Let us define the Fourier transform of [: 

i(~,0=-+%(k~)l 

+Oa 

= 
5 s dw dkexpW.r-or)] r(k 0)) (3.6) 

--m 

where both r and k are two-dimensional vectors, 

r=(x,y,O), k=(kk,,O) (3.7) 

Similarly, one can write 

Sa(n)(r,t)=~[S”(“)(k,W)], 

p(r, 4 o=fl’[m 4 WI 1 ‘. (3.8) 

Then eqs. (2.15) and (3.5) lead to 

@(k, z, W) = - y r(k, t)ekZ, (3.9) 

with k=lkl. 

By differentiation of eqs. (2.17) and (3.4) with 
respect to t, and by using eqs. (3.5)-(3.9), one 
derives 

3% u)= 
ikk,J”(“) (k, co) 

pgk-pw’+ok”-iwk3x2’ 
(3.10) 

On the other hand, the Fourier transform of eq. 
(2.12) reads 

(Ja’(“)(k,u)ifl(n)(k’, co’)) 

Mxz = ~a%(k+k’)6(w+d). 

From eqs. (3.10)-( 3.1 I ) one obtains 

(3.11) 

ke TX2 6(k+k’)6(o+w’) 
= iii&? (c2 -w2/k2) 2 t (wkx2fp)’ ’ 

(3.12) 

where c2 =g/kt ok/p. By again using Fourier trans- 
formation, one derives for two different points r and 
rSAr, 

(3.13) 

where Jo is a Bessel function, Ar= IArj, fi’=pg/u, 

kmin is a lower cutoff accounting for the finite di- 
mensions of the system and k,,,,, is an upper cutoff 
accounting for the molecular dimensions. From 
(3.13) one easily derives the classical result [ 2- 

4,16,171, 

(P> = lim (i(r, tK(r+ Ar, t) > 
*r-to 

_k,Tln 1+ (kax/P)2 
- 4x0 1 t (kmin/P)’ . 

(3.14) 

In other words, the fluctuation-dissipation approach 
from section 2 leads to the same result as the ap- 

proaches of Buff et al. [ 161 and Grant and Desai 

]171. 
From eq. (3.2), by using a similar derivation, one 

obtains 

cr=j lim ([V,,i(r,t)]-V,,[(r+Ar,t)) 
Ar-0 

km, 

kd- =- 
4rta 

(3.15) 

A lower cutoff is not necessary in eq. (3.15 ). From 
eqs. (3.3) and (3.15), one obtains 

fo= iy{ I-(!rln[($-+ l]}, (3.16) 

where 

x 
(3.17) 

is a parameter of the order of the distance between 

the centers of two neighboring molecules at the sur- 
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face. With a=7 A, at room temperature, from eq. 
(3.16) one estimates&,= 3.3 mN/m at 6= 30 mN/ 
m (this corresponds to a surface dilation cy ~0.11). 

3.2. Thin tiquid film on solid substratum 

This case is depicted in fig. 2a. The counterpart of 
eq. (3.4) reads 

M-m-p&f-p; _ I I PII = const. , (3.18) 
z-o 

where R= h+ c is the local instantaneous thickness of 
the film, n(k) is the disjoining pressure, accounting 
for the excess van der Waals, electrostatic, etc., in- 
teractions in the thin film - see, e.g. refs. [ 5,181. For 
i<< h, in linear approximation one can write 
li’(/ijA7(h)+Z7’(h)[. Since at the solid surface, 

acp 0 5 :--h 

=o, (3.19) 

a 

-II 
////////////////////// 

b 

(1) _ho X, 

&-q+-- 
C 

-L 
Fig. 2. Fluctuation capillary waves on the surface of a thin liquid 
film of thickness h: (a) film on solid substrate; (b) free liquid 
film; (c) bending mode. 

instead of eq. (3.9) one has 

@(k, 2, w ) = - TfW, 2) 
cosh[k(z+h)] 

sinh kh ’ 
(3.20) 

Then, the counterpart of eq. (3.10) is 

&, 0) = 
ikk,P(“‘(k, w) 

Gk-pco2cothkhtak3-iwk3& 

(3.21) 

where 

G=-Il’+pg. (3.22) 

17’ = (dZ7/dh) I i=o is negative for a stable or meta- 
stable thin liquid film - see, e.g. ref. [ 191. (Since for 
such a thin film usually h< 100 nm, as a rule 
-17’ ZDpg.) 

The analog of eq. (3.16) for a film on a solid sub- 
strate is 

f,,(h)= $$- 

x{l-(y):ln[(-f-)‘+l]). (3.23) 

with 

G(h) Pi=.. (3.24) 

Here, of is the thin film surface tension, which is 
slightly different from the surface tension u of the 
bulk liquid because of the disjoining pressure effect 
- see, e.g. eq. (97) in ref. [ I8 1. For a thick film (large 
h), Ii”+O, /$-+/I and eq. (3.23) reduces to eq. 
(3.16). The excess free energy of a film of thickness 
h, with respect to that of an interface (i.e., infinitely 
thick film) is 

AL,(h)=.&,(h)-f,,(m) 

=-~[b:(h)ln(l+&) 

-/?‘ln(l+ $)I. (3.25) 

Since for thin films, /I: 3 /I’, A&, is negative. Hence, 
the damping of the fluctuation capillary waves by the 
repulsive forces in the film (at equilibrium L5 0) 
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results in an effective decrease of the film surface free 
energy (surface tension). 

3.3. Free thin liquid film 

Let us consider a horizontal thin liquid film (phase 
I) between two gaseous phases (II and III) - fig. 2b. 
It is convenient to choose as the plane z= 0 the mid- 
plane of the film. i, (x, y) and G (x, y) represent the 
fluctuation waves on the two film surfaces. Now we 
have two counterparts of eq. (2.17): 

~/,=%AzL+x~A~ $ 
( 1 

+S;‘“’ ,(Y ) 

b=l,2, (3.26) 

where Al’, =P, -Pii and APZ=P,,,-Pii. The random 
transverse shear resultants of the two film surfaces, 
~7”‘) and sF(“‘, are not correlated. Then, eq. (2.12) 
can be generalized as follows: 

(@)(r, t) s$(“)(r’, t’)) 

=2k,rX*a*Ps(r-r’)S(t-t’)6,,; 

a,b=l,2. (3.27) 

In addition, one can write 

+const. , (3.28) 
zzhJ2 

acp P,-P,,,=17(h)-pat;=_h,2 +const. , (3.29) 

where the gravity effect is neglected for the sake of 
simplicity. The local instantaneous film thickness is 

/i=h+[z -5, , (3.30) 

where h is the mean film thickness. In accordance 
with eq. (2.15), the Fourier transform of the veloc- 
ity potential has the form, 

@(R, 2, m)=Ae-k’+Bek’, (3.31) 

where the constants A and B are to be determined 
from the boundary conditions, 

aa x2 au, al, 
az z-h/2 = at’ az,=_,,,= at’ (3.32) 

Instead of eq. (3.21) for a free thin film, one obtains 
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from eqs. (3.26) and (3.28)-( 3.32) a set of two 
equations: 

pc +q1; =ik,Fy(“) , (3.33) 

41; +pi; =ik,@“) . (3.34) 

Here, 

p= -IT -+ afk2 -P $ coth kh - iwk2x2 , 

PO2 -+fl. 
‘= ksinh kh 

Eqs. (3.33) and (3.34) imply that the fluctuation 
waves on the two film surfaces are coupled. 

We will omit the details of the further calculations, 
which are similar to those in section 3.2. The final 
result for the excess free energy of the film surface 
reads 

AL(h)= - g/C(h) ln( l+ 2a2$(h)), (3.35) 

with /?: = -fl (h)/u, (the gravity effect is ne- 
glected). The comparison between eq. (3.25) at p-0 
and eq. (3.35) shows that ]Af,,,l is smaller for the 
surface of the free film at the same a and fl,. This 
result could be expected, because in the case of free 
films the repulsive disjoining pressure cannot sup- 
press the so-called “bending mode” [ 4 3 taking place 
at constant film thickness h, see fig. 2c. On the other 
hand, for wetting films (fig. 2a) this mode is entirely 
suppressed due to the rigidity of the lower film sur- 
face. 

4. Discussion 

The excess free energy of a film surface, AA is sim- 
ply related to the film contact angle 8: 

cos B= I t f 
r3j 

(4.1) 

see, e.g. eq. (109) in ref. [ 181. 
In the case of comparatively thicker free films, sta- 

bilized by electric double layer repulsion, p: = 
-I7’/u= lo9 cm-* [20]. Then, with a=7 A, from 
eq. (3.35) one estimates A&x -2.3x 1O-5 mN/m. 
This value is too small to affect the contact angle, 
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whose value in this case is of the order of 1” [21]. 
In contrast with the forementioned case of soft re- 

pulsion, pi can be very large in the case of hard re- 
pulsion. The latter is observed with the so-called 
Newton black films stabilized with ionic surfactants 
[ 191 or with the films sterically stabilized with non- 
ionic surfactants [ 221. A typical disjoining pressure 
isotherm is shown in fig. 3. The maximum possible 

value of AL,+ (at p,-+co) is 

Af 
d&T ma% _ _ - 

cw - 16a2 ’ (4.2) 

for free films. At a= 7 A and room temperature, one 
obtains As FT = - 1.6 mN/m. With a=32 mN/m, 
from eq. (4.1) one calculates 0= 18.5”. &values of 
about 8-9” were measured experimentally with an- 
ionic surfactant [ 231. Hence, in reality IU’ ( can be 
very large, but still less than infinity. Of course, the 
attractive van der Waals forces and the ion corre- 
lations [24] also contribute to the value of 8. 

With nonionic surfactants, Lobo et al. [ 221 mea- 
sured f?= l”, at ~~29.7 mN/m and hz 17 nm 1251. 
This value of 8 corresponds to Af= -4.52x fOP3 
mN/m, whereas the contribution of the van der 
Waals forces is A&= -2.35~10~~ mN/m (A& is 
calculated by numerical integration of the expression 
for 17,,(h) provided in ref. [26] ). The difference 
can be attributed to the capillary wave effect: 
A& - 2.17 x 1 O- 3 mN/m. The latter value corre- 
sponds to F = - 4.5 x I 013 N/m3. This value seems 
to be reasonable in view of the hard osmotic repul- 
sion between the interpenetrating polyoxiethylene 
layers of the two film surfaces. 

It should also be noted that in accordance with the 
thermodynamics of thin films [ 18 1, the fluctuation 
capillary wave effect gives rise to a contribution to 

rP 

h h 

Fig. 3. Typical dependence of the disjoining pressure l7on the 
film thickness h exhibiting hard repulsion at hz h,. 

the disjoining pressure: DC,= -2 (aA&,/&). 
In conclusion, the suppression of fluctuation cap- 

illary waves by the repulsive forces in the thin films 
can give a considerable contribution to the value of 
the film contact angle, especially in the case of hard 
repulsion. This result was obtained by applying the 
fluctuation-dissipation approach developed in sec- 
tion 2. Of course, the latter approach can also be ap- 
plied to many other capillary wave problems. 

Acknowledgement 

This work was financially supported by the Bul- 
garian Ministry of Science and Higher Education. 

References 

[ I ] L. Mandelstam, Ann. Physik 41 ( I9 13) 609. 
[2] J.S. Rowlinson and B. Widom. Molecular theory of 

capillarity (Clarendon Press, Oxford, 1982). 
[3] R.C. Desai and M. Grant, in: Fluid interfacial phenomena, 

ed. C.A. Croxton (Wiley, New York, 1986) p. 135. 
[4]J.G.H. Joosten, in: Thin liquid films, ed. LB. lvanov 

(Dekker, NewYork, 1988) p. 569. 
[5] I.B. Ivanov and P.A. Kralchevsky, in: Thin liquid films, ed. 

LB. Ivanov (Dekker, New York, 1988) p. 49. 
[6] L.D. Landau and E.M. Llfshitz, Fluid mechanics (Pergamon 

Press, Oxford, 1984). 
[7] E.M. Lifshitz and L.P. Pitaevsky, Theoretical physics, Vol. 

9. Statistical physics 2 (Nauka, Moskow, 1978) (in 
Russian). 

[8] P.M. Naghdi, in: Handbuch der Physik, Vol. 6a/2. ed. S. 
Flugge (Springer, Berlin, 1972) p. 425. 

[9] Y.S. Podstrigach and Y.Z. Povstenko, Introduction to 
mechanics of the surface phenomena in deformable solids 
(Naukova Dumka, Kiev, 1985) (in Russian). 

[ IO] E.A. Evans and R. Skalak, Mechanics and thermodynamics 
of biomembranes, Part I (CRC Press, Boca Raton, 1979). 

[ I 1 ] A.J. McConnel, Application of tensor analysis (Dover, New 
York, 1957). 

[ 121 J.D. Eliassen, Ph.D. Thesis, University of Minnesota, 
Minneapolis (1963) (University Microfilms, Ann Arbour, 
Michigan, 1983). 

[ 131 P.A. Kralchevsky, J. Colloid Interface Sci. 137 (1990) 217. 
[ 141 T.D. Gurkov and P.A. Kralchevsky, Colloids Surf. 47 

(1990) 45. 
[ 151 L.E. Striven, Chem. Eng. Sci. 12 (1960) 98. 
[ 161 F.P. Buff, R.A. Lovett and F.H. Stillinger, Phys. Rev. Letters 

15 (1965) 621. 
[ 171 M. Grant and R.C. Desai, Phys. Rev. A 27 (1983) 2577. 
[ 181 J.A. de Feijter, in: Thin liquid films, ed. LB. Ivanov (Dekker, 

New York, 1988) p. 1. 

135 



Volume 187, number 1,2 CHEMICAL PHYSICS LETTERS 29 November 199 1 

[ 191 P.M. Kruglyakov, in: Thin liquid films, ed. LB. Ivanov 
(Dekker, New York, 1988) p. 767. 

[20] D. Exerowa. T. Kolarov and Khr. Kbristov, Colloids Surf. 
22 (1987) 171. 

[21] F. Huisman and K.J. Mysels, J. Phys. Chem. 73 (1969) 489. 
[22] L.A. Lobe, A.D. Nikolov, A.S. Dimitrov, P.A. Kralchevsky 

and D.T. Wasan, Langmuir 6 ( 1990) 995. 

[23] P.A. Kralchevsky, A.D. Nikolov and I.B. Ivanov, J. Colloid 
InterfaceSci. 112 (1986) 132. 

[24] R. Kjelander and S. Mar&lja, Chem. Phys. Letters II2 
(1984) 49. 

[25] A.D. Nikolov, D.T. Wasan, N.D. Denkov, P.A. Kralchevsky 
and LB. Ivanov, Progr. CoIloid Polym. Sci. 82 (1990) 87. 

[26] Chr.St. Vassilieff and LB. Ivanov, Colloid Polymer Sci. 254 
(1976) 431. 

136 


