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The deformability of droplets is accounted for as a new effect in the statistical mechanics ofmicroemul- 
sions. It is assumed that a plane-parallel film is formed between two colliding microemulsion droplets. 
The collision is accompanied by deformation of the droplets and by an increase of their interfacial area. 
The increased interfacial energy gives rise to an effective soft repulsion between the two droplets. In 
addition, the deformed droplets, having the shape of spherical segments, exhibit considerably greater 
van der Waals attraction than two spheres of the same volume, separated at the same surface-to-surface 
distance. The superposition of these two effects leads to the appearance of a potential well in the energy 
of droplet-droplet interaction. The latter depends on the droplet interfaeial tension, the Gibbs elasticity, 
the Hamaker constant, and the thickness of the liquid film separating the droplets. The soft repulsion 
and the increased attraction predicted by this model lead to pronouncedly lower values of the calculated 
second virial coefficient in comparison with the hard sphere model of microemulsions. The deformable 
droplet model proposed in this paper allows the explanation of experimental findings such as the ab- 
normally low measured values of the second virial and diffusion coefficients as well as the dimer formation 
in microemulsions. © 1991 Academic Press, Inc. 

1. INTRODUCTION 

The  knowledge  o f  the  poten t ia l  o f  interac-  
t ion be tween par t ic les  is o f  crucial  impor t ance  
in the  statist ical  theories  o f  mic roemul s ions  
(see, e.g., ( 1 - 3 ) ) .  A m o n g  the n u m e r o u s  
methods  for invest igat ion o f  these interactions,  
the stat ic and  d y n a m i c  light scat ter ing tech- 
niques are p robab ly  the most  versatile, for they 
a l low m e a s u r e m e n t  o f  the  virial  and  diffusion 
coefficients and  the radius  o f  the part icles  (4, 
5 ). The  theore t ica l  basis o f  the  ca lcula t ion  o f  
in te rac t ion  energy f rom light scat ter ing da ta  
was laid by Cal je  et al. (6 ) .  They  used the 
m o d e l  o f  n o n d e f o r m a b l e  ha rd  spheres inter-  
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act ing th rough  van der  Waals  a t t rac t ion  ( the 
electrostat ic  in te rac t ion  is missing in the  case 
o f  W / O  m i c r o e m u l s i o n s ) .  These  au thors  met  
two ma jo r  difficulties in the  in te rpre ta t ion  o f  
thei r  exper imenta l  data:  ( i )  The  difference be- 
tween the hard  sphere radius,  ca lcula ted  by 
them, and the water  core radius o f  the droplets  
was considerably  smaller  than  the chain length 
o f  the  surfac tant  molecule .  ( i i )  To fit the ex- 
pe r imen ta l  curve they  had  to use a very large 
value o f  the  H a m a k e r  constant :  1.75 × 10 -19 
J, which is more  than  10 t imes  higher  than  
the value general ly  accepted  now (see Sect ion 
5) .  S imi la r  sys temat ic  devia t ions  were ob- 
served by  la ter  invest igators  (4, 5, 7 - 9 ) .  F o r  
instance,  Obe r  and  Taup in  (8 )  and  H o u  et aL 
(9 )  used values 1 X I0 i8 and  4.6 × 10 -19 J, 

respectively,  for the  H a m a k e r  constant .  Be- 
sides, Cazaba t  and  Langevin  (5, 7) and  Bru- 
nett i  et al. (4 )  found  tha t  the measured  dif- 
fusion coefficients were always cons iderab ly  
smal ler  than  those calculated f rom Fe lde rhof ' s  
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theory (10), which is based on the hard sphere 
model. 

Another experimental observation, which 
can hardly be explained in the framework of 
the hard sphere model, is the formation of 
transient dimers, which was revealed by 
SANS-scattering (8), self diffusion, and elec- 
tric birefringence measurements (11, 12).  
Such dimers were found in considerable 
amount even in ternary systems (without co- 
surfactant) ( 11 ). Their presence is even more 
probable in quaternary systems with large at- 
tractive interactions ( 11 ), where they can lead 
to percolative behavior of the electric conduc- 
tivity ( 1, 7) and even to the formation of ran- 
dom bicontinuous structures (13). The equi- 
librium constant ofdimer formation ( 14, 15 ), 
just like the second virial coefficient (see Eq. 
[4.2] below), depends on the energy of inter- 
action between the droplets. It is obvious then, 
that in the framework of the hard sphere model 
abnormally high values of the Hamaker con- 
stant will be needed to explain the dimer for- 
mation. 

Another (indirect) argument in favor of the 
formation of dimers is the exchange of ma- 
terial between colliding droplets, which was 
evidenced by electric conductivity (16) and 
electric induced birefringence measurements 
(7, 11 ) and by chemical methods ( 17, 18). 
The exchange of material is believed to occur 
through transient pores that form between the 
colliding drops (17, 18 ). In the hard sphere 
model the area of contact is zero (point con- 
tact) so that the probability of pore formation 
will be negligible. 

When it became increasingly clear that the 
simple hard sphere model could not explain 
all these findings, several more sophisticated 
models Were proposed. To account for the 
strong attraction between the droplets Both- 
orel and co-workers (19) assumed that during 
collision the layers adsorbed on the two drop- 
lets interpenetrate each other, which leads to 
an increased value of the Hamaker constant 
in the region of overlapping. Much attention 
has been given to Helfrich's idea (20) about 
the spontaneous curvature and the bending 

energy (see e.g., (21-25)). Auvray (14) ap- 
plied this idea to calculate the equilibrium 
constant for the formation of transient dimers 
by assuming that two droplets partially co- 
alesce to form a larger drop. Another effect 
that has been accounted for is the thermal 
fluctuations of the drop surfaces ( 18, 26, 27). 

One fact that has been disregarded so far in 
the theories using the droplet model is the fol- 
lowing. Whatever the final result of the colli- 
sion (rebound, partial or total coalescence), 
each drop colliding fronts must deform and 
flatten when the two drops come close to each 
other. This effect, which leads to the formation 
of an (almost) planar film between the two 
drops, has been extensively studied in the hy- 
drodynamic theory of macroemulsions and 
foams (for a review see (28)). It is true that 
the width of the gap between the drops, where 
such a film forms, decreases strongly with the 
drop radius, but because of the very low in- 
terfacial tension of the microemulsions, thin 
films can form between colliding droplets at 
reasonable gap widths (for a numerical esti- 
mate see Section 7). This process should be 
facilitated by the high fluidity of the droplet 
interfaces (21, 29, 30). 

The formation of such a thin film alters the 
Configuration Of the system (as compared with 
the hard sphere model) and hence the occur- 
rence of the collision process, including the 
rate of approach of the two droplets. We will 
discuss briefly in Section 7 some of these ef- 
fects. However, the main goal of the present 
paper is more modest: we Want to derive an 
expression for the potential energy of inter- 
action between two deformed droplets (Sec- 
tion 3) and to apply it to a calculation of the 
second virial coefficient (Section 4). It will be 
shown in Section 6 that with a reasonable 
choice of the system parameters our model 
not only yields numerical values of the virial 
coefficient B close to those measured experi- 
mentally by Bothorel and coworkers (4, 19, 
31 ), but also predicts correctly the dependence 
of B on the droplet radius. 

We believe that other effects, such as spon- 
taneous curvature, bending energy, etc., are 
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also important and should be incorporated in 
the theory. Although this could be done rel- 
atively easily, we will not attempt such a gen- 
eralization for two major reasons. First, be- 
cause then the theory will lose its simplicity 
and the effect of the deformability of the drop- 
lets will become less evident for the reader. 
Second, because the numerical calculations 
will involve the use of more adjustable param- 
eters. 

For similar reasons we will not investigate 
the stability of the thin film between the drop- 
lets. In principle its rupture (leading to total 
or partial fusion of the drops) can be caused 
either by the formation in the film of holes 
(see, e.g., (32)) or by capillary waves (33-35). 
These processes can be treated theoretically 
by methods already developed for thin films 
( 33-35 ) and biological membranes (32). 

2. DESCRIPTION OF THE DROPLET 
DEFORMATION 

A widely accepted scheme (4) for droplets 
of water in oil ( W / O )  microemulsions is 
shown in Fig. 1: a water core, covered by a 
mixed adsorbed layer consisting of a surfactant 
(the one with longer hydrocarbon chain) and 
a cosurfactant (usually an alcohol with a 
shorter chain), the whole embedded in the 
continuous oil phase, containing also cosur- 
factant. Some surfactants, such as AOT, can 
form microemulsions without cosurfactants 
(36-38). Since the radius of the water core is 
very small (5-10 nm) and comparable to the 
lengths of the surfactant and alcohol mole- 
cules, and since quite often different equations 
refer to different surfaces (i.e., to different ra- 
dii), one must always specify which radius is 
being used. The radius of the outermost 
sphere, corresponding to the fully extended 
surfactant molecule, is usually close to the so- 
called "hydrodynamic radius," Rh, measured 
by dynamic light scattering (4, 5 ). The radius 
of the equimolecular dividing surface, Ro, for 
which the adsorption of water is zero, in the 
framework of this model is approximately 
equal to the radius of the water core. Another 

important radius (not shown in Fig. 1 ) is that 
of the surface of tension, Rt (see (39-41 ) for 
definition), i.e., the surface for which the in- 
terfacial bending moment  is zero (42). Un- 
fortunately, the exact location of the surface 
of tension is so far unknown, although ap- 
proximate theories are available (23, 24). 

We consider now the following process. 
Two microemulsion droplets in an unbounded 
continuous phase undergo central collision. 
When they come close to each other the hy- 
drodynamic resistance leads to deformation 
of their colfiding fronts and a planar film forms 
(Fig. 2). The film radius rc increases as the 
two droplets come closer to each other. When 
the repulsion energy, generated by the in- 
creased droplet area and interfacial tension 
(for more details, see below), becomes equal 
to the initial kinetic energy, say k T  (k  is the 
Boltzmann constant and T is temperature), 
the motion of the droplets changes its direc- 
tion. They either rebound back to an infinite 
distance or form an oscillating dimer if the 
depth of the potential well is of the order of 
or larger than kT .  

We propose the following model for droplet 
deformation during the collision. First of all 
it is natural to assume that the liquid phases 
are incompressible, in particular, the volume, 
Vw, of the water core of each microemulsion 
droplet does not change during the collision. 
IfRo is the radius of the water core ofa  spher- 

! I 
I I 

\ / 

F'IG. 1. Sketch of a water-in-oil microemulsion droplet. 
Ro is the radius of the water core and Rh is the hydrody- 
namic drop radius. 
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FIG. 2. Model of two deformed microemulsion droplets 
having the shape of spherical segments of radius Rs. z is 
the distance between the mass centers; rc and h are the 
radius and the thickness of the film between the droplets. 

ical microemulsion droplet before the colli- 
sion, then 

4 
Vw = ~ rrRo 3 = const. [2.1] 

Further, we assume that the droplet surface 
consists of two parts: (i) flat film surface, which 
is a circle of radius &, and (ii) spherical part 
of radius Rs, which varies during droplet de- 
formation--see Fig. 2. Rs is the radius of the 
water core of the deformed droplet. Assump- 
tion (ii) means that the viscous stresses acting 
on the outer (spherical) parts of the droplets 
are negligible compared with the capillary 
pressure. 

To describe mathematically the deforma- 
tion, let us choose the coordinate system as 
shown in Fig. 2. The film surface corresponds 
to x = 0 and the outer spherical surface satisfies 
the equation 

(X -- Q)2 q_ y2 = ( l .  Q)2 ,  [2 .2 ]  

where Q is the coordinate of the center of the 
outer spherical surface and 

l = Q + R s  [2.31 

The volume of a deformed droplet is 

Vw= ~r y2(x )dx= ~r -~ l Q l 2, [2.41 

where the generatrix y(x) of the outer spherical 
surface is determined by Eq. [2.2]. The elim- 

ination of Vw between Eqs. [ 2.1 ] and [ 2.4 ] 
yields 

2 
Q = ~ 1 -  4R3/3l  2 [2.5] 

By substitution of this expression for Q into 
Eq. [2.3] one obtains 

Rs = l/3 + 4R3/3l  2. [2.6] 

In addition, by means of Eqs. [2.5] and [2.6] 
one derives 

rc = (R 2 - Q2)1/2 

= ( 8 R 3 / 3 l -  12/3) ~/2 [2.71 

From a mechanical viewpoint it is reason- 
able to characterize the distance between two 
interacting droplets by the distance between 
their centers of masses. At constant density of 
the liquid the coordinate, Xm, of the mass cen- 
ter of a droplet is defined by the expression 

lfo' Xm = - -  7r x y 2 ( x ) d x .  [2.81 
/)w 

By substitution o f y  2 from Eq. [2.2] into Eq. 
[2.8] and carrying out the integration one ob- 
tains 

X m = ~ w  ( l - 2 0 ) 1 3 +  0 t 3 " 4 1 .  

[2.9] 

The total distance between the mass centers 
of two droplets of equal size is 

z = 2Xm + h, [2.10] 

where h is the film thickness--Fig. 2. By means 
of Eqs. [ 2.5] and [2.9] one can transform Eq. 
[ 2.10 ] to read 

2 
z = ~ l + 1 4 / 2 4 R 3 + h  a t l < 2 R o .  [2.11] 

One sees that if the droplet deformation is 
characterized by the parameter l, the other 
geometrical parameters, Q, Rs, re, and z, can 
be calculated from Eqs. [ 2.5 ] -  [ 2.7 ] and [ 2.11 ] 
as functions of l. We will use this result in 
Section 4 below to calculate the second virial 
coefficient. To do that we need an expression 
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for the potential energy of droplet-droplet in- 
teraction. 

3. POTENTIAL ENERGY OF TWO 
COLLIDING DROPLETS 

To calculate the energy, W, of  interaction 
between two water-in-oil microemulsion 
droplets we will suppose that the system under 
consideration satisfies the following condi- 
tions: 

(i) The surfactant is present only at the in- 
terface, where it is evenly distributed. This as- 
sumption is generally accepted in the literature 
(9, 21, 36); it is supported by the measure- 
ments of Biais et al. (48),  who determined the 
compositions of the continuous phase, water 
core and surfactant layer, separately. 

(ii) The interface, which is newly created 
during the deformation, is immediately filled 
with alcohol. Such an assumption is supported 
by the finding of  Zana and Lang (17) that the 
alcohol adsorption is a very fast process with 
a characteristic time of  the order of 10-8 to 
10 -9 S. 

(iii) The thickness h of  the planar film 
formed between two colliding droplets remains 
constant during the process of  deformation. 
As discussed in Section 7 below, this assump- 
tion can be supported by the hydrodynamics 
of  interaction between fluid particles. In par- 
ticular, the constancy of  h is due to the con- 
siderable viscous stresses preventing the thin- 
ning of  the film. 

Under these conditions the potential energy 
of two interacting droplets can be presented 
as a superposition of  two terms: 

W = W~+ W vw. [3.1] 

Here W ~ is the deformation energy due to the 
extension of  the interracial layer and W vw is 
the energy of  van der Waals interaction be- 
tween the two droplets. Expressions for W s 
and W vw are derived below. 

(a) Work for Extension of  the 
Interracial Layer 

W s is the work for extension of  the inter- 
facial layer from an initial (nondeformed) 

state ' T '  with interfacial tension ~0 to an in- 
stantaneous (deformed) state "II." Then ob- 
viously 

W S = o-dA, [3.2] 

where A and ~ are area and interfacial tension 
of  the adsorbed layer. Calculation of the in- 
tegral in Eq. [ 3.2 ] is possible only if the equa- 
tion of state of the adsorbed layer is known. 
For the time being we will adopt the simplest 
possible approach, by assuming that the Gibbs 
elasticity 

EG = - d ~ / d ( l n  I's) [3.3] 

remains constant during the collision; here 

I's = N~/A [3.4] 

is the surfactant adsorption, with Ns being the 
total number of adsorbed surfactant mole- 
cules. Since N~ was assumed to be constant 
during the collision, an integration of Eq. [3.3] 
for the process of  extension I --~ II yields 

a(A) - ao = Ec ln  (A/Ao) ,  [3.5] 

where 

A0 = 4~rR~ [3.6] 

is the area of a nondeformed droplet. Then 
substitution from [3.5] into [3.2] gives 

W s = (~o - EG)(A - A0) 

+ EGA ln(A/Ao).  [3.7] 

At relatively small extensions, i.e., at 2xA/Ao 
1, where 

2xA = A - Ao. [3.8] 

Eq. [3.7] yields 

W s=  aoAA 

1 
+ -~ E~Ao(AA/Ao)  2 + . . . .  [3.91 

The first term on the right-hand side of Eq. 
[ 3.9 ] accounts for the contribution of  the in- 
creased surface area, whereas the second one 
accounts for the contribution of  the Gibbs 
elasticity. 
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To calculate W S as a function of the param- 
eter l one must use the expression 

A = 7rrc 2 + 27rRs(Rs + Q) [3.10] 

(see Fig. 2) along with Eqs. [2.5]-[2.7].  

(b) Van der Waals Interaction between 
Two Deformed Drops 

According to Hamaker (43, 44) the total 
energy of van der Waals interaction between 
two bodies immersed in a fluid medium can 
be calculated by means of the integral expres- 
sion 

W~W=-(1/Tr2) f v f v 2  A---ndrldr----z2 [3.11] 
1 I r l  - r2]  6 '  

where AH is the Hamaker constant, rl(r2) is 
the position vector of a point from the first 
(second) body, and the integration is carried 
out over the volumes 1/1 and V2 of the two 
bodies. For two homogeneous spheres of the 
same radius Ro, Eq. [ 3.11 ] yields the known 
Hamaker formula (43) 

W ~ =  -AnGo(s), [3.121 

where 

1 
Go(s) = 1~ {1/($2 -1- 2s) + 1/(s 2 + 2s + 1) 

+ 2 ln[1 - 1/(s 2 + 2s + 1)]}, [3.13] 

s = h/2Ro, [3.14] 

with h being the gap width between the fore 
points of the two droplets. 

For two deformed spheres, like those shown 
in Fig. 2, we expanded the integral in Eq. 
[3.11] for (rdRo) ~ 1 and derived (see the 
Appendix) the expression for the van der 
Waals interaction energy 

W~W = -Ar~[ Go (s) 

+ Gl(S)(rc/Ro) 2 + O(ra/R4)], [3.151 

where Gl (s) is a universal function ofs defined 
a s  

GI(S) = fol dpl fol dp2 

f 
q 2 ( O l  ) 

X d~'l[F(pl, P2,  ~'1, - - q l ( P 2 ) )  
°ql (p2) 

- F(pl, P2, ~'1, -q2(P2))], 

where 

[3.161 

ql = 1 + s -  Vi---p 2, 

q2(0) = 1 + S + ~ - -  p2 [3.17] 

F ( p l ,  P2 ,  ~'1, ~'2) 

= 4plp2/[L(pl,  P2,  ~'1, ~-2)] 3 

+ 240303/[L(01, 02, ~'1, ~'2)] 5 [3.18] 

L(p l ,  02, ~'l, ~'2) 

= {[(/91 q- 102) 2 J- (~I -- ~2) 2] 

X [ ( P l  - -  1o2) 2 -t- (~'1 - -  h ) 2 ] }  1/2. [ 3 . 1 9 1  

We calculated GI(S) from Eqs. [3.16]- 
[ 3.19 ] by using numerical integration. The 
plot of Gl(s)/Go(s) is shown in Fig. 3. 

To check the accuracy ofEq. [ 3.15 ], where 
the terms of the order 4 4 of r c / R 0 (and of higher 
orders) are neglected, we compared the values 
of W ~w, calculated by means of the approxi- 
mated Eq. [3.15], with the exact values, cal- 
culated by computer integration of Eq. 

% 
l& 

10 

8 

6 

4 

2 

o o11 0.2 o.s 0.4 o.~ 0.6 o) o.; 

FIG. 3. Plot of  GI /Go vs. s calculated by numer ica l  in- 
tegrat ion of  Eq. [ 3.16 ] a long with Eqs. [ 3.13 ] and  [ 3.17 ] - 
[3.191. 
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FIG. 4. Examination of  the accuracy of  the approxi- 
mated Eq. [ 3.15 ] (the dashed line) against the exact curve 
calculated by numerical integration of Eq. [ 3.11 ] (the solid 
line), z < 19 nm corresponds to deformed drops. 

[ 3.11 ] - - see  Fig. 4. The result shows that the 
approximated Eq. [ 3.15 ] holds with a very 
good accuracy for a set of typical values of the 
parameters characterizing the two interacting 
droplets (Ro = 8 nm, h = 3 nm, An = 3 
× 10 -20 j ) .  This fact makes Eq. [ 3.15 ] appro- 
priate for our calculations below. 

(c) Procedure for Calculation of  W(z )  

To calculate the interaction energy W, we 
must express it as a function of the distance z 
between the centers of  mass of  the two drops. 
This can be done by the following procedure. 

(i) Before the deformation, z is the distance 
between the centers of the two spherical drops. 
W s is zero in this case. Then in accordance 
with Eq. [3.1 ] W = W vw, W vw must be cal- 
culated by means of the Hamaker  formula 
[3.12] along with Eqs. [3.13] and [3.14]. 

(ii) When the particles are deformed z is 
determined by Eq. [2.11] for each value of I. 
The geometrical parameters Q, Rs, rc and A 
can be calculated by means of Eqs. [2.5 ] - [2 .7]  
and [3.10] for the same value o f / .  Then Eq. 
[3.7] yields W ~ = W~(z) and Eqs. [3 .14]-  
[ 3.15 ] yield W vw = WV~(z) for a given value 
ofh .  Finally one calculates W ( z )  by using Eq. 
[3.11. 

4. THE SECOND VIRIAL COEFFICIENT 

The usual virial expansion ( 15 ) 

1 
n lkT  = o + ~ / 3 0 2  + • • • [4.1] 

can be applied to characterize the dependence 
of the osmotic pressure II on the number den- 
sity p of the microemulsion droplets. The sta- 
tistical mechanics provides the following 
expression for the second virial coefficient/3: 

# /3 = [1 - e x p ( - W / k T ) ] 4 ~ r z 2 d z  [4.2] 

One can determine the second virial coefficient 
/3 by carrying out the integration in Eq. [4.2] 
numerically. The values o f#  calculated in this 
way are to be compared with those determined 
by light scattering. However, # is not directly 
determined from the experimental data. This 
problem is discussed below. 

The basic equation used for interpreting the 
light scattering data is (45) 

Rgoo =27r2n2[Ort]2p/f~4) l ( O H ) ]  
\Op/ / t  k r  -gp [4.31 

Here R90o is the Rayleigh ratio, corresponding 
to light scattering at 90°; n is the refractive 
index of  the solution (the microemulsion ); X0 
is the light wavelength in vacuum. By using 
Eq. [4.1] one can transform Eq. [4.3] to read 

pKo/R9oo = 1 + tip + . . . .  [4.4] 

where 

2 a /On \2 / . 

In principle one can determine/3 from the 
slope of  the plot of pKp/Rgoo vs.  o--see Eq. 
[4.4 ]. However, the number density is not di- 
rectly given by the experiment. A much more 
convenient measure for the concentration of  
the water-in-oil microemulsion droplets is the 
volume fraction of the water, 

4~w = Vwp [4.6] 

where Vw is the volume of the water core of  a 
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microemulsion droplet. If p = Chw/Vw is sub- 
stituted in Eq. [4.4], one can derive 

1 
4~wKw/R9oo - - -  ( 1 + Bwq~w) [4.7] 

- -  1) w 

with 

and 

Bw =/3/Vw [4.81 

Kw = 27r2n 2 X04. [4.9] 

Both q~w and (4~wKw)/R9oo are liable to direct 
measurement, and then one can determine Bw 
by processing the data according to Eq. [ 4.7 ]. 
In Section 6 below we will compare the exper- 
imental values of Bw with the ones calculated 
from Eqs. [4.2] and [4.8] by using our model 
expression for the interaction energy W(z).  

It is worth noting that some authors (4, 5, 
7, 19, 31 ) prefer to use another measure, 

~)d = VdP,  [4.10] 

for the concentration of the microemulsion 
droplets. In contrast to Vw (cf. Eq. [4.6]) Vd 
includes not only the volume of the water core, 
but also the volume of the surfactant and co- 
surfactant adsorbed at the surface of the mi- 
croemulsion droplet. That is why in some cases 
one can have /)d ~ 2Vw; i.e., the difference 
between vd and Vw can be considerable. By 
means of Eq. [4.10] one can transform Eq. 
[4.4] to read 

1 
c~dgd /R90o  = - -  ( 1  + B d ~ d )  [4.11] 

/)d 

with 

and 

Bd = /3/Vd [4.12] 

2 2 [ On \2 / 4 
Kd = 2~ n ~ )  I~o.  [4.13] 

The light scattering data in Refs. (4, 5, 7, 
19, 31 ) were processed in accordance with Eq. 
[4.11 ] and the values of  vd and B~ were deter- 
mined. Therefore when we compared our 
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model with the data from Refs. (4, 19, 31 ), 
we calculated Bw from the data for Bd by using 
the equation 

Bw = vd B~ = ~bd [4.14] 
Vw 

Eq. [4.14] is a corollary from Eqs. [4.6 ], [4.8 ], 
[4.10], and [4.12]. Eq. [4.14] shows that Bw 
is always larger than Bd. In spite of the fact 
that each of  the quantities /3, Bw, and B~ is 
called "second virial coefficient," one must 
consider the differences jn their definitions 
when comparing theory with experiment. 

Obviously 

Ro/Rd = (Vw/Va) 1/3 = (~bw/qSd)l! 3- [4.15] 

We used Eq. [4.15 ] to calculate R0 from the 
data for Rd given in Refs. (4, 19, 31 ). 

5. C H O I C E  O F  T H E  S Y S T E M  P A R A M E T E R S  

Systematic studies of  the dependence of  the 
virial coefficient on the cosurfactant chain 
length, the drop size, and the system compo- 
sition were carried out by Bothorel and co- 
workers (4, 19, 31 ). They studied W / O  mi- 
croemulsions with surfactant sodium dode- 
cylsulfate (SDS) and various normal middle 
chain alcohols as cosurfactants: pentanol, 
hexanol, and heptanol. We will attempt to 
compare the predictions o f  our model with 
their results. This determines our choice of the 
system parameters. In the experiments of 
Bothorel and coworkers the radius of the water 
core R0 varies from 3.5 to 7 rim. There are no 
data for the interfacial tension a0 of the micro- 
emulsion drop but it is widely accepted (21, 
23, 24) that it is lower than 0.1 m N / m .  Our 
calculations showed that below 0.05 m N / m  
the value of  ao has no effect on the calculated 
virial coefficients. We will use the value cro 
= 0.01 m N / m .  

The values of the Hamaker constant An for 
the system water /oi l /water  are of the order of 
10 -2° J (8, 44, 46). We will vary AH in the 
range 2 × 10 -2° J to 5 X 10 -2o J. As to the 
thickness h of the hydrocarbon film between 
the water cores, it will be 3 nm if the extended 
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chains of the surfactant (SDS) on the two 
droplet surfaces touch each other, and 2 nm 
if there is interpenetration of the two adsorbed 
layers; in the former case it equals twice the 
chain length 0f the surfactant molecule and in 
the latter case it equals the sum of the chain 
lengths of the surfactant and cosurfactant 
molecules. However, since according to our 
model the surfactant polar heads are also in- 
cluded in the film (see Section 2), the film 
thickness h will be somewhat higher. Thus we 
varied h between 2.2 and 3.4 nm. 

To determine Bw from Eq. [4.14] and R0 
from Eq. [4.15 ] we need the value of the ratio 
qSa/qSw. It is easy to calculate this ratio using 
the data for the composition of the micro- 
emulsion droplets measured in Refs. (4, 19, 
31 ) by the so-called "dilution procedure" (47). 

The most difficult and probably the most 
important problems are connected with the 
Gibbs elasticity EG. According to our as- 
sumptions in Section 3, the number of sur- 
factant molecules Ns at the interface remains 
constant during the collision. Apparently, un- 
der these conditions the interfacial tensions 
and o-0 in Eq. [ 3.5 ] should depend only on the 
surfactant adsorption I'~, the adsorbed alcohol 
playing the role of a "surface" solvent. Indeed, 
Saraga (49) found for the interfacial tension 
of the interface water/dodecane with surfac- 
tant sodium docosylsulfate and cosurfactant 
pentanol the equation of state 

~p - ~ = 3 k T r s ,  [ 5.1 ] 

where ap is the interfacial tension water/do- 
decane. By applying Eq. [ 5.1 ] to a deformed 
drop with interfacial tension a one obtains (cf. 
Eqs. [3.5] and [3.8]) 

c r -  ao = E o ( A A / A ) ,  [5.21 

where 

EG = 3 k T ( N J A )  [5.31 

is the Gibbs elasticity of the nondeformed 
drop. I f £ 2  ~ = 0.64 nm 2 (31, 50), Eq. [5.3] 
yields EG = 20 m N / m .  However, Eq. [ 5.1 ] 
turned out to be applicable only up to pentanol 
concentrations 0.025 M. At higher alcohol 

concentrations Eo drops to 15 m N / m .  On the 
other hand,  from Eq. (5.11 ) of Davies and 
Rideal (51 ), which refers to adsorbed layers 
of SDS at the water/dodecane interface, with 
I?~ -~ = 0.64 nm 2 one finds EG = 39 m N / m .  
Finally, EG can depend also on the chain 
length of  the alcohol. That is why we varied 
Eo between 10 and 40 m N / m .  When varying 
the other parameters, we used Eo = 20 m N /  
m, because the system studied by Saraga is the 
closest to that  studied by Bothorel and co- 
workers. 

6. NUMERICAL RESULTS 

The result for the interaction energy W vs. 
the distance z between the centers of  mass of 
the liquid cores of two deformed droplets is 
illustrated in Fig. 5. The procedure outlined 
in Section 3c was applied to calculate W ( z ) .  

Typical values of  the system parameters for a 
water-in-oil microemulsion are used. The ini- 
tial radius of the nondeformed droplet is R0 
= 8 nm. In accordance with the discussion in 
the previous section we used h = 3 nm, AH 
= 3 X 10 -20 J, EG = 20 m N / m ,  a0 = 0.01 
mN / m. In particular, by using Eq. [ 3.14 ] one 
calculates s = 0.1875 and then from Fig. 3 one 
finds G~ ( s ) / G o ( s )  = 5.25. The latter value was 
used in Eq. [ 3.15 ] for the calculation of 

w 
kT 

L R5 = 824 nm 
1.0 -~'t[ rc : 6.30 nm 

0.5 

o 14 1,6 1,8 2,0 2,2 . 
Z[nm] 

-0.5 \ , / rc =O.Onm 

M /  
- 1.0 Rs= 8.05nm 

rc = 4.42nm 

FIG. 5. The potential energy of  interaction of  two col- 
liding deformable microemulsion droplets, W, vs. the dis- 
tance z between the mass centers of  the droplets (k is the 
Boltzmann constant, T = 25°C).  

Journal of Colloid and Interface Science, Vol, 143, No. 1, April 199l 



166 DENKOV ET AL. 

W ~ ( z )  at each given value of  re = re(z). As 
shown in Fig. 5 the deformation starts at z 
= 19 nm (re = 0). At z = 16.8 nm W(z) has 
a minimum value o f - 0 . 9  kT, which is due 
to the compensation between the attractive 
van der Waals energy W ~v and the effective 
repulsive energy W s due to the extension of 
the droplet interfaces--cf. Eq. [3.1]. For z 
< 15.2 nm the repulsive energy prevails and 
W(z) is positive. The values of  Rs and rc cal- 
culated from Eqs. [2.6] and [2.7] are shown 
in Fig. 5 for three points denoted by arrows. 

The most remarkable feature of the curve 
W(z) is the presence of a potential minimum 
whose depth is of the order of kT. Note that 
the absolute minimum value of  W(z), cor- 
responding to the hard sphere model, is equal 
to 0.3 kT. That is considerably smaller than 
the value on our curve W(z). The occurrence 
of such a deep minimum means that the for- 
mation of relatively stable dimers is quite 
probable. The film separating the droplets 
could rupture and the drops could merge to a 
single larger drop, but  as we specified in the 
Introduction we will not consider this process. 

The point with Rs = 8.24 nm and re = 6.30 
nm shown in Fig. 5 corresponds to W(z) 
= kT. This point can be approximately inter- 
preted as the point of recoil of  two colliding 
particles. The calculated difference Rs - R0 
= 0.24 nm at this point is only 3% of the value 
of R0. Hence, the effective repulsive force at 
the moment  of  recoil is a result of a not too 
large extension of  the drop surface. 

From the interaction energy W(z) we cal- 
culated the virial coefficient Bw = #/Vw by us- 
ing Eq. [4.2]. We have studied the effects of  
three parameters: Hamaker  constant AH, film 
thickness h, and Gibbs elasticity EG. In Figs. 
6 to 8 our results are compared with the ex- 
perimental data of  Bothorel et al. (4, 19) for 
the system water /dodecane/sodium dodecyl- 
sulfate and two different cosurfactants: hex- 
anol (open circles) and heptanol (full circles). 
Experimentally determined points are recal- 
culated according to the discussion in Section 
4. Similar data with the same trend of  the de- 
pendence of B vs. R were reported by Cazabat 

and Langevin (5, 7) and Hou et al. (9) for 
other systems. 

Fig. 6 represents the calculated curves Bw 
vs. Ro for four different values of AH between 
2 and 5 × 10 -20 J. The values of the other 
parameters are fixed as follows: h = 3 nm, a0 
= 0.01 m N / m ,  and EG = 20 m N / m .  One sees 
that the theoretical curves follow the trend of 
the experimental data for Bw vs. Ro. Besides, 
the larger the Hamaker constant AR the 
smaller Bw, as should be expected. 

The role of  the Gibbs elasticity, EG, is il- 
lustrated in Fig. 7 for four different values of 
Ea  at fixed h = 3 nm, a0 = 0.01 m N / m ,  An 
= 3 × 10 -20 J. According to our model the 
interfacial Gibbs elasticity is a source of an 
effective soft repulsion between the droplets. 
The theoretical curves show that the larger the 
Gibbs elasticity, the greater the second virial 
coefficient Bw. 

The strong effect of  the film thickness h on 
Bw is illustrated in Fig. 8, where the four solid 
lines represent Bw vs. Ro for deformable drop- 
lets, whereas the two dashed lines are calcu- 
lated for two nondeformed spherical droplets 
by using Eqs. [ 3.12 ] -  [ 3.14 ], with h being the 
shortest distance between them. The values of  
Bw for the nondeformed droplets (corre- 
sponding to the hard sphere model) are pro- 
nouncedly larger than those for the deformed 

Bw 
20 

10 

0 

-10 

-20 

-30 

~ A  H = 2×10-z°J 

°o o ~ ' A H  = 3xl0-Z°J 

\ AN = Z, xl~Z°3 

AH : 5×10-Z0J 

FIG. 6. Dimensionless second virial coefficient Bw vs. 
drop radius Ro calculated at different values of the Ha- 
maker constant An. The full and open circles are experi- 
mental data from (4, 19, 31) with cosurfactant heptanol 
and hexanol, respectively. 
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Bw 
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FIG. 7. Dimensionless second virial coefficient Bw vs. 
drop radius R0 calculated at different values of the Gibbs 
elasticity Eo. The full and open circles are experimental 
data from (4, 19, 31 ) with cosurfactant heptanol and hex- 
anol, respectively. 

droplets. The values of  the fixed parameters 
are AH = 3 × 10 -20 J ,  o" 0 = 0.01 m N / m ,  EG 
= 20 m N / m .  One sees in Fig. 8 that the 
smaller h the less Bw. 

The numerical data presented in Figs. 6 to 
8 show that the deformation of the drops dur- 
ing collision and the ensuing effects on Wand 
Bw can be at least as important as the other 
effects considered by previous authors. In gen- 
eral we could have fitted the experimental data 
of  Bothorel et al. (4, 19) by varying the pa- 
rameters AH, h, and EG in a relatively narrow, 
physically reasonable range. As already 
pointed out in Section 1 we did not attempt 
that, because we are fully aware of the crude- 
ness of  our calculations, especially in deter- 
mining W s. Besides, we think that other ef- 
fects, such as spontaneous curvature, bending 
energy of the drop surface, and thermal fluc- 
tuations (20, 21, 23, 26, 27), must be properly 
incorporated in the model of the deformable 
droplets in order to reach a more realistic de- 
scription of  the droplet-droplet interactions 
in microemulsions. Such studies are now un- 
der way. 

7. DISCUSSION 

We believe that the major merit of our 
model is that it explains (at least qualitatively 
in its present form) in a natural way many of 
the experimental observations. First of all, it 

reveals the origin of the repulsion between the 
droplets. It is hard to believe that drops with 
interfacial tension as low as 0.1-0.01 m N / m  
could collide like hard spheres. We have shown 
in Section 3 that the repulsion is due to the 
deformation and stems both from the in- 
creased droplet area and from the Gibbs elas- 
ticity of the adsorbed layers--see Eq. [3.9]. 

Besides, we do not need to refer to the con- 
cept of  interpenetration of the adsorbed layers 
either to explain the measured values of the 
virial coefficient or to interpret the observed 
differences between the hydrodynamic radius 
of the droplet and the hard sphere radius de- 
termined bye light scattering experiments (4, 
6, 7, 19). In spite of  being possible such an 
interpenetration is probably very small. In- 
deed, for a planar film the osmotic Gibbs free 
energy, AGosm, due to interpenetration of the 
surfactant hydrocarbon chains is (52, 53 ) 

AG°sm - 2~ ( ~ -  X) Vs 

where ~c is the volume fraction of  chains in 
the outmost part of the surfactant layer (see 
Fig. 1 ), vs is the volume of  a solvent molecule, 
x is the mixing parameter, A f = rrr 2 is the film 
area, and Ah is the decrease of film thickness 
due to the interpenetration. If X = 0 (ideal 
solution), the interpenetration stops when 

2( 

IE 

0 

-10 

-20 

-3[ 

~ ~ -  h=2nm 

h = 3.4 nm 

12hi 061~ 

FIG. 8. Dimensionless second virial coefficient Bw vs. 
drop radius Ro calculated at different values of the film 
thickness h. The full find open circles are experimental 
data from (4, 19, 31 ) with cosurfactant heptanol and hex- 
anol, respectively. The dashed lines correspond to non- 
deformed spheres. 

Journal of Colloid and Interface Science, Vol. 143, No, 1, April 1991 



168 D E N K O V  E T  A L .  

AGosm/kT = I, i.e., when Ah = vs/~z~A f. For 
ro = 3 nm, ~c = ~ (4, 31, 50), and vs = 0.3 
nm 3 this yields a negligible overlapping, Ah 
=0.1  nm. 

We have already pointed out that our cal- 
culations of the interaction energy W(z) (Fig. 
5) suggest the formation of a considerable 
fraction of  dimers. In this respect our results 
are in agreement with the findings of several 
research groups, who detected such dimers ex- 
perimentally (8, 11, 12, 54). Auvray (14) tried 
to explain the presence of  such dimers, as well 
as the anomalous low values of  the virial coef- 
ficients, by using a totally different model: he 
assumed that (i) the colliding drops partially 
coalesce to form a dimer, (ii) the total water 
volume and the area of the adsorbed layer 
(considered as being incompressible) remain 
constant, and (iii) the whole process is gov- 
erned only by the curvature energy. The ex- 
perimental data are not sufficient to discrim- 
inate between Auvray's and our model. The 
two models are similar from a purely geo- 
metrical viewpoint: the surface of Auvray's 
elongated prolate dimer can be looked at as 
an envelope o fa  dimer consisting of two drops 
separated by a planar film. 

Another argument in favor of  dimer for- 
mation is the observed exchange of  material 
between the colliding droplets. To explain this 
Eicke et aL (18) suggested that a transient pore 
appears at the contact point between the two 
droplets. Such an explanation is in agreement 
with our model, because the formation of 
transient pores in a planar film is much more 
probable than between spherical droplets. 

Several studies (4, 19, 31 ) have shown that 
the longer the cosurfactant chain length the 
more positive the virial coefficient (see, e,g., 
Fig. 7, where experimental data with heptanol 
and hexanol are presented). The same result 
naturally follows from our theory, if the Gibbs 
elasticity for alcohols with longer chains is 
higher. Unfortunately we could not find data 
to prove this hypothesis, which otherwise 
seems reasonable. An indirect support of  this 
viewpoint is the data of  Shah and co-workers 
(29, 30 ) who found that the interfacial fluidity 

is larger with 1-pentanol than with 1-hexanol. 
It is worth pointing out that such an effect is 
compatible only with the model of  deformable 
drops. 

One question that could be raised is whether 
a planar film could form between such small 
droplets and to what extent the assumption of 
constant film thickness during the expansion 
of the contact line is a reasonable one. A de- 
finitive answer can be given only by solving 
the hydrodynamic problem for collision of  
deformable drops performing Brownian mo- 
tion. It is hardly worthwhile doing that without 
having reliable experimental information on 
the details of the collision process. Some in- 
sight can be gained however from the hydro- 
dynamic theory developed for collision of  
macroscopic bubbles and drops (28).  Accord- 
ing to this theory the fronts of the colliding 
drops will change the sign of  their curvature 
and the film will start forming when the gap 
width between the drops becomes equal to 

h i  = Fo/27r~0, [7.1] 

where Fd is the driving force pushing the two 
drops toward each other along their line of  
centers. The perimeter of the film expands very 
rapidly to reach the radius 

r~ = F~Rh/27rao, [7.2] 

where Rh is the hydrodynamic radius of  the 
drop. This is the initial radius from which the 
interaction energy W should be calculated. 
Note, however, that r~, corresponding to the 
outer ends of the surfactant molecules, is con- 
sequently larger than the contact radius rc at 
this moment,  since the later corresponds to 
the water core. 

The driving force Fd, which for microemul- 
sions is the Brownian force, is a stochastic 
quantity. A rough estimate of its mean value 
could be obtained from our numerical cal- 
culations (see Fig. 5 ) which show that the ini- 
tial kinetic energy kTdrops to zero at distances 
of the order of  Rh/2. Hence, we assume 

Fd ~ 2kT/Rh. [7.3] 
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Then 

k T  
hi ~ - - ;  ri ~ (kT/~rc~o) ~/2. [7.4] 

7r~r0Rh 

For or0 = 0.1 m N / m  and Rh = 9 nm (this 
corresponds to water core radius R = 7.5 nm 
plus the surfactant chain length) Eq. [7.4] 
yields hi ~ 1.4 nm and ri ~ 3.5 nm, which 
are reasonable figures. 

The next question is what will happen to 
the liquid film as the collision process evolves. 
According to Rulyov and Dukhin (55) the 
liquid will not be squeezed out and the film 
will keep its thickness constant if 

~r~roh 2 4i mv~ /2 ,  [7.5] 

where vi is the impact velocity. Substituting 
k T i n  the right-hand side of Eq. [7.5] and ex- 
pressing hi from Eq. [7.4] one finds that the 
film thickness will remain constant if 

k T  hi 
1. [7.6] 

~r~r0Rh Rh 

Although this condition seems to be always 
fulfilled, it is worth estimating the drainage 
time ~d, i.e., the time necessary for the liquid 
between the two drops to be squeezed out, so 
that the outer ends of the surfactant molecules 
"touch" each other. This can be done by using 
the Reynolds equation for the rate of thinning 
gRe (see e.g. (28)) ,  

dh 2hi3Fd 
dr VRe 3a.~r4, [7.7] 

where r is time. It yields (cf. also Eqs. [7.3] 
and [7.4]) 

hi 37r~R 3 
rd [7.81 

VRe 4k  T 

For Rh = 9 nm, the drainage time is 5.5 × 10-7 
s. In the absence of information about the col- 
lision time, it is hard to say whether or not the 
liquid film intervening between the colliding 
drops will be squeezed out. Moreover, Eq. 
[7.8 ] refers to films with tangentially immobile 
surfaces, whereas the high interfacial fluidity 
found by Shah et al. (29, 30) can dramatically 

shorten the drainage time (for more details 
see (28, 35)). 

Another experimental fact, that could be 
more easily explained by the drop deforma- 
tion, is the anomalously low value of the dif- 
fusion coefficient D measured by dynamic 
light scattering. The dependence of D on the 
volume fraction q5 is usually described by the 
equation (7, 10, 19) 

D = D0(1 + aq~), [7.9] 

where Do = kT/6~r~Rh is the Stokes-Einstein 
diffusion coefficient, with ~ being the dynamic 
viscosity. A theory of the diffusion virial coef- 
ficient a, based on the model of hard spheres, 
was published by Felderhof (10). However, 
Cazabat and Langevin (5, 7) found that the 
theoretical values were always higher than the 
experimental ones. In the framework of our 
model this discrepancy could be ascribed to 
the enhanced hydrodynamic resistance (com- 
pared to that in the model of hard spheres) 
due either to the thinning of the plane-parallel 
film forming before the two drops come into 
close contact or to the viscous friction accom- 
panying the expansion of the contact line be- 
tween the interacting droplets. Both processes 
have been treated theoretically for macro- 
scopic drops (see e.g. (28)).  

Eq. [ 7.7 ] determines the friction coefficient 
Fcl/VRe for two approaching deformed drops 
in the case when the liquid film is squeezed 
out. It can be used to calculate the diffusion 
coefficient, which we will denote by DRe.  Tak- 
ing also into account Eq. [7.4] one thus ob- 
tains 

DRe _ 4 h i R  h _ 4hi 
Do (r~ /h i )  2 Rh 

With the numerical values used above ( R h  = 9 
nm, hi = 1.4 nm) this yields DRe/Do ~ 0.6. 
The experimental values of DRe/Do for the 
system water /dodecane/sodium dodecylsul- 
fate/hexanol measured by Bothorel et al. (4, 
19, 31) are between 0.9 and 0.5 for volume 
fractions between 1% and 5%. In the above 
estimate of the diffusion coefficient we ac- 
counted in fact only for the hydrodynamic re- 
sistance, which in our model is the counterpart 
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of Oseen contribution in Felderhof's theory 
(10). It is not difficult to incorporate also the 
other Felderhof's contributions, such as the 
van der Waals attraction between the droplets 
(12). However the real situation could be 
much more complicated. Indeed, in the pres- 
ence of a deep potential well the assembly of 
two interacting drops must be considered as a 
Brownian oscillator. This will require a totally 
different approach for the calculation of the 
diffusion coefficient. 

8. CONCLUDING REMARKS 

We have accounted for a new effect in the 
statistical mechanical theory of microemul- 
sions--the deformability of the droplets. By 
assuming that the surfactant is located only at 
the drop surfaces and that the adsorbed co- 
surfactant is in diffusive equilibrium with the 
bulk phases we derived an expression for the 
potential energy of interaction, W, between 
two deformed droplets--see Section 3c. 

According to our model a plane parallel liq- 
uid film is formed between the two colliding 
microemulsion droplets. During this process 
each of the two initially spherical droplets has 
the shape of a spherical segment--see Fig. 2. 
This deviation from the spherical shape (at 
constant drop volume) leads to an increase of 
the droplet surface and to extension of the in- 
terfacial surfactant layer. The increased inter- 
facial energy of two deformed colliding drop- 
lets gives rise to an effective repulsive potential 
energy, W~----see Eq. [ 3.7 ]. W s depends both 
on the interfacial tension, ~o, and on the Gibbs 
elasticity Ec.  

Contribution to the total potential energy 
W gives also the energy of van der Waals at- 
traction, W ~w, between the two droplets. To 
calculate W vw before the collision we used the 
Hamaker expression, Eq. [3.12], for two 
spheres. The values of W vw for two deformed 
droplets were calculated by means of Eq. 
[ 3.15 ], derived in the present paper. The latter 
equation, expressing the van der Waals inter- 
action energy of two spherical segments, can 
be of independent interest for other similar 
problems. 
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The total potential energy W, calculated as 
explained in Section 3c, exhibits a very pro- 
nounced minimum of depth about kT-see Fig. 
5. Th e knowledge of Wenabled us to calculate 
the second virial coefficient. The latter is con- 
siderably smaller (more negative) than in the 
case of the hard sphere model of droplet- 
droplet interaction and depends on the Ha- 
maker constant, AM, Gibbs elasticity, E~, and 
the film thickness, h. It turns out that the dif- 
ferent possible definitions of the second virial 
coefficient (cf. Eqs. [4.8] and [4.12]) can 
strongly affect its value and the comparison 
between the theory and experiment. With rea- 
sonable choice of the system parameters (Ha- 
maker constant, film thickness, and Gibbs 
elasticity) we obtained satisfactory agreement 
with the dependence of the virial coefficient 
on the drop radius found experimentally by 
Bothorel and co-workers (4, 19, 31 ) with four- 
component microemulsions. The model in its 
present form can be also applied to three- 
component microemulsions. 

Our model allows qualitative explanations 
of other experimental facts. We found a rather 
deep potential well, which can be the reason 
for the dimer formation, evidenced by several 
authors (8, 11, 12). The low value of the dif- 
fusion coefficients (compared with those cal- 
culated from the Stokes-Einstein equation) 
measured by Cazabat and Langevin (5, 7) and 
Brunetti et al. (4) could be caused by the en- 
hanced hydrodynamic resistance, due to the 
outflow of liquid in the narrow gap between 
the drops. Our model is also able to explain 
the increase of the virial coefficient with in- 
creasing cosurfactant chain length, provided 
that the Gibbs elasticity also increases, which 
seems to be the case. 

We did not consider the role of other pos- 
sible effects, such as spontaneous curvature, 
bending energy, etc., but they can be easily 
incorporated in our model. 

APPENDIX: VAN DER WAALS INTERACTION 
BETWEEN TWO SPHERICAL SEGMENTS 

Hamaker (43) applied Eq. [ 3.11 ] to derive 
an explicit expression, Eq. [ 3.12 ], for the en- 
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ergy o f  van  der Waals  interact ion between two 
spheres. Our  purpose here is to derive a similar 
expression for the case, when  the two particles 
are spherical segments  oriented as shown in 
Fig. 9. 

Let  us in t roduce cylindrical coordinates  (r ,  
0, z)  as shown in Fig. 9. In addition, if  rl ,  01, 
and  Zl are the coordinates  of  a poin t  f rom the 
upper  particle and  if r2, 02, and  z2 are the co- 
ordinates  of  ano the r  poin t  f rom the lower par-  
ticle, then  

Irl - r2l 2 = r 2 + r 2 - 2rlr2cos(02 - 01) 

-F ( Z  1 - -  Z 2 )  2 .  [A.1] 

It is conven ien t  to in t roduce dimensionless  
variables 

Pi = r i /Ro ,  ~i = z i / R o ,  i = 1, 2; [A.2] 

= R s / R o ,  ~ = rc /Ro  [A.3] 

where R0 is the radius o f  the droplet  before 
deformat ion .  Then  Eq. [ A. 1] can be trans- 
fo rmed  to read 

Ir l  - -  r2J 2 

= n g [ p 2  + p2 _ 2plP2COS(02 - 01) 

+ (~', - ~'2)2].  [ A . 4 ]  

Eq. [3.11] shows that  in general W ~ 
= WVW(s, e), where s is defined by Eq. [ 3.14 ]. 
We will seek W vw in the fo rm of  an expansion 
with respect to the powers of  e, like Eq. [ 3.15 ]. 
We will neglect all t e rms  of  order  higher 
than  e 3. 

By using Eqs. [2.7] and  [A.3] one can de- 
rive 

1 ~2 
l / R o  = 2 - ~ + O(e4) .  [A.51 

A subst i tut ion o f  Eq. [A.5] into Eq. [2 .6] ,  
a long with Eq. [A.3] ,  yields 

~" = 1 + O(e4) .  [A.6] 

Tha t  is why in the f r amework  o f  the accepted 
accuracy we will set ~" = 1 everywhere  below. 

z T 

I 

c.._ 

i 
.r.~ Rs 

\ 
3 I,,,/ 

6 

ID 

r 

FIG. 9. Calculation of the energy of van der Waals at- 
traction between two spherical segments (see the text). 

For  the geomet ry  that  we consider Eq. 
[ 3.11 ] can be writ ten in the fo rm 

W v~ = --AH[II(E,  S) + 212(E, S) + I3(E, S)], 

[A.7] 

where 

I i (e ,  s )  = dpl do2 df~ 
• t S 

Is × d h F ( p l ,  P2, f l ,  h )  [A.8] 
~(p2) 

I2(e, s) = dpl dpz ~ d f i  

f -A(p2) 
× d ~ 2 F ( m ,  P2, f l ,  h )  [A.9] 

a-A(o2) 

I3(e, s)  = do1 do2 Jf~(ot) dr1 

f -A(p2) 
× d ~ 2 F ( p l ,  P2, ~'1, ~'2) [A.10] 

a-f2(p2) 

f l ( P )  = s + V l -  e 2 -  f l -  p 2 [A.1 1] 

J2(p)  = s + Vl - 62 -~- Vl - p2 [A.12] 

Journal o f  Colloid and Interface Science, Vol. 143, No. 1, April 1991 



172 DENKOV ET AL. 

and 

P113 2 fZ~r 1~2~" 
= dOld02 F(pl,P2,~'l, ~2) ~2 do .0 

X (Ro/Irl - r21) 6. [A.13] 

To illustrate the domains of  integration in 
I~, 12, and 13 we have divided the volumes of  
the two particles into regions I, II, III, and IV-  
see Fig. 9. Then Ii(e, s) accounts for the in- 
teraction between domains II and IV, I2(~, s) 
for the interaction between domains II and III 
(or I and IV), and I3(e, s) for the interaction 
between domains I and III. By substitution 
from Eq. [A.4] into Eq. [A. 13 ] and by carrying 
out the double integration one arrives at the 
expression [3.18] for F(pl, P2, ~1, ~2). 

In view ofEqs.  [A .8 ] - [A .12 ]  one can con- 
clude that the dependence oflk(e,  s),  k = 1, 
2, 3, on E is due only to the limits of  integra- 
tion. By means of  simple but tedious calcu- 
lations we expanded each of the three integrals 
/ I ( G  S),  I2(G S),  and  I3(G s)  in  series wi th  
respect to the powers of  E. The result read 

Ii(e, s) = O(e 4) [A.14] 

2 / 2 ( G  S) q- I3(G S) 

= G o ( S ) +  e 2 G l ( s )  q- O(E4) ,  [A. 151 

where Go(s) and Gl (s) are given by Eqs. [ 3.13 ] 
and [3.16].  Finally, substitution from [A. 14] 
and [A. 15] into [A.7], along with [A.3], yields 
Eq. [3.15]. 
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