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Abstract 

The problem concerning the magnitude and the sign of the interfacial bending moment of the 
droplets in fluid disperse systems is considered on the basis of a thermodynamic approach. It is 
demonstrated that the total bending moment can be expressed as a superposition of contributions 
connected with the different components in the system. Expressions for the contributions of the 
electric double layer, of the interactions between adsorbed dipoles and of the electrolyte excess 
osmotic pressure to the value of the bending moment are derived. The effect of a possible incom- 
plete dissociation of the adsorbed ionic surfactant monolayer is also taken into account. The 
results show that the van der Waals and the electric double layer interactions provide significant 
contributions to the bending moment, both of them of the order of 10 pN. Even at high electrolyte 
concentrations, the electrostatic bending moment can be important owing to the contribution of 
the Stern layer. The results can be applied to study the curvature dependence of the interfacial 
tension in microemulsions and in liquid-gas dispersions. 

1. INTRODUCTION 

The effect of curvature on the interfacial tension was first studied by Gibbs 
in his theory of capillarity [ 11. His approach was developed by Tolman [ 21, 
who established that a pronounced dependence of the interfacial tension on 
curvature can exist for very small drops or bubbles, whose radii are comparable 
with the so-called Tolman parameter S,. (The latter represents the distance 
between the surface of tension and the equimolecular dividing surface (see Eqn 
(2.10) below) .) Further development was achieved in the works by Koenig [ 31 
and Buff [ 4-61. Kondo [ 71 investigated the role of the choice of the dividing 
surface in the thermodynamics of curved interfaces (see also Refs [ 8-101). 

New interest in curvature effects was awakened by the studies on the ther- 
modynamics of microemulsions [ 11-201. In particular, Miller [ 161 pointedout 
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that the Tolman parameter S, can be large for microemulsions owing to their 
low interfacial tension. In this case, the role of the interfacial bending moment 
(stress) can be important for understanding the droplet size distribution. 
Moreover, Denkov et al. [20] have recently explained the anomalously low 
experimental values of the second virial coefficient for water-in-oil microe- 
mulsions by taking into account the deformations of the emulsion droplets 
during their collisions. Hence, a change in the droplet curvature can affect also 
the energy of the droplet-droplet interactions. 

An essential contribution to understanding microemulsions was provided in 
the work of Overbeek et al. [ 191. These authors considered the interfacial 
bending moment amidst the other important features of the microemulsions 
and achieved good agreement with the experimental data on the influence of 
salt and cosurfactant on droplet size and interfacial tension. 

The contributions of the diffuse electric double layer inside the droplets and 
of the steric interactions between the surfactant tails were accounted for in 
Ref. [ 191. However, the van der Waals component of the bending moment as 
well as the effect of the Stern layer were entirely disregarded there. 

The formation of a microemulsion is a rather complicated phenomenon in a 
multicomponent system. Therefore in the present study we will focus our at- 
tention only on the interfacial bending moment effect for an “isolated” mi- 
croemulsion droplet, without studying the whole complicated situation. We 
believe that in this way one can understand better a detail of the picture. A 
combination of such details can lead to a more reliable description of 
microemulsions. 

First, a brief review is given about the role of the bending moment in the 
thermodynamics of spherical interfaces. Afterwards, we derive a general ther- 
modynamic expression for the interfacial bending moment and then estimate 
the magnitude of its different components. In this paper we describe in more 
detail four bending effects, all of them having electrostatic origin: (i) the con- 
tribution due to the dipole moments of the adsorbed molecules, (ii) the bend- 
ing effect of the Stern electric double layer, (iii) the contribution of the diffuse 
electric double layer and (iv) the additional bending effect connected with the 
electrolyte excess osmotic pressure. The van der Waals component of the bend- 
ing moment, which turns out to be one of the most important components, is 
studied in separate works [ 21,221. 

2. THE INTERFACIAL BENDING MOMENT 

2.1 Basic equations 

The three basic equations in the thermodynamics of spherical interfaces are 
[ 8-101 
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(2.1) 

(2.2) 

(2.3) 

Here a is the radius of an arbitrarily chosen spherical dividing surface, rep- 
resenting the interface in the Gibbs’ approach [ 11; u”, S” and NQ (i= 1,2,...,k) 
are respectively the surface excesses of the internal energy, entropy and num- 
ber of molecules of the ith component, which correspond to this choice of the 
dividing surface; T is the temperature; pi (i= 1,2,...,k) are chemical potentials; 
Pa ( Pp) is the pressure inside (outside) the spherical drop; A is the interfacial 
area; y is the thermodynamic interfacial tension and (dy/da) is its formal de- 
rivative with respect to a. (Here and hereafter the derivatives in parentheses 
symbolize formal derivatives corresponding to a variation in the choice of a at 
fixed physical conditions. ) 

Equation (2.2) is a result of an integration of the Gibbs fundamental equa- 
tion, Eqn (2.1)) over the whole interfacial area at constant intensive parame- 
ters. Generally speaking, such an integration is possible only for interfaces of 
uniform curvature (plane, cylinder, sphere), because y depends on curvature, 
which is not uniform throughout an arbitrarily curved interface. Equation (2.3 ) 
represents a generalized form of the known Laplace equation for a spherical 
interface. 

As demonstrated in Refs [ 23-251, the quantity 

has the meaning of an interfacial bending moment (see also Ref. [ 141) . In 
particular, as shown in Ref. [ 251 B leads to a difference between the thermo- 
dynamical and the mechanical interfacial tensions, y and cr: 

(2.4) 

B 
u= y+G (2.5) 

( y can also be called “the dilational surface energy” [ 251) 
One can define the position of the dividing surface in such a way that y is 

always equal to rr: 

ay 
Bla+=ai aa 0 =o 

(I=.% 

(2.6) 
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This special dividing surface is usually called “the surface of tension” [8-lo] 
and its radius is denoted a,. y and JJ~ (with yS = y ) ._) are connected by the 
relation [ 89,251 

a 2 la,” 
Y’YS, 3+3; 

( ) 
3 

s 

(2.7) 

Equation (2.7) represents explicitly the formal dependence of y on the choice 
of a at a given physical state. By substituting from Eqn (2.7) into Eqn (2.4) 
one derives the respective dependence for the interfacial bending moment 
[23,25]: 

(2.8) 

2.2 Equimolecular dividing surface 

To have the radius of the dividing surface, a, uniquely defined, one has to 
introduce an additional equation. Let this equation be 

(2.9) 

where av is the radius of this special dividing surface, called “the equimolecular 
dividing surface” [2,3,6,8], and J+= y ] a=%’ The partial derivative dyv/dav 

represents the physical dependence of yv on av with the remaining parameters 
of state fixed. Different choices of these parameters correspond to different 
definitions of a,. The distance 6=av- a, between the equimolecular surface 
and the surface of tension tends to a limiting value & at l/av-+O. Tolman [ 21 
has derived the following equation 

Yv=Yo(l-$+...) (2.10) 

representing approximately the curvature dependence of J+ (see also Refs 
[WOI ). Here y. =Y~/~+~. By setting a=av in Eqn (2.8) and by expanding in 
series for $/av << 1 one obtains [ 51 

B v=2y,&+... (2.11) 

where B,=BI,,,. The next terms in the expansions (2.10) and (2.11) can 

be derived only when the dependence 6=6(av) is known. By means of Eqn 
(2.11) one can transform Eqn (2.10) to read 

yv =yo -%+... (2.12) 
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where 

&=~,,,,,+,=2y,& (2.13) 

Equation (2.13) reveals the close relation between the bending moment and 
the Tolman parameter S,,, whereas Eqn (2.12) demonstrates that the bending 
moment determines the curvature dependence of the interfacial tension. The 
thermodynamic approach for the calculation of Bv considered in the next sec- 
tion is based on some local thermodynamic relations discussed briefly below. 

2.3 Local form of the surface fundamental equations 

Let us introduce the surface densities 

uS=Us/A, sS=SS/A ri=N~/A 

and the relative interfacial dilation 

(2.14) 

then dU” =A (du” + u”da ) etc., and Eqn (2.1) can be transformed to read [ 23, 

251 

du”=Tds”+ 5 ,Uictri + (y-w”)da+Bm 
i=l 

(2.16) 

where 

o’=u’-Ts’- ~ ~iri 
i=l 

(2.17) 

is the interfacial density of the grand thermodynamic potential. H in Eqn (2.16) 
is the mean curvature of the surface. The sign of H is a matter of convention. 
Here and hereafter in this study we will use the convention 

H= 
i 

- l/a for a drop 
l/a for a bubble 

(2.18) 

For emulsion systems, instead of Eqn (2.18) we will use the convention 

H= 
i 

- l/a for a water drop in oil 
l/a for an oil drop in water 

(2.19) 

Hence, H is negative for convex liquid/gas or water/oil interfaces, and H is 
positive for concave liquid/gas or water/oil interfaces. It will be demonstrated 
below, that this convention makes the sign of B dependent only on the kind of 
interactions (electrostatic, van der Waals etc.) prevailing in the interfacial 
zone, rather than on the sign of the curvature. 
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According to Eqn (2.16) the work for bending of the interface is 

dwg =B @I 

When B < 0 a spontaneous process of bending (dws c 0) will lead to cW> 0. 
Hence a negative B tends to bend the interface around the gas (oil) phase. In 
the opposite case, a positive B tends to bend the interface around the liquid 
phase (for liquid-gas dispersions) or around the aqueous phase (for emulsion- 
type dispersions). 

From Eqns (2.2) and (2.14) one obtains 

uS=TsS+ i/&+7 
i=l 

(2.20) 

The comparison between Eqns (2.17) and (2.20) yields 

Y=W” (2.21) 

It should be noted that Eqn (2.21)) as well as Eqns (2.2 ) and (2.20)) hold only 
for uniform interfaces. A combination of Eqns (2.21), (2.16) and (2.17) gives 

dy= -s”dT- ~ rid~i + By 
i=l 

(2.22) 

representing a form of the Gibbs adsorption equation. It should be noted that 
Eqn (2.22) holds both for soluble and for insoluble adsorbed components. It 
provides a basis for our considerations below. 

3. BENDING MOMENT OF MICROEMULSION DROPS 

The bending moment effect is important for microemulsion droplets because 
of their high curvature and low interfacial tension [ 16,191. To specify the sys- 
tem we will consider microemulsions below. However, the approach can be 
easily adapted to small bubbles as well as to liquid droplets in a gas phase. 

3.1 Thermodynamic expression for B 

A typical microemulsion system contains the following components: water 
(w), oil (o), surfactant (s), cosurfactant (c) and neutral electrolyte (e) [ 26- 
281. We choose the dividing surface to be the equimolecular surface with re- 
spect to water, i.e. l-,=0. Then at constant temperature T and chemical po- 
tential of the oil phase, pO, Eqn (2.22 ) can be transformed to read 

d(y+r,A) =bUS -TCdpC -l-‘,dA +BdH (3.1) 

All differentials in the right-hand side of Eqn (3.1) are independent. Indeed, 
the number of the independent intensive parameters in the system under con- 
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sideration is equal to the number of the components plus one [ 3,8]. Then from 
Eqn (3.1) one derives 

The integration of Eqn (3.2) yields 

where 

(3.2) 

(3.3) 

(3.4 ) 

is the contribution of the surfactant to the bending moment. 
The term B1(H,,uu,,,ue) on the right-hand side of Eqn (3.3) represents the 

bending moment of an imaginary emulsion drop in a system containing only 
cosurfactant and neutral electrolyte as solutes. For such a drop a counterpart 
of Eqn (3.1) holds: 

d(y+r,pc) =p.zuccir, -r,dpe +B,dJJ 

From Eqn (3.5) one derives 

(3.5) 

(3.6) 

By integrating Eqn (3.6) one obtains 

B1(H,~~,~~)==B:!(H,~U,)+B, 

Here 

(3.7) 

i-C(k) 
ak 

&= a~ dr, 
I( > 

(3.3) 
0 rde 

represents the contribution of the cosurfactant to the interfacial bending mo- 
ment. B, (23, pe) is the bending moment of an imaginary emulsion drop in a 
system containing neutral electrolyte of chemical potential ,u~ in the aqueous 
phase. For such a system, instead of Eqn (3.5) one can write 

d(y+r& =PN~ +&m (3.9) 

Then by analogy with Eqn (3.7) one derives 

B,(K A) =B,(H) +& (3.10) 

where 
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(3.11) 

accounts for the contribution of the neutral electrolyte to the bending moment 
and B,(H) is the bending moment of an imaginary emulsion drop of surface 
curvature H in a system containing only pure aqueous and oil phases. A com- 
bination of Eqns (3.3), (3.7) and (3.10) leads to 

&&+&+I?,+& (3.12) 

In other words, the total interfacial bending moment of a typical microemul- 
sion droplet can be represented as a superposition of four components. Their 
physical nature and importance are discussed below. 

3.2 Discussion 

Since B, is the bending moment at the boundary between pure water and 
oil, its value is determined by the van der Waals interactions between the two 
phases. The calculation of B, is the subject of Ref. [ 221, where values of B, are 
estimated for different liquid/gas and oil/water interfaces. The order and the 
sign of B, can be easily estimated by using Eqn (2.13).For a pure argon drop 
at 84.3K Croxton and Ferrier [ 291 calculated S,, = 3.84 A (8, of the same mag- 
nitude and sign were calculated by Hill [ 301, Kirkwood and Buff [ 311, Plesner 
and Platz [ 321). Then by using yO’o= 13.45 mN m-l [ 331 one obtains BpO= 10 
pN. The positive sign of BP0 means that it tends to bend the interface around 
the liquid argon phase. For the interface between water and decane one has 
S,= -5.07 A, y,,=51.2 mN m-l [22] and thus BP,,= -51.9 pN. The negative 
sign means that BP0 tends to bend around the oil phase (cf. Eqn (2.19) ). 

The contribution of the van der Waals interactions in B, (see Eqn (3.11) ) 
is negligible because of the relatively small concentrations of the electrolyte 
ions compared with the water concentration. That is why B, is due mainly to 
the pronounced negative adsorption of the electrolyte ions leading to changes 
in the osmotic pressure in a close vicinity of the interface [ 8,34-361. An esti- 
mate of B, on the basis of the theory of Buff and Stillinger [36] is presented 
in Section 7 below. 

The B, is due predominantly to the steric and dipole-dipole interactions 
between the adsorbed cosurfactant molecules. Theoretical models accounting 
for the steric interactions are presented in Refs. [ 37 and 381 and an empirical 
expression is used in Ref. [ 191. The contribution of the dipole-dipole inter- 
actions is estimated in Section 4 below. For a liquid/gas interface the van der 
Waals energy of the cosurfactant tails should also be taken into account. 

In the case of a non-ionic surfactant, the calculation of B, is similar to that 
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of B,. However, in the case of ionic surfactant the calculation of B, deserves 
special attention. 

The chemical potential of an adsorbed molecule of an ionic surfactant can 
be presented in the form 

~~=~i+~u,i=ru,i-Ze~++rlci (3.13) 

where the subscripts si and ci indicate surfactant ion and counterion, respec- 
tively; qci = ~=i + Ze !Ps is the electrochemical potential of a counterion with Ze 
being its electrical charge and !Ps the surface potential. As usual, we choose the 
zero of the electric potential Y to be the potential in an imaginary reference 
solution of a neutral electrolyte, resting in chemcial equilibrium with the 
aqueous microemulsion phase. We suppose that the dissociation of the surfac- 
tant and of the neutral electrolyte provide the same counterions (just like the 
sodium dodecyl sulfate and the sodium chloride both provide Na+ counter- 
ions). Then flci is constant throughout the aqueous phase and equal to the 
electrochemical potential in the reference solution. Hence 

aVci (H dH 
=o 

~dw.4 
(3.14) 

The substitution of Eqn (3.13) into Eqn (3.4) along with Eqn (3.14) leads to 

(3.15) 

where 

(3.16) 

is the contribution of the electric double layer to the interfacial bending mo- 
ment. The first term in the right-hand side of Eqn (3.15) accounts for the 
energy of steric and van der Waals interactions of the adsorbed surfactant 
molecules. 

When the adsorbed surfactant is completely dissociated, the density of the 
surface charge, 6, is equal to -Ze r,. In this case Eqn (3.16) reduces to 

(3.17) 

Similar expressions were used by Mitchell and Ninham [ 391 and by Overbeek 
et al. [ 191 in their studies on the curvature dependence of the interfacial ten- 
sion due to the diffuse electric double layer. 
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When the surfactant is a strong electrolyte and r, is comparatively low, one 
can expect that c~ = 1. However, for high values of r, the degree of dissociation 
cy can be smaller than unity even for strong electrolytes. An estimate (see 
Appendix A) based on the Poisson-Boltzmann equation provides an upper 
limit for cy in the case of high surface potentials: 

tkT 
al 

8ne2Z2r.r 1 s 
(3.18) 

where ri is the radius of the counterion and e is the dielectric permittivity of 
the -medium (water). For a sodium dodecyl sulfate (NaDS) micelle of radius 
24 A and aggregation number 67 at 25°C [ 401 one has r;’ = 108 A2, Z= 1, 
ri z 2 A, E = 78.3 and Eqn (3.18) yields a! 50.30. The experimental value of CY 
varies between 0.24 and 0.30 (see Refs [41-441). For a flat NaDS adsorption 
layer at c.m.c. the experiment [45] yields r;’ =52 A” and from Eqn (3.18) 
one calculates (x 20.14. This value is in agreement with the low degree of dis- 
sociation of the thin liquid film surfaces determined in Ref. [ 451. 

Contributions to the interfacial bending moment having an electrostatic or- 
igin are considered in more detail below. 

4. BENDING MOMENT DUE TO REPULSION BETWEEN ADSORBED DIPOLES 

The adsorbed cosurfactant molecules, as well as the non-dissociated surfac- 
tant molecules have non-zero dipole moments oriented along the normal to the 
drop surface. The interaction energy of one dipole of moment p(l) situated at 
r1 with another dipole of moment pc2) situated at r2 (Fig. 1) is [ 461 

Ud = -3(p”‘.r,, ) (p(2)‘r12 ) +p 
(1) 

‘p 
(2) 

cr5 w3 
(4.1) 

Z 

Fig. 1. Permanent dipoles p”’ and p”’ adsorbed on a spherical interface. 
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where 

r12 =r2 -rl r= I r12 I (4.2) 

Let 1 p(l) 1 = I pc2) I =p. Then from Fig. 1 one obtains pc1)-r12= -pC2)*ri2=pr 
sin (O/2); p”‘*p (2) =p’cos 8; and Eqn (4.1) reduces to 

&&3-cos e) (4.3) 

If the dipoles are situated on a sphere of radius R, then 

r=R&i=&i@ (4.4) 

The interaction energy of one dipole with all other adsorbed dipoles is 

U, = I& 2na2sin 8 d0 
Bo 

(4.5) 

where r is the number of dipoles per unit area of the equimolecular dividing 
surface (with respect to the water) of radius a, and 

sin (8,/2)=6,/(2a) (4.6) 

S, z l/,,k is the distance between two neighboring dipoles. Equations (4.3 )- 
(4.6) yield 

(4.7) 

The total number of dipoles is 

N=4na2r 

and the total dipole-dipole interaction energy reads 

(4.6) 

(4.9) 

The contribution of the dipoles to the chemical potential of the adsorbed mol- 
ecules is 

(4.10) 

where 

H= -l/a (4.11) 

is the curvature of the equimolecular dividing surface. In accordance with Eqns 
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(3.13) and (4.8)-(4.11) the bending moment due to the dipole-dipole inter- 
action is 

(4.12) 

The substitution from Eqns (4.8) and (4.9) into Eqn (4.12) after some trans- 
formations gives 

Bdp (H) z _ 3nr5’2p21 
~(l+lH)~ 

(4.13) 

where I= a - R is the distance between the equimolecular dividing surface with 
respect to the water and the surface where the dipoles are situated. 

For an -OH groupp=1.5~10-‘s CGSE units. With r=3*1014 cmP2, Z=3 A 
and ~~78.3 one calculates from Eqn (4.13) B+(O) =1.3-10m8 dyn=0.13 pN. 
This value is about 100 times smaller than the contribution B, due to the van 
der Waals forces (see above ) . 

5. BENDING MOMENT DUE TO A STERN LAYER 

According to the classical concept of Helmholtz, an electric double layer can 
be considered as a molecular condenser. A spherical molecular condenser is 
sketched in Fig. 2: the adsorbed surfactant ions and their counterions are sit- 
uated at spheres of radii R, and R, respectively. As usual, a is the radius of the 

Fig. 2. Stern and diffuse electric double layers inside a water drop in oil: a is the radius of the 
equimolecular surface; R2 is the radius of the surface where the polar heads of the surfactant 
molecules are situated, RI is the radius of the surface on which counterions of closest approach 
are situated. 



161 

equimolecular dividing surface with respect to water. With 
YZ,--=p,--(R,) +ZeY(R,), Eqn (3.13) yields 

~~=~csi(Rz)+luci(R,)-Zed~Y,, (5.1) 

where 

dYs’,, = !PB - Y(R,) = Y(R,) - Y(R,) 

Then by analogy with Eqn (3.16) one can write 

(5.2) 

(5.3) 

Let q denote the total charge of the condenser: 

q=4na2 Ze aT, (5.4) 

where as earlier cx is the degree of dissociation of the adsorbed surfactant mol- 
ecules. Then in view of Eqns (5.2) and (5.4) 

dy arstzl-z2) 
st 

t(l+HZ,)(l+H1,) 
(5.5) 

where 

I, =a-R, 1, =a-R, (5.6) 

and H= - l/a. For a Stern layer, 1, and Z2 do not depend on H and by substi- 
tution from Eqn (5.5) into (5.3) one derives 

I, + Z2 + 2HZ, Z2 
&= -4nZ2e2(Z1 -Z2)e(l+HzI)2(l+Hz2)2 T,a(r,)C 

0 

(5.7) 

where the subscript st indicates the Stern layer. The integral in the right hand 
side of Eqn (5.7) can be estimated by means of Eqn (A.13) in Appendix A: 
r. 

I 
r,cx(r,)dr,Ir%cu,(l-a,/2) (5.8) 

0 

where ay, is connected with r, through Eqn (A.13). When the adsorbed sur- 
factant monolayer is completely dissociated, a!,,,= 1 and the integral in Eqns 
(5.7) and (5.8) simply equals c/2. 

From Eqns (5.7) and (5.8) one can estimate the bending moment Bzt of a 
flat Stern layer (H-0): 

(5.9) 
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With I, = 9 A, 1; << 14, cq,, = 0.14 and the other data for a NaDS adsorption layer 
given after Eqn (3.18) one calculates from Eqn (5.9) 

-B!& I15.6 pN 

It is seen that the magnitude of B,, can be comparable with the van der Waals 
contribution to the bending moment (see above). The negative sign of Bst means 
that it tends to bend the interface around the oil phase. 

In the special case, where the equimolecular surface with respect to water is 
situated just in the middle between the spheres of radii R, and R2 one has 
Z2 = - 1, and Eqn (5.9) yields Bzt =O. In the case where 1, << Zi, 1,H -=K 1 and 
cy=l, Eqn (5.7) reduces to 

B 
27rZ2e21frz 

stz - ~(l+l,H)~ 
(5.10) 

Let H change at constant k and the other chemical potentials in Eqn (3.1). 
Then one obtains 

H 

~(ps,H) -y(ps,O) =~WWM))~ 

0 

and 

H 

(5.11) 

ystbs3) -rstbsus,O) = &W,~sW )m 
I 

(5.12) 
0 

where the subscript st indicates contributions of the Stern layer, and r, = r, (H) 
due to the constancy of ps. If under the integral sign of Eqn (5.12) the depen- 
dence of r, on H can be neglected, then by substitution from Eqn (5.10) into 
Eqn (5.12) one obtains 

yst(ps,H)-yst(~,o) = -2nZ2e2z'rEH 
e(l+HZi) 

(5.13) 

Hence, yst decreases when increasing H (cf. Eqn (2.19) ). In particular, yst is 
larger for a water-in-oil emulsion drop (H= - l/a) than for an oil-in-water 
emulsion drop of the same radius (HZ l/a). 

6. BENDING MOMENT DUE TO A DIFFUSE ELECTRIC DOUBLE LAYER 

The effect of a diffuse electric double layer on the curvature dependence of 
the interfacial tension has been studied by Mitchell and Ninham [ 391 for oil- 
in-water microemulsions, by Levine and Robinson [ 471 and by Overbeek et al. 
[ 19 ] for water-in-oil microemulsions. Below we briefly reconsider this problem 
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by taking into account the contribution of the Stern layer and the role of the 
precise definition of the dividing surface. 

According to Eqn (5.2 ) 

Y~=LlY&+Yi Yiu,=Y(R,) (6.1) 

(see Fig. 2). Then in view of Eqns (3.16) and (5.3) the bending moment due 
to the electric double layer can be expressed as 

& = & + &f (6.2) 

where 

(6.3) 

is the contribution of the diffuse part of the double electric layer. We accept 
that the electrostatic potential, Y(r), of the diffuse layer satisfies the Poisson 
equation 

(6.4) 

with p(r) being the charge density. The electroneutrality condition applied to 
an inner double layer (an aqueous drop in oil) yields 

Rl 

I 
p(r)4m2dr=4za2ZeaTs 

0 

(6.5) 

It should be noted that according to its definition, r, is the number of surfac- 
tant molecules per unit area of the equimolecular dividing surface (of radius 
a) with respect to the water. For an outer double layer (an oil drop in water) 
instead of Eqn (6.5) one has 

al 

I 
p(r)4m2dr=4na2ZecuI’, 

Rl 
(6.6) 

From Eqns (6.4)-(6.6) along with Eqn (A.ll) one obtains 

(6.7) 

Here and hereafter the upper and the lower signs refer to inner and outer elec- 
tric double layers, respectively. 
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6.1 Low surface potential Y, 

In the case when ZeY1/ (KY’) << 1 the Boltzmann equation 

p(r)=Zec, exp - ( ( g)-exp($$)) 

can be linearized (see for example Ref. [ 481) : 

(6.8) 

p(r) 
22 2e 2c 

z*!P(r) (6.9) 

c0 is the electrolyte concentration in the reference solution where Y= 0. From 
Eqns (6.4), (6.7) and (6.9) one derives 

-1 

(outer double layer ) 

or 
-1 

YI = 
4ni3a2 
x (inner double layer) 

1 

coth (KRI) -& 
1 > 

with 

K2=8nZ2e2co 
ckT 

(6.10) 

(6.11) 

(6.12) 

Besides, we have 

R, =af 1, H= f l/a (6.13) 

(see the sign convention after Eqn (6.7) ). Thus coth (IcR, ) FZ 1 for KR, 2 2. 
Then in view of Eqn (6.13) one can represent both Eqn (6.10) andEqn (6.11) 
in the form 

Yi = 
4115 

EIC(~+HZ~) [l+ (1, +c’)H] 
(6.14) 

The substitution from Eqns (6.14) and (A.8) into Eqn (6.3) yields 
I-8 

Bdf= -4S2e2 
2Z1 +~-‘+2Hli(Z~ +K-‘) 

e~(l+H1,)~[1+ (1, +c’)H12 I 
r,c-w(r,)cir, 

0 

(6.15) 

the last equation being a counterpart of Eqn (5.7 ). By analogy with Eqn (5.9) 
one derives 

-Ba,~~rrZ2e2~(2Z,K-‘+K”)cu,(l-a,/2) (6.16) 
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The combination of Eqns (5.9) and (6.16) in accordance with Eqn (6.2 ) leads 
to 

-B$I -flrZW~[(Z, +rc-‘)“--Z$Yk!,(l-c&/2) (6.17) 

The comparison between Eqns (5.9) and (6.17) implies that the combination 
of a Stern and a diffuse layer gives the same bending moment as a molecular 
condenser (Helmholtz double layer), in which the counterions are situated at 
a distance 1,-t-~-’ from the interface. This result is in consonance with the 
Gouy-Chapman theory (see for example Ref. [ 481). 

As in the case of Eqn (5.12) one can write 
H 

(6.18) 

where the subscript df indicates contributions of the diffuse double layer. If 
the dependence of r, on H can be neglected in Eqns (6.18) and (6.3) one 
obtains 

r. 

then from Eqns (6.14), (6.19) and (A.8) with cx=l one derives 

Y&wH) -Ydf(/h,O)= - 
2nZ2e2rz[ (21, +K-~)H+Z,(Z~ +K-~)H~] 

EK(~+HZ~) [l+H(Z1 +K-‘)] 
(6.20) 

Equation (6.20) can be also presented in the form 

Y&&H) =Yti(kO) +ZX&H+WH2) (6.21) 

with 

B&= -$Z2e2~(2Z,K-‘+K2) (6.22) 

Equation (6.21) is to be compared with Eqn (2.12). For 1, << IC-‘, Eqn (6.22) 
reduces to 

B&= -~nZ2e2~~-2 (6.23a) 

Levine and Robinson [ 471 derived an expression for ydf( H) (see Eqn (3.9) 
in [ 471)) which can be presented in the form 

Ydf(H)=~d~(0)-~~z2e2r:K-2H+O(H2) (6.23b) 
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The comparison of Eqn (6.23b) with Eqns (6.21) and (6.23a) shows a differ- 
ence in the numerical multiplier: two in Eqn (6.23a) and three in Eqn (6.23b). 
This difference is probably due to the circumstance that the mechanical ap- 
proach used by Levine and Robinson [47] to derive their Eqn (2.18) is not 
equivalent to the thermodynamic approach based on Eqn (5.11) used by us. 

6.2 High surface potential Y, 

As suggested by Overbeek et al. [ 191, in the case when Zey/(lzT) 2 1, the 
bending moment of the diffuse layer can be calculated by using the Stokes [ 491 
asymptotic solution of the Poisson-Boltzmann equation. From Eqn (3.1) in 
Ref. [ 491 one obtains 

where the same sign convention as in Eqn (6.7) is used and 

Ze dY 

‘=mdr r=R, 
Y= (1+X2) 1’2 

(6.24) 

(6.25) 

b,=21n (x+Y) b, =4(y-l)/(ry) 

I+Y bT(1+2y)/16-ln 2 
( )I/ (XY) 

(6.26) 

(6.27) 

The accuracy of the asymptotic expansion (6.24) was studied by Stokes [49] 
in the case of the outer diffuse double layer. The form of Eqn (6.24) for an 
inner diffuse double layer was first derived in Ref. [ 191. (In contrast to what 
is stated in Ref. [ 191, it is not necessary to neglect the potential in the droplet 
center in order to derive Eqn (6.24 ) (see Appendix B ) . ) 

In accordance with Eqns (6.7), (6.13), (A.8) and (6.25), x depends both on 
Hand on r,. Then the substitution of Y1 from Eqn (6.24) into Eqn (6.3) leads 
to an expression for the bending moment, Bdf, due to the diffuse electric double 
layer. For the case of complete dissociation of the adsorbed surfactant mole- 
cules (a! = 1) this expression reads 

1 

B@(Hr)=- 
16c, kT In zd.2 

~ ? s 
K2 [S 1-z 

l+Y 

+ (Y+2)(Y--1 

Y(Y+l) 
+2”‘(y(zI)-ln (F))+x*lf(F-yfl)]} (6.28) 

where cO, K, Hand 1, are the same as in Eqns (6.12) and (6.13). 
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When the dissociation of the adsorbed surfactant monolayer is not complete 
(cy < 1) one can estimate Bdf by using Eqn (A.13 ) . The combination of Eqns 
(6.3), (A.13) and (A.14) yields 

(6.29) 

where B (l) is to be calculated from Eqn (6.28). By differentiation of Eqn (6.24) 
one derives 

+ 8~1, 
x2+y2-yS 

XY3 
+55)+K21:(5-45J]> (6.30) 

It should be recalled that the sign convention introduced after Eqn (6.7) holds 
everywhere in this section. 

The curves in Fig. 3 represent the dependence of Bdf on r, at l/H=60 A, 
1, = 3 4, c,, = 0.3 mol 1-l and Z= 1. Curve 1 is calculated from Eqn (6.29) with 
ri= 2 A (cf. Eqn (A.14) ), whereas curve 2 is calculated from Eqn (6.28), i.e. 
LX = 1 is suggested to hold identically for curve 2. It is seen that the incomplete 

20- 

15- 

lo- 

5- 

0' 
l 

5 10 

Fig. 3. Interfacial bending moment due to the diffuse part ?f the electric double layer as a function 
of the adsorption at the equimolecular surface (l/H= 60 A, 1, =3 A, c,,=O.3 mol l-‘, Z= 1: curve 
1, according to Eqn (6.29) with (Y=CX, (Eqn (A.13)) and ri=2 A; curve 2, according to Eqn 
(6.28) (cx=l);curve3,accordingtoEqn (72)inFkf. [19]. 
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dissociation of the adsorbed surfactant monolayer leads to a decrease in ) BdfI 
for rS>PS. 

It should be noted that Eqn (6.28) is somewhat different from the respective 
expression Eqn (72 ), derived in Ref. [ 191, which also corresponds to complete 
dissociation (a = 1) . To elucidate the source of this difference we will suppose 
below that the parameter <in Ref. [ 191 coincides with our I, (see Fig. 2 ). Curve 
3 in Fig. 3 is calculated by using Eqn (72) in Ref. [ 19 ] with the same values of 
the parameters H, 11, co and 2 as for the other two curves. (It should be noted 
that the bending moment c,,~ in Ref. [ 191 is simply connected with 
&:ce,= _&f/2.) 

The basic equation used by Overbeek et al. [ 191 for calculation of the bend- 
ing moment (in our notation) reads 

rs1 

B@)=Ze 
a 

a(llRl) I y, U-wH) CiT,, 
0 

where 

(6.31) 

By means of Eqns (6.13) and (6.32 ) one can represent Eqn (6.31) in the form 

(6.33) 

The last equation is to be compared with the relation 

rs 
a 

(6.34) 

which follows easily from the thermodynamic definition of Bdf, Eqn (6.3), used 
by us. The comparison between Eqns (6.33) and (6.34) reveals not only the 
source of the difference between Bdf and B@‘) at the same Y1 (r,, H), but also 
the reason why B &“’ = Bdf for 1, = 0. Actually, 1, should be of the order of 6 A. 
Even I, = 3 A (as assumed in Ref. [ 191) t urns out to be large enough to account 
for the difference between curves 2 and 3 shown in Fig. 3. 

7. CONTRIBUTION OF THE NEUTRAL ELECTROLYTE TO THE BENDING MOMENT 

As mentioned above, the electrolyte contribution to the bending moment, 
given by Eqn (3.11), is due to the negative adsorption of the electrolyte ions, 
creating an excess osmotic pressure in the vicinity of the interface. This effect 
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mol/l 

Fig. 4. Bending moment at a flat interface, BE, due to the excess osmotic pressure of the electrolyte, 
as a function of the electrolyte concentration; t = 78.3. 

leads also to an increase dy, in the interfacial tension. The dy, has been cal- 
culated by Buff and Stillinger [36] for flat interfaces on the ground of the 
statistical theory of electrolyte solutions (a comprehensive review of this the- 
ory is available in Ref. [S] ). In particular, Eqn (39.38) in Ref. [8] can be 
presented in the form 

al 

&= 
I 

An(z) de (7.1) 
0 

where -z is the distance from a point in the solution to the flat interface, and 

is an excess osmotic pressure. Here 

U=~KZ u=Z2e”Kexp(--u) 
2tkTu 

(7.2) 

(7.3) 

cf. also Eqns (39.28), (39.31) and (40.4)-(40.6) in Ref. [8]. The symbols K 
and co are the same as those in Eqn (6.12) above. 

As far as we know, for the time being, no generalization of the Buff-Stillinger 
theory [ 361 is available for curved interfaces. Nevertheless, the bending mo- 
ment Bz of a flat interface can be estimated by using Eqns (7.1)- (7.3). Indeed, 
the bending moment of the osmotic pressure distribution dU( z) reads 

03 

B: = - 
I 

dLQ)zdz (7.4) 
0 
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The minus sign reflects the fact that Bz tends to bend the interface around the 
oil (gas ) phase (cf. Eqn (7.2 ) ) . 

The theoretical values of Bz, calculated from Eqn (7.4) along with Eqns 
(7.2 ) and (7.3 ) , are plotted in Fig. 4 as a function of the electrolyte concentra- 
tion cO. It is seen that -B,O increases with the electrolyte concentration and 
equals 0.3 pN at c,=O.5 mol 1-l. Hence in this concentration region, BE is 
much smaller than B, and Bdl. It seems that the electrolyte contribution to the 
bending moment can be neglected, at least when B, FZB~ (for not extremely 
curved interfaces). 

CONCLUDING REMARKS 

The interfacial bending moment B determines the curvature dependence of 
the interfacial tension (see Eqn (2.22 ) or (5.11) ). The limiting value of B for 
a flat interface is simply connected with the Tolman parameter 6,, [ Eqn (2.13 ) 1. 
As in the case of the disjoining pressure [ 501, B can be represented as a sum 
of different components accounting for the contributions of different kinds of 
interactions: electrostatic, van der Waals, steric etc. 

Alternatively, the interfacial bending moment can be expressed as a super- 
position of contributions due to the different components in the system. In the 
case of a typical microemulsion considered in this paper, these are the water, 
the oil, the surfactant, the cosurfactant and the electrolyte (see Eqn (3.12) ). 
The last equation is easily derived by means of consecutive integrations of 
thermodynamic relations of the same type as Eqn (3.2) or (3.6). 

The B, in Eqn (3.12 ) represents the bending moment contribution due to 
the interactions between contacting pure aqueous and oil phases. Hence the 
value of B, is determined by the van der Waals forces. Some estimates show 
that for a liquid-gas dispersion, B, is positive and tends to bend the interface 
around the liquid phase. For a dispersion of microemulsion type, B, as a rule 
is negative and tends to bend around the oil phase. In both cases the magnitude 
of B, can be of the order of 10 pN. Values of B, for different liquid-gas and oil- 
water dispersions are calculated in Ref. [ 221. 

When an ionizable surfactant is present at the interface, the electric double 
layer in the aqueous phase can provide a significant contribution, Bd, to the 
interfacial bending moment (see Eqn (3.16) ). Bd can be of the order of B, 
( z 10 pN) and has a negative sign, i.e. it tends to bend the interface around 
the oil (gas) phase. In general & is a sum of two bending moments, Bst and 
Bdf, generated respectively by the Stern layer and by the diffuse part of the 
electric double layer (cf. Eqn (6.2 ) ) . It turns out that B,, and Bdf are quantities 
of the same order of magnitude for not too low electrolyte concentrations. In 
particular, Bst can be calculated by means of Eqn (5.7) or (5.10)) Bdf by means 
of Eqn (6.15) or (6.17) in the case of low surface potentials and by means of 
Eqns (6.28) and (6.29) for high surface potentials. 
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The degree of dissociation a! of the adsorbed surfactant molecules strongly 
affects the magnitude of &. This problem is discussed in Appendix A, where 
an estimate of (Y for strong electrolytes, Eqn (3.18)) and a model expression 
for (Y, Eqn (A.13), are obtained. 

The bending moment B, due to the interactions between the dipole mo- 
ments of non-dissociated adsorbed molecules, and the bending moment B, due 
to the effective negative adsorption of the electrolyte in the aqueous phase are 
studied in Sections 4 and 7 of the present paper. Both Bdp and B, turn out to 
be of the order of 0.1 pN, i.e. under normal conditions they are negligible com- 
pared with B, and Bdl. 

It is worthwhile noting that all expressions for the different components of 
the interfacial bending moment B are derived in this paper for the equimole- 
cular dividing surface with respect to water. The sign of B and its components 
is related to the conventions [Eqns (2.18) and (2.19) ] for the sign of the mean 
curvature H. 

The results in this paper demonstrate that the total bending moment of an 
interface is a result of interplay of various effects. All of them should be taken 
into consideration and estimated for each specified fluid disperse system. We 
hope the equations for the different components of the interfacial bending 
moment derived in this paper will be useful for a realistic description of the 
size distribution and interactions in microemulsions. 
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APPENDIX A: DEGREE OF DISSOCIATION OF IONIC SURFACTANT MONOLAYERS 

It has been established experimentally [ 42-441 that the degree of dissocia- 
tion cy of ionic surfactant molecules incorporated in a micelle is about 0.2-0.3, 
whereas cy = 1 for isolated monomers in the solution. (In the case of surfactant 
monolayers or aggregates, we accept that (x represents the portion of the ad- 
sorbed surfactant molecules, whose counterions belong to the diffuse part of 
the electric double layer.) This fact implies that the close distances between 
the ionizable surfactant groups in a micelle make the complete dissociation 
energetically unfavorable. The shorter the intermolecular distances, the lower 
the degree of dissociation. If this is true, one can expect that LY for a dense flat 
surfactant monolayer should be even lower than (x for a micelle. An estimate 
of this effect is proposed below. 

Let us consider a flat surfactant monolayer situated at the plane X= -d (Fig. 
Al), where d is the distance of closer approach to the surface of a counterion 
belonging to the diffuse electric double layer. We are interested in the coun- 
terion distribution in a close vicinity of the plane x=0. That is why it is con- 
venient to choose 

$=O atx=O (A.1) 

( $I (x) is the electrostatic potential). Then the linearized Poisson-Boltzmann 
equation reads 

(A.2 1 

Fig. Al. Surfactant monolayer adsorbed on a flat interface. z = -d is the plane where the polar 
heads of the surfactant molecules are situated; z = 0 is the plane on which counterions of closest 
approach are situated, 2ri is the diameter of a counterion. 
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where 

(A.3) 

(A.4) 

where cy and cz are the concentrations of the counterions and of the co-ions 
at the plane x = 0, respectively; it is assumed that we deal with a symmetrical 
2 - 2 electrolyte, where Ze is the charge of a counterion (2 k 1, k 2, . . . ) . The 
solution of Eqn (A.2) along with the boundary conditions (A.1 ) and $ < co at 
x+ 00 reads 

@(x)=gC(l-esp(-lcor)) 

By substitution from Eqn (A.5) into the electroneutrality condition 

3 47rd =-p 
dx E 

x=0 

one obtains 

~[~o=-~ 

where 

b= - Uer, 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

is the surface charge density. The elimination of x0 and 6 in Eqn (A.7) by 
means of Eqns (A.3) and (A.8) yields 

co +co =4n(ZeCF 
1 2 

ckTc2 
(A.91 

Since cy and c: are the ion concentrations close to the charged monolayer, one 
has cy >> c$ at sufficiently large 5. Then Eqn (A.4) gives [z 1, whence Eqn 
(A.9) reduces to 

CYM 
4n(ZeaTs)2 

EkT 

However, from Fig. Al it can be seen that 

(A.lO) 

ar 
cy<--p 

2Fj 
(A.ll) 
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where ri is the radius of a counterion. The combination of Eqns (A.lO) and 
(A.ll) yields Eqn (3.18). 

Equation (3.18) provides an upper limit for the magnitude of the interfacial 
charge density. Indeed, from Eqns (3.18) and (A.8) one easily obtains 

l-1 “< ckT 

e -8~e2)Z)ri 
(A.12) 

With ri=2 A, e=78.3, T=298K and Z=l, Eqn (A.12) yields lb/e] 12.7. 
1013 cme2. It should be noted that the right-hand side of Eqn (A.12) does not 
depend on r,. In accordance with Eqn (3.18) the dependence of the upper limit 
of the degree of dissociation, ay,, on r, can be represented in the form 

where 

PS = 
ckT 

8d2e2ri 

Equation (A.13) is used for estimating some integrals in the text. 

(A.13) 

(A.14) 

APPENDIX B: ON THE ELECTROSTATIC FIELD OF AN INNER SPHERICAL 

DIFFUSE DOUBLE LAYER 

The Poisson-Boltzmann equation for spherical symmetry and Z-Z sym- 
metrical electrolyte can be written as 

d2y 
d(w)2 

+L dy -=sinh y 
icr d(m) 

where 

ZeY -- 
‘- kT 

(B.1) 

U3.2) 

and IC is given by Eqn (6.12 ) . In general 

Il/= V(xr,R,) (B.3) 

where R, is the radius of the sphere enveloping the diffuse electric double layer 
inside the drop (cf. Fig. 2). w is supposed to satisfy the boundary condition 
[Eqn (6.7) ] and this is the source of the dependence on RI in Eqn (B.3). 
Following the approach developed in Refs. [19,49] one can introduce the 
function 

dv Wy(m,R1),xrl =- 
d(m) 

(B.4) 
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By substituting from Eqn (B.4) in Eqn (B.l) one derives [ 19,491 

(B.5) 

For large Icr one can seek H in the form of an asymptotic expansion [ 19,491 

Then a standard procedure of substituting H from Eqn (B.6) in Eqn (B.5) 
yields equations for the coefficient functions [ 191 

(B.7) 

etc. Overbeek et al. [19] integrated Eqn (B.7) along with the boundary 
condition 

G(wrn) =O (B.8) 

where cy, is the dimensionless potential in the middle of the spherical drop. 
We deem Eqn (B.8) not to be the right boundary condition. Indeed, the series 
(B.6) represents an outer asymptotic expansion satisfying the outer boundary 
condition [ Eqn (6.7) ] ( see Ref. [51] for the theory of the asymptotic expan- 
sions). Hence the series (B.6) cannot satisfy the inner boundary condition in 
the middle of the sphere where m= 0. (The inner boundary condition is to be 
satisfied by an inner asymptotic expansion for small m- and then v/m can be 
determined by matching of these two expansions.) 

To overcome this difficulty, let us look again at the left-hand side of Eqn 
(B.4). At fixed m, y can vary only because of its dependence on R,. Then the 
variation in ry in Eqn (B.7) is connected with some variation in R,. For l/ 
RI+0 the electrolyte solution inside the drop (at a fixed finite m) becomes 
identical with the reference solution. Since the latter has potential v/=0, one 
can write 

C,(y/=O) =o (B.9) 

Equation (B.9) is to be used as a boundary condition instead of Eqn (B.8) 
when solving Eqn (B.7). 

In their calculations, Overbeek et al. [ 191 have supposed that v/m << 1 and 
have neglected v/m. This procedure is equivalent to the use of the boundary 
condition (B.9). Hence Eqn (6.24), derived in Ref. [ 191, turns out to be a 
correct asymptotic expansion. It was utilized by us in Section 6 when consid- 
ering the interfacial bending moment due to an electric double layer inside an 
aqueous drop. 


