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The disjoining pressure approach for describing a thin liquid film as a liquid layer of finite and variable 
thickness is applied to dynamic curved films. The results, which are obtained without making any as- 
sumptions about the form of the real stress tensor, are applicable to films with both uniform and uneven 
thickness. The surface stress tensors of the film surfaces are expressed by integrals over the components 
of the bulk stress tensor. The balances of the linear and angular momenta at the film surfaces are derived 
from the respective balances in the bulk phases. The results show that a vectorial disjoining pressure, II, 
must be included in these balances. It can be represented as a sum of static and dynamic parts each 
having normal and tangential components about the reference surface of the film. It is shown how the 
derivedgeneral equations (which serve as boundary conditions for thethree-dimensionaldynamic problem ) 
simplify for some specific cases and how they are connected with the respective equations derived previously 
by other authors. © 1990 Academic Press, Inc. 

1. I N T R O D U C T I O N  

As po in ted  out  in some previous  studies on 
thin  films ( 1-3 ), a curved thin  l iquid film can 
be represented  by  means  o f  a m e m b r a n e  o f  
zero thickness  with its own ( f i lm)  tens ion 3,. 
This  m o d e l  is somet imes  called " the  m e m -  
brane  mode l . "  On  the o ther  hand  the film can 
be represented  also as a homogeneous  bu lk  
phase o f  finite th ickness  h;  this is the "de ta i led  
m o d e l "  o f  the  film. The  mos t  essential  feature 
o f  this mode l  is tha t  ins tead  o f  a single m e m -  
brane tension (as in the m e m b r a n e  approach) ,  
the mechan ica l  state o f  the system is charac-  
terized by two surface tensions (corresponding 
to the  two surfaces o f  the f i lm) and  by  an  ad- 
d i t ional  (d i s jo in ing)  pressure inside the film. 
The  dis jo in ing pressure was first measured  by  
Der jaguin  and  Kussakov  (4 )  in exper iments  
with solid plates.  T h e r m o d y n a m i c  def ini t ion 
o f  the  film surface tensions  was given by  Ru-  

To w h o m  correspondence  should  be addressed. 

sanov ( 1 ) and  a hydros ta t ic  def ini t ion for flat 
films by  Toshev  and  Ivanov  (5) .  A compre -  

hensive review can be  found  in Refs. ( 6 - 9 ) .  
In  general ,  the  film surface tens ions  differ 

f rom the interfacial  tens ions  be tween the re- 
spective bulk  phases. Moreover ,  when the film 
surfaces are no t  parallel ,  the  film surface ten- 
sions and  the dis jo ining pressure depend  also 
on  the pos i t ion  at the film surface ( 10, 11 ). 

I t  is i m p o r t a n t  to note  tha t  two var iants  o f  
the deta i led  film mode l  can be d is t inguished 
in the l i terature  ( 12, 13). In  the  first var iant ,  
cal led " the  body  force approach , "  the  inter-  
ac t ion  be tween the film surfaces is accoun ted  
for by  in t roduc ing  an add i t iona l  " b o d y  force"  
t e rm in the  N a v i e r -S toke s  equat ion .  In the  
second var iant  the in terac t ion  be tween  the 
surfaces o f  the  film is i nco rpora t ed  into  the 
b o u n d a r y  cond i t ions  o f  the  usual  N a v i e r -  
Stokes equat ion.  This  last approach,  which  is 
called " the  d is jo in ing pressure  approach , "  is 
fol lowed in the  present  paper .  
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CURVED INTERFACES, THIN FILMS, AND MEMBRANES 235 

The purpose of this paper is to extend the 
disjoining pressure approach to the general 
case of  dynamical (draining) films with curved 
nonparallel surfaces. As in the previous part  
of  the present series, all macroscopic relations 
at the film surfaces are derived from the re- 
spective relations in the bulk phases and thus 
explicit expressions for the film excess param- 
eters are obtained. Since the film surface ten- 
sions and the disjoining pressure are the most 
specific and important  effects in this case, we 
have simplified the treatment by neglecting the 
inertial terms (low Reynolds '  number)  when 
deriving the balances of  the linear and angular 
momen ta  at the film surfaces. 

It is expedient to illustrate first the basic 
ideas with the example of  a static spherical 
thin liquid film (for more details see Ref. 
(14)) .  In the membrane  model this film is 
considered as a single membrane  of radius ro, 
which intervenes between the two bulk phases 
(I)  and ( II ). For example, r0 can be the radius 
of  the surface of tension (see Ref. (9)) .  Alter- 
natively, in the detailed model one introduces 
an idealized system consisting of the bulk 
phase (I)  with pressure P~ (lying within rx 
< r < k-), bulk phase (II)  with pressure pn  
(within f <  r < ru) and a reference phase (R)  
with pressure pR (within f < r < ?) (Fig. 1 ). 
The film is therefore represented as a spherical 
layer of  the phase (R)  of  thickness h = ? -  F. 
The spheres of  radii k-and f are called "film 
surfaces". (Note that F <  r0 < ?.) 

The nonisotropic pressure tensor in the real 
interfacial region can be expressed ( 15, 16) as 

__P = PNerer + PT(eoeo + %%), [1.1] 

with er, e0, and e~ being the unit vectors of  the 
local basis in spherical coordinates. Then one 
can define the surface tensions ~ of  the upper 
film surface and ~ of  the lower film surface by 
using the following procedure. (i) The spheres 
of  initially arbitrary radii r = f and r = k-(?- 
< ~ are the Gibbs dividing surfaces. They are 
situated on either side of  the surface of tension 
(in the membrane  model)  of  radius ro, which 
is now called the "reference surface." (ii) An 

~ rII 

~ ' - " - ' - - " ' ~  r I r 

FIG. 1. Scheme of a spherical film, represented as a 
layer of the phase R with thickness h = f -  f. The vertical 
line represents the section of the imaginary strip used to 
define the surface tension a of the upper film surface at r 
= f(see text). 

imaginary sectorial strip, which has infinites- 
imal width but macroscopic length, YI1 - -  to, is 
located orthogonally to the upper Gibbs di- 
viding surface (see Fig. 1 ); a similar strip of  
length r0 - r~ is orthogonal to the lower surface. 
(iii) The conditions for equivalence between 
the real and the idealized systems with respect 
to the total force and force momen t  acting on 
the sectorial strips determine the radii of  the 
film surfaces and the surface tensions; for the 
upper film surface these are (14) 

~r0 [I a~ = ( P -  PT)rdr, 

f 
l 

a72 = ( / 5_  PT)r2dr, [1.21 

where 

ff = PIO(F-  r) + pR[O(r - -  F) -- O(r-- O] 

+ PnO(r - ~ ,  [1.31 

with 

O(x)--O for x < 0 ,  

= 1 for x > 0 ,  [1.4] 

is the pressure in the idealized system. The 
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236 KRALCHEVSKY AND IVANOV 

same procedure, applied to the lower film sur- 
face with radius r = ~, yields 

grV = ~ o  ( f i  _ Pw)rdr, 

ar  2 = fro ( f f  _ PT) r2dr. 

[1.51 

The radii f and ?, thus introduced, define the 
surfaces of tension for the two interfaces be- 
tween the film and the adjacent phases (I) and 
(II). It should be noted that the four quantities 
or, a, r, and fdepend on the reference pressure 
pR. That is why to different choices o f P  g cor- 
respond different model systems. When the 
film is in contact with a bulk liquid it is con- 
venient to use the pressure in the liquid as a 
reference pressure pR (see, e.g., Ref. (11 )). 
The dependence of the film surface tensions 
on the choice o f P  R was discussed in Ref. (9).  

Since we consider now a static system, the 
condition for mechanical equilibrium in the 
real system is V. P = 0. In view of Eq. [1.1] 
this condition takes the form ( 15, 16) 

d(r2pN) 
d( r  2) - Px. [1.6] 

The integration of Eq. [1.6] yields 

r2pN(ro) - r~P I = 2 f£o Pxrdr. [1.71 

Here we have made use of the fact that the 
distance r0 - r~ is large enough so that PN(r I )  
= P~; similarly pn(r l i  ) = p n .  Having in mind 
Eq. [1.3 ] one can eliminate r~P I between Eq. 
[1.7] and the first of Eqs. [1.5]. The result 
reads (14) 

r0 2 ~ _ p ~ _ p R _ [ p N ( r o ) _ p R ] ~ 5 .  [1.8] ?- 

For the upper film surface one analogously 
derives 

ro 
2~ _ pR _ pn  + [PN(r0 ) _ pR] ~5- [1.9] 
? 

The quantity 

II = PN(ro) -- pR [1.10] 

appearing in both Eqs. [1.9] and [1.10] was 
termed in Ref. (14) the disjoining pressure of  
the spherical film. According to this definition 
the disjoining pressure II is connected with 
the total pressure tensor P and therefore II 
accounts for all kinds of interactions in the 
film: van der Waals forces, electrostatic forces, 
etc. Eq. [ 1.10 ] shows that II can be calculated 
from the value of PN on the reference surface 
r -- r0; note that PN(r0) can be expressed 
through integrals over the intermolecular po- 
tentials and the pair correlation functions (see, 
e.g., Eqs. [34.6]-[34.8]  in Ref. (16)).  It is 
worth noting that the disjoining pressure ap- 
pears because the component  PN of the pres- 
sure tensor at the reference surface in the real 
system is different from the pressure pR in the 
idealized system. Such a term does not appear 
in the membrane model, because then the 
limits of integration are always taken to be in 
the bulk phases, where the pressures in the 
real and the idealized systems are the same 
(see, e.g., Ref. (16)) .  The disjoining pressure 
term can be eliminated if one chooses pR 
= PN(r0) but such a choice has many incon- 
veniences (9). 

Since the disjoining pressure acts normally 
to the reference surface, one can write a vec- 
torial version of Eq. [ 1.10 ] : 

II  = n ' ( p - -  pRU)lr:ro,  [1.11] 

where U is the three-dimensional idemfactor 
and n is an outer unit normal to the reference 
surface. 

The substitution of Eq. [ 1.10 ] in Eqs. [ 1.8 ] 
and [1.9] leads to 

2~ pI pR II r2 

2a p R _ p n + H  r2 
7 = ~ .  [1.12] 

These two equations can be interpreted as 
normal force balances at the two film surfaces. 
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Indeed, imagine a surface element of area 2xA 
on the reference surface r = r0. The orthogonal 
projection of this element onto the film surface 
r = k-(or r = r") is of  area 2xAi-2/r~ (or 
2xA72/r2o). The disjoining pressure, 11, as de- 
fined by Eq. [1.10], can be interpreted as an 
excess force per unit area acting on the refer- 
ence surface. The terms Iir2/72 and IIr2/~ 2 
in Eqs. [1.12 ] are the orthogonal projections 
of this force on the film surfaces r = ?-and r 
= ~, respectively. 

The first Eq. [ 1.12 ] shows that the pressure 
drop PX - pR across the lower film surface and 
the interaction between the film surfaces is ac- 
counted for by two terms: the curvature term 
2a/~-(in which the surface tension a, because 
of the interaction between the film surfaces, 
will be different from the surface tension of a 
drop of the same radius) and the disjoining 
pressure term I Ir2/ f  z. Analogous interpreta- 
tion holds for the second Eq. [1.12]. 

In the above, we chose the surface of tension 
of the film, r = r0, as a reference surface. How- 
ever, in the general case the role of reference 
surface could be played by any spherical sur- 
face lying inside the film region. Hence, the 
disjoining pressure depends both on the choice 
of the reference pressure pR and on the choice 
of the reference surface. However, once the 
choice of  the idealized system has been made, 
II has a well-defined value for any given phys- 
ical state of  the real system. 

We will show below that a vectorial defi- 
nition of the disjoining pressure, as in Eq. 
[1.11], is valid not only for a spherical film, 
but for any film of arbitrary curvature. Al- 
though mathematically the treatment of an 
arbitrarily curved film is much more compli- 
cated, the basic ideas are the same as outlined 
above for a spherical film. In the next section 
we will derive expressions for the excess stress 
tensor at the film surfaces. In Section 3 the 
surface momentum balances are derived. The 
linear momentum balances, Eqs. [ 3.16 ] and 
[ 3.17 ], which connect the surface and bulk 
stress tensors and the vectorial disjoining 
pressure, are general boundary conditions for 

the solutions of the equations of fluid motion. 
The angular momentum balance defines the 
positions of the film surfaces. In the last section 
the physical meaning of  some results is dis- 
cussed and several simplified forms of the 
general surface momentum balance equations 
are obtained. 

2. SURFACE TENSIONS OF A DYNAMIC 
CURVED FILM 

Let us consider a dynamic curved thin liq- 
uid film of variable thickness situated between 
two fluid phases (I) and (II). We suppose that 
the total stress tensor, _T_(r), and the density 
distribution o(r)  are known and are contin- 
uous functions throughout the real system. For 
example, they can be calculated by means of 
the methods of statistical mechanics (see, e.g., 
Ref. (16)) .  As in the analysis of single inter- 
faces (9) the total stress tensor T is supposed 
to be a symmetric tensor, which can be rep- 
resented as superposition of the pressure tensor 
_P and the tensor of viscous stresses Q: 

T = -_P + Q_Q. [2.11 

Let us now introduce an idealized system 
in which the film is considered as a layer from 
the reference phase (R) enclosed between two 
curved dividing surfaces, which represent the 
surfaces of the film. In other words, the de- 
tailed model is used. The three phases (I), (II), 
and (R) of the idealized system preserve their 
bulk properties up to the dividing surfaces. 

In order to give mathematical description 
of the system let us choose a reference surface 
located somewhere inside the film; for example 
the surface of tension of the film can serve as 
a reference surface. Then let (u 1, u 2) be cur- 
vilinear coordinates at the reference surface, 
let R (u 1, u z) be its running radius vector, and 
let n(u 1, u z) be the running normal to the 
reference surface. One can introduce curvilin- 
ear coordinates (u 1, u 2, X) in the space by 
means of the equation ( 17, 19) 

r (u  1, u 2, X) 

~- R(L/1 ,  1l 2) %- ) k n ( u  1, L/2), [2.2] 
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238 KRALCHEVSKY AND IVANOV 

where r is the radius vector of an arbitrary 
point in the space and X is the distance from 
this point to the reference surface. Further, let 
the equations of the dividing surfaces for the 
film be 

X = ( ( u  1,u 2) and )~= ~(u 1,u2); [2.31 

here and hereafter the symbols " - "  and ..... 
denote quantities referring respectively to the 
lower and the upper film surface (Fig. 2). Since 
there are three separate model bulk phases in 
the idealized system one can express the mass 
density profile, ~, and the stress tensor, -_T, there 
as follows: 

pi for )k 1 < )k "Q (, 

~ =  pR for f < X < ~ : ,  

p~I for ~ : < X < X 2 ,  

h:hz 

(II) 

(R) 

dl 

(R) 

Lr) 

FIG. 2. A sectorial strip associated with a length element 
dl in the reference surface, dfand d/are the common 
length elements of the sectorial strip with dividing surfaces 
representing the lower and the upper film surfaces, n, fi, 
fi and p, ~, ~ are unit normals to the corresponding surfaces 
or line elements. 

I 
_T ~ for X ~ < X < f ,  

x2= T_ ~ for f < x < ( ,  [2.41 

T lI for ( < X < X 2 ,  

where the superscripts refer to the respective 
bulk phases. Instead of Eq. [2.1 ] in the ideal- 
ized system one has 

_TY=-PPr+  _Q y, Y = I ,  II, R, [2.51 

where the pressure tensors P r are isotropic: 

P ~ = P Y U ,  Y = I ,  II, R. [2.6] 

The curvilinear coordinates (u 1, u:)  on the 
reference surface along with Eqs. [2.2] and 
[2.3] generate curvilinear coordinates on the 
film surfaces: 

f i  : r ( u  l, U 2, ~=(U 1, u2) ) ,  

= r ( u  1, U 2, ~:(U 1, H2)). [2 .7]  

Here R and [I are the running radius vectors 
of the two film surfaces. The respective surface 
basic vectors are 

0R 0R 
~ Ou'~ , ~, Ou '~' o~ = 1, 2. [2.8] 

In order to make up for the differences be- 
tween the stresses in the real and in the ideal- 
ized systems one must introduce surface stress 
tensors _~ and _~ at the surfaces of the film. If 
d[is  a length element on the upper dividing 
surface and ~ is the unit normal to d[(~ is also 
tangential to the upper dividing surface), 
r,.~-d[ is the force exerted on the element 
d[. The vector ~. _~ could have nonzero pro- 
jection along the normal fi to the upper film 
surface. This means that the matrix of~ in the 
local basis formed by the vectors al, a2, and 

reads 

k O{  ~11 TI2 ~13 ) 
(_r ) :  / r :1  r22 r23 [2.9] 

0 0 

with 

~,~ = ~ ._~ .~e ,  

~ ,3=ha '~_ ' f i ,  oz,/3= 1,2. [2.10] 
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In other words, if  

U--n = U_ - tiff [2.111 

is the idemfactor at the upper film surface, then 

f i . ~ = 0 ,  ~ n ' ~ = ~ .  [2.12] 

Of  course, analogous relationships hold for the 
lower film surface. 

Let us consider an elementary arc d l  on the 
reference surface and let AA~ be the corre- 
sponding sectorial strip normal to the reference 
surface (see Fig. 2). It was proven by Eliassen 
(17) that the vectorial surface element ds of  
a sectorial strip can be expressed as 

ds  = v" L_dldX, 

L_ = (1 - 2)tH)UII -t- )t b, [2.131 

where _UII, b = -Vnn ,  and H are respectively 
the idemfactor, the curvature tensor, and the 
mean curvature of  the reference surface. The 
condition for equivalence between the real and 
the idealized systems with respect to the force 
acting on the sectorial strip, applied to the 
lower (X~ < X < 0) and to the upper (0 < X 
< X2) parts of  the system separately, provides 
the following equations (cf. Fig. 2): £o 

d[~,.~_ = d l v .  d X L - ( T -  T ) ,  [2.141 
I 

d[~,..? = d l v .  dXL_.(T_-T_); [2.15] 

here d [ ( d D  is the com m on  arc of  the lower 
(upper)  film surface and the sectorial strip, 
and ~ (~) is the normal to this arc lying in the 
respective film surface. Eqs. [ 2.14 ] and [ 2.15 ] 
are the conditions for equivalence by force be- 
tween the real and the idealized systems. 

The conditions for equivalence between the 
real and the idealized systems with respect to 
the force moments  acting on the sectorial strip, 
applied to the lower and to the upper parts of  
the system separately, provides two more 
equations: 

df~,. i  X R 

= d & .  dX_L.(T - ~_) × r, [2.161 
1 

= d l v .  dXL_.(T_- ~_) × r, [2.171 

In order to obtain from Eqs. [2.14] and 
[ 2.15 ] explicit expressions for ~_ and ~ we need 
some additional mathematical  formulae. We 
will consider first the upper film surface. By 
means of the known relations ( 17, 18) 

OR On 
[2.181 Ou ~ Ou ~ aeb-  

one obtains from Eqs. [2.2], [2.7], and [2.8] 

f~ = a~(a~ - ~:b~) + n ~ ,  [2.19] 

where a e (/3 = 1, 2) are the vectors of the co- 
variant surface basis on the reference surface 
and b~ are the (mixed)  components  of  the 
curvature tensor b. Then the covariant com- 
ponents of  the metric tensor of the upper film 
surface are 

8~e =-- fi~" fie = (1 - (2K)a~e 

- 2Sa(1 - (H)b,~e + (,,~(.e. [2.20] 

Here we used the equation of Gauss: b,<,b~ 

= 2Hb,~ e - Ka,~e with a ~  and K being the co- 
variant metric tensor and the Gaussian cur- 
vature of  the reference surface (see, e.g., Ref. 
(18)). The antisymmetric e-objects are defined 
in the following way ( 18): 

ell = e22 = 0, e12 = --e21 = 1 

e I I  = e 22  = 0 ,  e 12 = --e 21 = 1. 

Then the determinants of  the metric tensors 
a~v and d~v are 

a = l e ~ e ~ a a ~ a ~ ,  

= ½ e~Ve~e~v~.  [2.21] 
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From Eqs. [2.20] and [2.21 ] one easily obtains 

--a = X 2 ( f f )  --~ { [ ( 1  - -  2~:H) 2 - (2Kla  '~e 
a 

+ 2~:(1 - ~H)b'~}(, ,~,~, [2.22] 

where 

x(X) = 1 - 2XH + X2K. [2.23] 

The standard definitions of the surface alter- 
nators are (18) 

, .~  = ~ e . ~ ,  Le = Vae.~, 

e~ e~ 
~ - ~ = - -  [2.24] 

One can show that the contravariant com- 
ponents of the metric tensor at the upper film 
surface are 

a {[(1 - 2~:H) 2 - ?2K]a '~ =a 

+ 2~:(1 - ( H ) b  '~e + e"re~a~,~a}. [2.25] 

Then the contravariant basis at the upper film 
surface can be easily determined from the 
equation 

fi~ = fi~efi e. [2.26] 

Since d u " / d l  are the components of the unit 
tangent to the arc d!  in the reference surface, 
one can write 

du B 
vdl  = a"v~dl = a~e~ ~ d l  

= a~e~du ~ [2.27 ] 

and similarly 

kd[  = fi~g,adu ~ = ( fi/  a) l/2fi~ e,adua; [2.28] 

at the last step we used Eq. [2.24]. The sub- 
stitution of Eqs. [2.27] and [2.28] in Eq. 
[2.15 ], in view of  the arbitrariness o fd l ,  leads 
to 

~t~.~_ = (a /~ ) l /2a  '~" dXL. (T_ - T ) .  

[2.291 

Moreover, it is known (17) that ~I I  = t~a,8 fiat-t3. 
Then having in mind Eq. [2.12] one finally 
obtains 

where 

X2 

_~ = d?,__L. (T  - ~ ) ,  [2.301 

= (a/a)l/ZG;311'~a~" L_L_; [2.311 

(cf. also Eqs. [2.13], [2.20], [2.22], and 
[2.26]). For the lower film surface one simi- 
larly derives 

f _~ = dX~_- (T - ~_), [2.32] 
I 

where _L is given by Eq. [2.30] with " - "  instead 
of ..... . 

Equations [2.30] and [2.32] are the defi- 
nitions of  the tensors of the film surface stresses 

and ~. They have similar form to the defi- 
nition of the film (interfacial) stress tensor z 
in the membrane model (see e.g. Eq. [3.24] 
in Part I).  In view of  Eqs. [2.1] and [2.5] 
and i can be represented as sums of  an elastic 
(a or _~) and a viscous (_r (v) or i (v)) part: 

7 = ~ + ~ ( v ) ,  ~ = ~ + ~ ( v ) ,  [2.33] 

with 

f = d A L - ( P  - P) ,  
1 

f ~(v) = d~-  L ( Q  - Q) ,  [2.34] 
I 

f, = d X L . ( P  - P ) ,  

£2 
i (v)= d X L . ( Q - Q ) .  [2.35] 

The elastic parts, ~ and b ,  are the tensors of  
the film surface tensions. 

In the limiting case of  an equilibrium 
spherical film Eqs. [2.30] and [2.17] reduce 
to Eqs. [1.2] and Eqs. [2.32] and [2.16] reduce 
to Eq. [1.5]. By analogy with the case of a 
spherical film one can conclude that the di- 
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riding surfaces, introduced in the present sec- 
tion, are the surfaces of tension of a dynamic 
curved film. Indeed, they were defined from 
the conditions for mechanical equivalence 
(with respect to the forces and force moments) 
between the idealized and the real systems. 

3. BALANCES OF THE LINEAR AND 
ANGULAR MOMENTA AT THE 

FILM SURFACES 

(a) Balance of the Linear Momentum 

If the inertia terms are negligible, the bal- 
ance of  the linear momentum in the real sys- 
tem reads 

V.  T + of = 0. [3.1] 

Here p is the total fluid mass density and f is 
the acceleration of an external mass force 
(gravitational or centrifugal). The respective 
equations for the three model bulk phases, I, 
II, and R, of  the idealized system read 

V .  T__ Y + o f f  = 0,  Y = I, II, R. [3.21 

Our purpose now is to find some of the 
boundary conditions which the solutions of 
Eqs. [3.2] must obey at the film surfaces X 
= f ( b / 1 ,  U 2 )  (between the phases (I) and (R))  
and X = ~(u l, u 2) (between the phases (R)  
and (II)) in the idealized system. Let A be an 
arbitrary parcel from the reference surface and 
let us consider a cylinder built on A, as shown 
in Fig. 3. The cylindrical surface, which is a 
superposition of sectorial strips like that in Fig. 
2, cuts offtwo parcels, A and.4, from the lower 
and the upper film surfaces. The bases X = Xl 
and X = ~k 2 of the cylinder are thought to be 
far enough from the film for the condition 

(T_ - T-)Ix-x, : (T_ - ___)Ix=x2 = 0 [3.3] 

to hold. However, if the thickness of the film 
is small enough, the stress tensor in the real 
system T at X = 0 (at the reference surface) 
will be different from the reference stress tensor 
T R, just like the normal component  of the 
pressure tensor PN (r0) does not coincide with 
the reference pressure pR at the surface often- 

FIG. 3. A cylinder associated with the area A on the 
reference surface used for deriving the balances of mo- 
menta at the film surfaces (see text), n, ~, and fi are unit 
normals to the respective surfaces. 

sion r = r0 (see Eq. [1.10]). Therefore, in the 
general case at the reference surface X = 0 we 
have 

(T - T-)l~-0 # 0. [3.4] 

Let V ÷ be the upper part (at 0 < 2, < X2) 
of the cylinder in Fig. 3 and let A? be the total 
surface of V ÷. Then the integration ofEq. [ 3.1] 
yields 

f ds. Y_+ fv dVpf=O, [3.5] + + 

where ds is the vectorial surface element and 
we have used the Gauss theorem. From Eq. 
[3.2] one can derive in the same way two 
equations of the type of Eq. [ 3.5 ] for the two 
parts of V ÷ for the idealized system (the lower 
part, below A, is filled with phase (R) and the 
upper part, above A, is filled with phase (II)).  
By summing up these two equations one finds 
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that in the idealized system instead ofEq. [ 3.5 ] /"  
one has Ja dAn. (T - ~ ) 

~+ ds-  T~ + JA daft" (_T R - -  T t I )  

p 

+ f dVbf=O.  [3.6] 
dv + 

Let A { be the lateral surface of  the volume 
V ÷. Then the subtraction of  Eq. [3.6] from 
Eq. [3.5], along with Eq. [3.3], leads to 

i~ds ' (T__-  ! ) -  f A d A n ' ( T -  q£) 

- fA drift" (T_ ~ - T H ) 

+ f v + d V ( p -  ~)f=O" [3.7] 

We will represent now, by means of known 
integral theorems, all terms in Eq. [ 3.7 ] as in- 
tegrals over A. Let C and C be the contours 
encircling A and A. Then, one finds from Eqs. 
[2.13 ] and [2.15 ] for the first term in Eq. [ 3.7 ] 

i f0 d s . ( T -  T ) =  dh,. L.(_T - T_) 

where Vn and 9n are the surface gradient op- 
erators for the upper and lower film surfaces 

~ I I  = ~a 0 ~1I  = ~ - - 0 .  [3.9] 
Ou ~ ' Ou ~ 

On the other hand, 

dA = al/2duldu2 

= (a/~)l/2~l/2duldu 2 

= (a/~)WZdA. [3.10] 

Then the second integral in the left-hand side 
of  Eq. [3.7] becomes 

I"  
--Jd dAII(a/a)l/2' [3.11] 

where we have introduced the notation 

II = n . ( ~ -  T)tx=0. [3.12] 

Using the curvilinear coordinates [2.2] one 
can represent the volume element d V in the 
form (19) 

dV= xdXdA, [3.13] 

where the factor X is determined by Eq. [2.23 ]. 
Then by means of  Eqs. [3.10] and [3.13] one 
can write the last term in Eq. [3.7] as 

f v + d V ( p -  p)f  = fAdA foX2dXx(p- o)f  

= ~ dAFf, [3.14] 

where by definition 

= (a/a) 1/2 fo x2 (fi -- ~)xdX, 

1 fo x2 = -~ ( a / a )  1/2 (p -- ~) f xdX. [3.15] 

I" can be interpreted as mass adsorption at the 
upper film surface. Indeed 

Then f is the effective acceleration of the ex- 
ternal mass force. (If  f = g = const is the ac- 
celeration due to gravity, one obtains from Eq. 
[3.15] f = g.) 

The substitution of  Eqs. [ 3.8 ], [ 3.11 ], and 
[3.14] in Eq. [3.7], in view of the arbitrariness 
of A, yields the local balance of the linear mo- 
mentum at the upper film surface: 
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VII" ~ - -  n ° ( ~  T R  --  T~-II)[x=( 

+ (a/d)l/2II + ~{ = 0. [3.16] 

The respective balance at the lower film sur- 
face, whose derivation is quite similar, reads 

VlI ~_ ~ •  ( T I  R • - - T )[~=~ 

- ( a / d ) w z I I  + F f  = 0 ,  [ 3 . 1 7 ]  

where 

f = ( a / a )  1/2 (p  -- ~ ) x d k ,  
1 

, f f = ~ (a/a) w2 (P - ~) fxdk.  
1 

The term with II in Eqs. [ 3.16 ] and [ 3.17 ], 
whose appearance is a consequence of the re- 
lationship [3.4], is the only term without 
counterpart in the membrane model (cf. Eq. 
[228] in Ref. (9)). In fact, Eq. [3.12] is the 
most general definition of the disjoining pres- 
sure, which reveals the vectorial excess nature 
of this quantity. It follows from Eqs. [2.1], 
[2.4], and [2.5] that it consists of a hydro- 
static, II (s), and of a purely viscous part II (~)- 

II = II (~) + II (~), [3.18] 

II (s) : n . ( e  - pRU)Ix=o, 

1I (v) = n - ( Q  - Q ) l x = o .  [ 3 . 1 9 ]  

Obviously the disjoining pressure in an equi- 
librium system contains only the term II (~). 

A geometrical interpretation of the factor 
(a/d) ~n, multiplying II in Eq, [3.16], follows 
from Eq. [3.10]. Indeed, it is clear from Eq. 
[ 3.10 ] that ( a /~ )  ~/~ is the factor of extension 
when projecting orthogonally an element dA 
from the reference surface over the upper film 
surface. Another representation of (a/d) in, 
sometimes useful in applications, can be ob- 
tained by observing that (cf. Eq. [2.24] ) 

n .  fi = n -  (½~'~fi,~ × fi~) 

= ½(al~t)~12e'mn.(fi,~ X fi/3)- 

Along with Eq. [ 2.19 ], after some algebra one 
thus finds 

(a/a) 1/2 = (n - f i ) /X(0 ,  [3.20] 

where X is defined by Eq. [2.23]. 

(b) Balance of the Angular Momentum 

The balance of the angular momentum at 
the film surfaces can be derived similarly to 
the balance of the linear momentum from the 
respective balances in the bulk phases of the 
real and of the idealized systems. Since the 
balance of the angular momentum in a bulk 
fluid phase requires that the stress tensor must 
be symmetric, the tensors T and T must obey 
the identities 

(V- T)  X r = V . ( T  X r), 

(V. T_r) X r = V.(T_r X r), Y = I, II, R. 

Then Eqs. [3.1] and [3.2] yield 

V . ( T X r ) + p f X r = 0  [3.21] 

XT.(T__r× r) + o f f ×  r = 0, 

Y : I ,  II, R. [3.22] 

Following the procedure used above to derive 
Eqs. [3.5] and [3.6], one obtains from Eqs. 
[3.21] and [3.22] 

fA ds-(_T×r)+fv d V p f × r = O [ 3 " 2 3 ]  + 

and 

{ d s . ( T  X r ) +  I_ dAf t ' ( _  T R -  TII) × f ~  

dA t + dA 

+ a v f + d V ~ f X r = O  [3.24] 

(cf. also Eqs. [ 2.4 ] and [ 2.7 ]). The subtraction 
of Eq. [3.24] from Eq. [3.23], along with Eq. 
[ 3.3 ], leads to the integral angular momentum 
balance: 
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L d s . ( T - ~ ) X r - L d A n . ( T - T )  
t 

X R - L daft" (_T R - __T II)  X 

+ f v + d V ( p - h ) f X r = O .  [3.251 

Again we will transform all terms in Eq. [ 3.25 ] 
into integrals over A. By means of Eqs. [2.13], 
[2.17], and some known integral theorems the 
first term becomes 

A; ds .  (__T - ~_) X r 

= d b .  _ L . ( _ W - i " ) X r  

= fc di~. (~_ x f~) 

= f~idAfTn.(~ X [!). [3.26] 

The second integral in Eq. [3.25] can be 
transformed by means of Eqs. [3.10] and 
[3.12]: 

f d A n . ( T -  ~)  × R 

= L d'd(a/a)l/2II X R. [3.27] 

By using Eqs. [2.2], [3.13], and [3.15] one 
obtains for the last term in Eq. [3.25] 

fv  dV(o - ~)f  X r + 

LL = dA dXx(p - ~) f  X (R + Xn) 

= fA dAI'(f  × R + f' X n), [3.28] 

where we have denoted the first moment  of 
the surface mass distribution by 

I L x~ f' = ~ (a/d) '/2 dX Xx(p - ~)f .  [3.29] 

The substitution of  Eqs. [ 3.26 ] -  [ 3.28 ] in Eq. 
[3.25], along with Eqs. [2.2], [2.7], and the 
arbitrariness of  A, yields 

~I1"  ( ~  X R )  -~- I I  X ( a  - (n)(a/6) 1/2 

- ~ .  [ (T  R - T n ) I x d  × O, 

+ P I f  × ( R - ~ Z n ) + f ' × n ] = 0 .  [3.30] 

Eq. [2.10] allows writing the first term in Eq. 
[3.30] in the form 

~'.. (~ x R.) = (v, i"  ~) x ~. 

--  fi~c~flT a/3 _ ~ .3f ic  ~ X ft .  [ 3 . 3 1  ] 

Then by means ofEq. [ 3.16 ] one obtains from 
Eq. [3.30] 

fi~.e~.¢ + f i~ .~ .3  + ~ X n = 0, [3.32] 

where 

= (ald) ' /2II(+ ( ~ ( -  f')f'. [3.331 

Eq. [3.32] expresses the local balance of the 
angular momentum at the upper film surface. 
The respective balance at the lower film sur- 
face reads 

ne~F,~ + ~ , 7 , 3  + ~ X n = 0, [3.34] 

with 

= -(a/a) l /2n(  + ( ~ -  ~')L [3.35] 

The projection ofEq. [ 3.32 ] along the normal 
n reads 

(ft. n ) ~ , ~  ~ + ( f i~ .  n ) ~ , ( ?  '~s = 0, 

which in view of Eqs. [2.19], [2.26], and 
[ 3.20 ] transforms into 

1 

X ( ~ 3 ~ B 1 '  __ ~/33da1~)?,7" [3.36] 

This result shows that unlike the bulk stress 
tensors the surface stress tensor ~ "e is not in 
general symmetric. It will be symmetric only 
when either the film surfaces are parallel to 
the reference surface (i.e., when ~ = ~ = 0) 
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and /or  when the normal stress components 
~3  (a  = 1, 2; cfi Eqs. [2.9] and [2.10]) are 
equal to zero. In order to obtain an equation 
f o r  ~ 3  let us take the projection of Eq. [3.32] 
along the basis vector fir: 

~ 3  = F . ( n  × fi.y). [3.37] 

Moreover, it follows from Eq. [ 2.19 ] that 

n X ~_~, = n X aa(6  ~ - fb~) 

Then taking also into account Eq. [2.24] one 
obtains from Eq. [ 3.37 ] 

~_,~3 = _ ( a / d ) l / 2 ~ .  a,(~ x + (e~wefl,b~), 

a =  1,2. [3.38] 

Hence, if  the quantity F .  a" (cf. Eq. [3.33]) 
is negligible, one can neglect also ~ ~3, and then 
according to Eq. [ 3.36 ] the tensor ~ "~ will be 
symmetric. 

4. DISCUSSION 

Equations [ 3.16 ] and [ 3.17 ] are the con- 
ditions for balance of the linear momentum 
at the surfaces of a thin liquid film. They must 
be used as boundary conditions at the surfaces 
of a draining film, when the velocity fields in 
the bulk phases I and II and in the film (phase 
R) obey Eqs. [3.2]. When II = 0 (e.g., when 
the film is sufficiently thick), Eqs. [ 3.16 ] and 
[ 3.17 ] reduce to Scriven's (20) equation for 
the momentum balance at the interface be- 
tween two bulk phases (at low Reynolds 
number).  

In the approach used by us (called often 
"the disjoining pressure approach") the liquid 
flow in the film phase (R) is governed by the 
same equations (3.2) as the flow in a bulk 
phase and all interactions inside the film are 
incorporated in the boundary conditions 
[ 3.16 ] and [ 3.17 ]. (The alternative "body 
force approach" is discussed at the end of this 
section.) We must emphasize however, that 
the interactions are accounted for not only by 

the disjoining pressure II.  The terms Ff  and 
I'f, and more importantly, the surface stress 
tensors ~ and ~, will also depend on the in- 
teractions inside the film. As already pointed 
out, this will lead to the alteration both of the 
viscous part r (v) and of the elastic part a_ (see 
Eqs. [2.34] and [2.35]) of the surface stress 
tensor. For example, in the case of an equilib- 
rium symmetric plane-parallel film, _a reduces 
to the scalar J ,  the film surface tension, the 
latter being connected with the disjoining 
pressure II by the equation (21 ) 

a f =  at+ ½ Ildh, [4.1] 

where h is the equilibrium thickness and a l is 
the interracial tension between the bulk phases. 
Although much more complicated, a similar 
dependence between _a and II exists also for 
an equilibrium film of uneven thickness (see 
below). Moreover, since ~_ and P in a draining 
film contain viscous parts, even the elastic part, 
g, of the surface stress tensor could depend 
also on the film viscous properties and the flow 
pattern. This dependence is analogous to the 
dependence of the pressure in a bulk fluid on 
the viscosity and the flow pattern. 

By using model considerations like those in 
Ref. (29), from the expressions [2.34] and 
[2.35] for the excess surface stresses r_ "(v) and 
_~(v) one can derive equations for the surface 
viscosity coefficients. It is obvious from Eqs. 
[ 2.34 ] and [ 2.35 ], that the surface viscosities 
of a thin film will depend on the film properties 
and the choice of the reference phase and the 
reference surface. Therefore they should be, 
at least in principle, different from the surface 
viscosities of the interfaces separating the same 
bulk phases. 

The relative change of the tensor of the film 
surface tension a,  as well as of the surface vis- 
cosities, with respect to their values for the 
interface between the same bulk liquids are 
very small; for example (a f -  # ) / a  t for a plane- 
parallel film (cf. Eq. [4.1] ) is usually smaller 
than 1%. Still, these changes may become im- 
portant when the variations (or the deriva- 
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tives) of  the respective quantities enter the 
equations. 

Another conclusion worth noting is that the 
surface stress tensor _r can have nonzero com- 
ponents z,3 along the normal to the film sur- 
face (see Eq. [2.9]). In other words, in a dy- 
namic system the surface tension is not bound 
to act only tangentially to the surface. How- 
ever, this effect seems to be of  lesser impor- 
tance, since the quantity F .  a n is expected to 
be very small, which allows neglecting the 
normal components r,3 (a  = 1, 2) (see the 
comments after Eq. [3.38]). 

Probably the most important result of the 
present work is Eq. [ 3.12 ], which shows that 
in the general case the disjoining pressure is a 
vector, rather than a scalar. This means that, 
unlike the case of plane-parallel or spherical 
films, where the disjoining pressure acts always 
normally to the film surfaces, in the general 
case II may have components tangential to 
the film and the reference surfaces as well. As 
shown below, only when the film is symmet- 
rical with respect to a fiat reference surface do 
the tangential components of  1I in a film of  
uneven thickness vanish. Similarly to the sur- 
face stress tensor, the vector of  the disjoining 
pressure can have a hydrostatic, II <s), and a 
viscous part, II ~v> (see Eq. [ 3.18 ]). Although 
the hydrostatic part is analogous to the equi- 
librium disjoining pressure, in the sense that 
it accounts for the interactions in the film, it 
can contain in principle a viscous part as well, 
stemming from the viscous dependence of P 
and pR. The purely viscous disjoining pressure 
II ~v) accounts for the difference between the 
bulk viscous stresses at the reference surface 
in the real and the idealized systems, Q and 
Q, respectively. If the velocity fields at the ref- 
erence surface in both systems are the same, 
11 <v) will be entirely determined by the differ- 
ence in the viscosities, again at the reference 
surface. 

The main results of  the present study are 
valid also for a system containing solutes, e.g., 
surfactants. For example the definitions of  the 
surface stresses, Eqs. [2.30] and [2.32], and 

of  the disjoining pressure, Eq. [ 3.12 ], will re- 
main the same. This does not mean, however, 
that the values of  the disjoining pressure and 
the surface stresses (both elastic and viscous) 
will not be altered. Since the equations of  mo- 
tion [3.1] and [3.2] in this case are coupled 
with the diffusion and adsorption equations, 
the bulk stresses _T and ! will be affected by 
the presence of  the solute and this in turn will 
change the surface stresses and the disjoining 
pressure. Indeed, it is very well known that the 
presence of  surfactants modifies the surface 
tension; the surface viscosities and the disjoin- 
ing pressure of  a film and the role of  these 
effects on the drainage and rupture of  thin 
films has been extensively studied ( 13, 22, 23). 
However, in all these studies, dealing only with 
relatively thick films with small or zero surface 
curvature, the disjoining pressure was treated 
as a scalar, having the same value as in an 
equilibrium film with the same thickness. 
Moreover, the variation of  the surface tension 
along the film surfaces was ascribed only to 
the variation of  the adsorption, the latter being 
calculated by means of an adsorption iso- 
therm. In other words, most of  the effects dis- 
cussed in the present work were ignored. 
Without model calculations it is difficult to 
say how important they are and to give a recipe 
for applying the present theory to the solution 
of  specific hydrodynamic problems such as 
movement of  the three-phase contact line or 
capillary waves in thin films. Such calculations 
are now under way. Even in its present form, 
however, the theory gives some insight into 
the physical meaning and the interplay of  the 
factors involved. Toward this aim we show 
below how the general equations simplify for 
some specific cases and how they are con- 
nected with the respective equations, derived 
previously by other authors and by us. 

Planar Reference Surface 

Since for a planar reference surface _b = 0, 
H = 0, and K = 0, Eqs. [2.25], [2.26] and 
[3.9] yield 
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~ a V ~ ~ VII : VII - -  -~ ( II~')(VlI~")" VII 
a 

a 
+ - n(VnO" VII, [4.2] 

a 

where VII is the surface gradient operator at 
the reference surface (at X = 0); we have used 
the fact, that in this case (cf. Eqs. [2.22] and 
[2.231) 

a 
- - =  1 q - ( V l I ~ )  2. [4.31 
a 

We will show now that if the two film surfaces 
are symmetric with respect to a planar refer- 
ence surface the disjoining pressure acts nor- 
mally to the reference surface. For a flat ref- 
erence surface (_b = 0) Eq. [3.38] along with 
Eq. [ 3.33 ] yields 

~c~3 = - ( a / 6 )  l / z [ ( ( a / a ) l / 2 I I  • a ~ 

+ [ ' ( f ( - f ' ) . a ~ ] ,  a = l ,  2. [4.4] 

According to Eq. [3.35 ] the analogous equa- 
tion for the lower film surface reads 

~.,~3 = _ ( a / d )  l / 2 [ _ ~ ( a / ~ ) l / 2 i i ,  a,~ 

+ P ( f ( - ~ ' ) . a " ] ,  ~ =  1,2. [4.5] 

Since the film surfaces are supposed to be 
symmetric with respect to the reference sur- 
face, one must have 

a=a, P=~, ?=?, 

7 ~ 3 = _ ~ 3 ,  ~ = - # ,  f ' = - ? ' .  [4.6] 

The substitution of Eq. [ 4.6 ] in Eq. [ 4.5 ] leads 
to 

.}a3 = (a /a)1 /2  [ ( ( a / a )  1/2I I  " a  ~ 

- f ' ( f ~ z - f ' ) - a " ] ,  a =  1,2. [4.71 

Equations [4.4] and [4.7] can be satisfied only 
when the first term in the square brackets is 
identically zero, i.e. when 

I I . a ~ = 0 ,  a =  1,2. [4.8] 

This shows that II has no components tan- 

gential to the flat reference surface. This fact 
was already used by us (without proof) in our 
treatment of the transition region between a 
film and the axisymmetric liquid meniscus 
around it (11 ). Model calculations of the 
equilibrium van der Waals component of the 
disjoining pressure in the same system, per- 
formed by Groshev et al. (24)  by using the 
Irving and Kirkwood (25) expression for the 
pressure tensor, showed that the tangential 
component  of II identically vanishes, which 
confirms Eq. [4.8 ]. Note, however, that Eq. 
[4.8 ] is valid also for a nonequilibrium system. 

Axisymmetr ic  Sys tem with Planar 
Reference Surface 

To simplify the treatment we will neglect 
hereafter the viscous surface stresses _r (v), and 
most of the equations will be written only for 
the upper film surface. Then 

so that 

= a~n  [4.9] 

~ I I "  ~ = 2/~afi + VIIff , [4.10] 

where /1  is the mean curvature of the upper 
film surface. By means of Eq. [4.10 ] the nor- 
mal and the tangential projections (with re- 
spect to the upper film surface) of Eq. [ 3.16 ] 
can be written as 

2/qa - ft. [QR _ _Qn) j x=(]. 

+ (pR _ pn)]~=f + (a /~ t )~ /z i i . f i  = O, 

[4.111 

o',,~ = --~1~" I I ( a / ~ )  1/2 + ~,~. [ ( Q R  

- Q % l ~ = f ] .  ~ ,  ~ -- 1, 2,  [ 4 . 1 2 ]  

where we have neglected the term proportional 
to the external (gravity) force f. To utilize the 
symmetry of  the system (see Fig. 4) it is con- 
venient to introduce polar coordinates u ~ 
= r, u 2 = ~ in the plane X Y :  
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(R) 

/ 
A'X\XXX\ ~ XXY 

r 

FIG. 4. Sketch of a plane thin film encircled by an axisymmetric capillary meniscus. When phases (I) 
and (II) are different, the disjoining pressure vector II in general is not orthogonal to the flat reference 
surface z = 0. 

x = r c o s ~ b ,  y = r s i n ~ .  

Then due to the symmetry ~: = ((r), 
= ~(r), it follows from Eqs. [4.2] and [4.3] 
that 

~11~ = [ a l (  1 + ~ r 2 ) - I  + n ~ ' ( 1  + ~ t 2 ) - l ]  d ~  

/:'- =dZ. I4.131 
dr 

Similarly one derives 

fi = -al~:'(1 + (,2) l + n ( 1  + ~:,2)-1. [4.14] 

Moreover, due to the symmetry of the system 

I t  = I l t a  I + I I n n ;  l i  t ~- I I . a l ,  

I In - - - I I .n ,  [ 4 . 1 5 ]  

where ]I t and Hn are the tangential and the 
normal components of II ,  respectively. The 
substitution of Eqs. [4.3 ], [ 4. l0 ], and [ 4.13 ]-  
[4.15] in Eq. [3.16], along with Eqs. [2.5] 
and [2.6], leads to 

d(b sin ~) ~ sin 
~ - - -  - t i c -  Hn 

dr r 

+ [QR z Q ~ _  ( Q R _  i, -- Qrz)tan ~] [x=~ 

[4.16] 

d ( b c o s ~ )  bs in  
d~: + - - r  - Pc + ] i tcot  

+ [ Q R _  Q ~ I  r _ ( Q r R z  _ QR)cot ~l Ix=i, 

[4.17] 

which are in fact the coefficients before the 
two perpendicular vectors n and al in the vec- 
torial equation, resulting from Eq. [3.16 ]. 
Here 

tic = p i t  _ p R ,  ~ = arctan ~z, [ 4 .18 ] 

and we have used also the known expression 
(26) 

2 / t  - d s i n ~  + sin__~_~ [4.19] 
dr r 

The "weight" r f  of the film surface was ne- 
glected in Eqs. [4.16] and [4.17]. However, 
Pc can depend on the external (gravitational 
or centrifugal) field due to the hydrostatic 
pressure. By changing to the opposite the signs 
before IIn and Ht and using barred quantities 
one obtains from Eqs. [4.16]-[4.19] the re- 
spective equations for the lower film surface 
with/5c = p R  __ pI. 

The elimination of Pc between Eqs. [ 4.16 ] 
and [ 4.17 ] yields 
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d_~ = _ II,sin ~ - IItcos 
dr 

+ [ ( Q R  z Q~ Q R +  II • - - Qrr)Sln 

cos 2~ 
d- ( Q r  R n - -Qrz)] lx=f .  [4.20] 

COS q~ 

Equation [4.20] shows that alterations in the 
film surface tension can be caused both by the 
interaction between the film surfaces (the 
terms with IIn and I I J  and by the fluid motion 
around and inside the film. If an equation 
connecting ~ with the surface dilation and 
composition is available and if the tensor 0 is 
expressed according to the Stokes constitutive 
relations, then Eq. [4.20] can be used as a 
boundary condition for the equation of mo- 
tion. As shown above, if the two film surfaces 
are symmetric with respect to the reference 
surface, then IIt =- 0. 

Axisymmetric Static Systems 

For a static system Q = 0; if the film is thick 
enough II = 0 and the film surface tension 
equals the equilibrium interfacial tension be- 
tween the two bulk phases ~l = const. Then 
both Eqs. [ 4.16 ] and [ 4.17 ] reduce to a single 
equation, which is the known Laplace equa- 
tion (cf. Eq. [4.191)" 

bl[ d sin----~ + sin ~] =pc" dr r [4.21] 

The approximation b _~ ~l = const in Eq. 
[4.16 ] for a static thin film leads to the Der- 
jaguin's (28) equation 

2/~3J= -tic - H(~ s), [4.221 

(H~fl) -= H <~). n) having been derived by him 
from considerations for chemical equilibrium 
in the system (cf. also Eq. [3.18]). If one does 
not use this approximation, Eqs. [ 4.16 ] and 
[4.17 ] yield for a static flat film 

d ( ~ s i n ~ )  ~sin 
+ - Pc - II~ s), [4.23] 

dr r 

d ( b c o s ~ )  bs in  

+ - - r  
= Pc + II~S)cot ~ [4.24] 

with II~ s) ~- II(S).al (cf. Eqs. [3.18] and 
[4.15 ]). For a film, symmetric with respect to 
the fiat reference surface, lI~ S> = 0. For this 
special case, Eqs. [ 4.23 ] and [ 4.24 ] have been 
previously derived respectively in Refs. (11 ) 
and (10) by using simple force balance con- 
siderations. 

Equations [4.18], [4.23], and [4.24] form 
a full set allowing the calculation of ~:(r), 
~(r), and ~(r) provided that II (s) is known 
from the microscopic theory. Generally, II (s) 
is a functional of the shape ~:(r) of the film 
surfaces so that Eqs. [4.23] and [4.24] are in 
fact integro-differential equations. One way to 
solve the problem is to use an iterative pro- 
cedure, starting with II is) calculated for the 
idealized system, as zeroth approximation. 

The tangential component II/~) in Eq. 
[4.24] is not zero when the film surfaces are 
not symmetric with respect to a flat reference 
surface or when the reference surface is not 
flat. Then, this component can become very 
important: note that in Eq. [4.24 ] II ~s) is mul- 
tiplied by cot q5 and the running slope angle 

is usually less than 5 ° . 
The combination of Eqs. [4.23] and 

[4.24] leads to a relationship, connecting 
and II is). 

d~ 
- II~nS)sin ~ - II/~)cos ~. [4.251 

dr 

This result, which is a special form of Eq. 
[4.20 ], shows that the hydrostatic equilibrium 
in the transition region around a symmetric 
film is ensured by simultaneous variation of 

and II (~) ( 11 ). In other words, the assump- 
tions II (s) # 0 and ~ = const are incompatible. 
Therefore, all attempts to ascribe the inter- 
action between the meniscus surfaces solely 
either to II (S~ (with ~ = const) or to ~(r) (with 
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II (s) = 0) are inconsistent. The physical 
meaning of Eq. [4.25] is discussed in Ref. 
(11 ), where it is derived by means of trans- 
parent force balance considerations for the 
special case of the transition region between a 
plane-parallel thin film and the capillary me- 
niscus. 

On the Connection between the Disjoining 
Pressure and Body Force Approaches 

As has already been pointed out, in the dis- 
joining pressure approach used by us all the 
interactions in the film are incorporated in the 
boundary conditions, whereas the equations 
of  motion, Eqs. [3.1] and [3.2], are the same 
as those for a bulk liquid. In the alternative 
"body force" approach, proposed by Felderhof 
(27), the interactions in the film are incor- 
porated in the equations of motion: the elec- 
trostatic forces--in the stress tensor and the 
van der Walls forces--in a body force term. 
Since there have been controversies in the lit- 
erature about the applicability of these ap- 
proaches, we will establish below the connec- 
tion between them. We will do this for a film 
without electrostatic interactions. From the 
formal viewpoint the difference between the 
two approaches consists in the choice of  the 
idealized system, more precisely, in the defi- 
nition of  the pressure tensor -_P in the idealized 
system. Let us introduce a new scalar pressure 
P~ in the model bulk phases by the relation- 
ship 

p b ~ = p r _ 0 r W r ,  y = i ,  ii, R, [4.26] 

where WYis the excess van der Waals potential 
in the respective bulk phases, called also the 
"body force potential." One assumes in this 
approach that the van der Waals interactions 
are additive, so that W r is defined by (12) 

WY(r, t) = f w(lr  - r ' l )p(r ' ,  t)dr' 
,/re al 

system 

- -  wfinfinite w(lr  - r ' l )pY(r  ', t)dr', 
phase (Y) 

Y = I ,  1I, R; [4.27] 

here the radius-vector r is located in the phase 
(Y) of  the idealized system, t represents time, 
p(r, t) is the mass density at the source point 
r, and w(r) is the intermolecular potential di- 
vided by the masses (per molecule). It is clear 
that Eq. [4.27] defines three functions, W I, 
W n, and W R, which are not bound to match 
at the dividing surfaces. 

From Eqs. [2.5], [2.6], [3.2], and [4.26] 
one obtains the balance of the linear momen- 
tum in the following form (27)" 

VPff = V. Q Y +  prf  _ pYVWr 

Y = I ,  II, R. [4.28] 

One sees that because of the "body force" term 
p YV W Y the pressure P~ will not be constant 
throughout phases I, II, and R even when the 
external mass force f = 0 and the system is 
in equilibrium (Q = 0). The subtraction of 
Eq. [4.28] from Eq. [3.1], along with Eq. 
[2.1], leads to the equation 

prVWr  = V . [ ( _ P -  P[__U) - (Q - Q r ) ]  

+ ( p _ p r ) f ,  Y = I ,  II, R, 

which reveals again the excess nature of the 
body force potential W r. The boundary con- 
ditions at the film surfaces can be obtained 
from Eqs. [4.11] and [4.26]. Thus, for the up- 
per surface of a flat film one obtains 

I - n o  (Q R - QII). fi _~_ (pR _ pII) 

+ (PrtWR- p n W n ) ] ] x ~  + f i ' I I  = 0. 

[4.29] 

For an equilibrium film Eq. [4.29] reduces to 

(f~_ ~ . Pb)lx=r 

= I I  - ( p I I W U -  pRwR)]x=~ [4.30] 

(in this case II --- ft. II). As pointed out by 
Maldarelli et al. (12) the equation 

I I  = ( p l I W I I  - p R w R ) [ x =  ~ [4.31] 

in conjunction with Eq. [4.27] can serve as a 
model expression for the disjoining pressure 
I1. Then Eq. [ 4.29 ] leads to the following sim- 
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pie boundary condition for the pressure in the 
body force approach: 

- = - Q , I ) .  

at X = ( ,  [4.32] 

which for an equilibrium film yields (12) 

pi, = p~.  [4.33] 

In conclusion, there is no contradiction be- 
tween the disjoining pressure and the body 
force approach. Of  course, this conclusion 
holds for the case of van der Waals interactions 
in the film considered above. The case of elec- 
trically charged film surfaces requires a sepa- 
rate study. The disjoining pressure approach 
has the advantage of allowing the construction 
of the macroscopic theory of the curved thin 
films in a general form without making any 
model assumptions (like Eq. [4.27]) or sim- 
plifications from the very beginning. 

5. CONCLUDING REMARKS 

The disjoining pressure approach for de- 
scribing a thin liquid film as a liquid layer of 
finite and variable thickness is applied to dy- 
namic curved films. The results, which are ob- 
tained without making any assumptions about 
the form of the real stress tensor, are applicable 
to films with both parallel and nonparallel 
surfaces. It is demonstrated that from the con- 
dition for mechanical equivalence between the 
real and the idealized systems follow relation- 
ships expressing the stress tensors of the film 
surfaces through integrals over the compo- 
nents of the pressure tensor. 

The balance of the linear and angular mo- 
menta at the film surfaces are derived from 
the respective balances in the bulk phases for 
low Reynolds numbers (negligible convective 
terms). The results show that in contrast with 
the case of an interface between two bulk 
phases an additional vectorial pressure II must 
be included in these surface mechanical bal- 
ances. The vectorial field II ,  which is defined 
along a reference surface inside the film, ac- 
counts for the fact that the stresses in the thin 

film differ from the stresses in the reference 
bulk phase. That is why II is called disjoining 
pressure and thus the definition of Derjaguin 
(28) is generalized. II can be represented as a 
sum of static and dynamic parts, each having 
normal and tangential components about the 
reference surface (Derjaguin's scalar disjoining 
pressure is in fact the normal component  of 
the static part of II). In principle all parts and 
components of II must be accounted for when 
describing the shape and the motion of the 
film surfaces or when studying the movement 
of a three-phase contact line. However, the 
problem is simpler when the surfaces of the 
film are symmetric with respect to a fiat ref- 
erence surface: the balance of the angular mo- 
mentum requires that in this case the tangen- 
tial component  of II must be identically zero. 

The general surface balance of the linear 
momentum is applied for the special case of 
an axisymmetric film with fiat reference sur- 
face and isotropic surface stress tensors. The 
two independent projections of this vectorial 
balance are in fact generalizations of the 
known Laplace equation and serve as bound- 
ary conditions for the three-dimensional dy- 
namic problem. If the disjoining pressure is 
not zero, the film surface tensions depend in 
general on the position along the film, even 
for static films. 

In the disjoining pressure approach, used in 
the present study, the film excess properties 
are accounted for only through the boundary 
conditions at the film surfaces. In the body 
force approach of Felderhof (27) an excess 
body force potential is included in the equa- 
tions of  motion in the bulk phases. It is shown 
that these two different approaches correspond 
to two different choices of the idealized system. 
In the case of predominating van der Waals 
interactions in the film the two approaches are 
essentially equivalent. The case when the film 
surfaces are electrically charged requires a 
particular study. 

In summary, the disjoining pressure ap- 
proach followed in this paper is conceptually 
simple and allows generalization for arbitrarily 
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c u r v e d  f i lms w i t h o u t  m a k i n g  m o d e l  s implif i -  

ca t ions .  
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