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Slow quasistatic deformations of  a fluid interface or membrane  are investigated theoretically from a 
micromechanical  viewpoint. The surface rate-of-strain tensor is characterized by its invariants, a and/3, 
which account for the interfacial dilation and shear, respectively. The macroscopic interfacial stretching 
and shearing tensions and the bending and torsion moments  are expressed through integrals over the 
components  of  the pressure tensor. The results are applied to derive the Gibbsian fundamental  ther- 
modynamic  equations of an arbitrarily curved interface from the fundamental  equations of the adjacent 
bulk phases. Then, by means  of a variational principle, the conditions for interfacial mechanical equilibrium 
are derived. © 1990 Academic Press, Inc. 

1. IN T R ODUC T ION 

According to Gibbs (1) the mechanical 
work for deformation of a fluid interface can 
be written in the form 

6w = T6a + B 6 H  + 0 6 D .  [1.1] 

Here 6w is the elementary work of deformation 
per unit area, 6a = [ 6 ( A A ) ] / A A  is the relative 
increase in the area AA of the dividing surface, 
and 

H = + c2), D = - ~(c1 c2), [1.2] 

where cl and c2 are the two principal curva- 
tures of  this surface; H and D are the mean 
and the deviatoric curvatures (the latter being 
a measure for the local deviation of the surface 
from the spherical shape). Equation [ 1.1 ] 
contains only intensive parameters and there- 
fore it holds at each point of the surface. One 
sees from Eq. [1.1] that T6ce is the work for 
pure dilation (6cl = 6c2 = 0) of the interface, 
B 6 H  is the work for pure bending of the in- 
terface (6cl -- 6c2, 6a = 0), and 0 6 D  is the 
work for pure torsion of the interface (6c~ 
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= - 6c2, ~a = 0; see Fig. 1 ). That  is why the 
quantities B and O are called bending and tor- 
sion moments,  respectively (2).  3' is the in- 
terfacial tension. 

For a spherical interface H = - 1 / ro, D = 0, 
and Eq. [ 1.1 ] reduces to the known expression 
(3-5)  

B 
~w = 7~a + r~ ~r0, [1.31 

where r0 is the radius of the dividing surface. 
From Eq. [1.3] Kondo (3) has derived in a 
thermodynamic way the generalized Laplace 
equation for a spherical interface, 

2 3 '+  B = p i _ p n ;  
ro r-~ [1.41 

here pX and pn are the pressures in the two 
adjacent phases and 

[ 1 . 5 ]  
= .OLoro ] , 

where [Oy/Oro] is a formal derivative, corre- 
sponding to changes in the radius of the di- 
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c 1 = c2:o a:1:~: 2 acl:-a: 2 

B B A 

REFERENCE SIMPLE SIMPLE 
STATE BENDING TORSION 

FIG. 1. Bending  and  tors ion modes  of  de fo rmat ion  of  

a surface element. 

viding surface, ro, at fixed physical state [ for 
details see Refs. (4-6)] .  Obviously the bending 
moment,  B, is zero at the Gibbsian surface of 
tension, where "r has minimum value and the 
formal derivative in Eq. [1.5] is zero. When 
the interface is a thin liquid film intervening 
between two bulk phases, 3, is the film tension 
characterizing the film as a membrane of  zero 
thickness (5, 6). 

Tolman (7) and Buff (8) derived the fol- 
lowing expressions for the interfacial tension 
3, and bending moment  B of a spherical in- 
terface: 

f£ 
~ r 2 

3' = [ff - Pw(r)] r~ dr, [1.6] 

eli, B = -- [ P -  PT(r)](r0 -- r )rdr .  [1.7] 
ro 

Here P T ( r )  is the tangential (with respect to 
the spherical dividing surface) component of 
the real nonisotropic pressure tensor, 

P = PNerer + PT(eoeo + e~e.), [1.8] 

with er, eo, and e~ being the unit vectors of  the 
local basis in spherical coordinates r, 0, ~; f f  
is the isotropic pressure in the two adjacent 
phases: 

f f  = PIO(ro - r)  + p n o ( r -  ro),  [1.9] 

O ( x ) =  1 for x > 0 ;  

= 0  for x < 0 .  [1.10] 

Eqs. [1.6] and [1.7] express the interracial 
tension, % and the bending moment,  B, as 
surface excess quantities. Indeed, PT(r) is the 
tangential component  of the real pressure ten- 
sor P,  whereas/5 is the isotropic pressure in 
the idealized system, which is composed of  two 

Journal of Colloid and Interface Science, Vol. 137, No. 1, June 1990 

bulk phases and a mathematical dividing sur- 
face between them. The condition B = 0 de- 
termines the so-called "surface of tension" (4). 

Buff(9, 10) derived expressions of the type 
of  Eqs. [1.6] and [1.7] for y, B, and O in the 
general case of an arbitrarily curved interface. 
However, he used some approximations. 
Some years later Murphy (2) derived rigorous 
expressions for % B, and O, but for the special 
case, when the pressure tensor__P is transversely 
isotropic. (The definitions of the bending and 
torsion moments in the work of Murphy (2) 
are somewhat different from the definitions of  
Gibbs ( 1 ), which are used here.) 

As pointed out by Evans and Skalak ( 11 ), 
the mechanical and thermodynamical prop- 
erties of the biomembranes can be successfully 
described by means of a two-dimensional 
continuum, analogous to a Gibbs dividing 
surface. As discussed in Ref. (6) a thin liquid 
film can be described macroscopically as a 
membrane of zero thickness (the so-called 
"membrane approach").  Then it is possible 
to describe the mechanical properties of fluid- 
liquid interfaces, thin liquid films, and bio- 
membranes using the same formalism. The 
equations below in this paper are applicable 
to interfaces as well as to membranes. The sys- 
tem can be specified by substitution of  an ap- 
propriate model expression for P in the general 
equations. 

Our purposes in this paper are: 

(i) to continue the investigations of  the 
previous authors (2, 9, 10) and to derive 
expressions for y, B, and O of  more general 
validity; 

(ii) to derive analogous expression for the 
shearing tension, ~', which can be important 
for subjects of  the type of the biomembranes 
(11); 

(iii) to derive the local fundamental equa- 
tions of the interracial thermodynamics from 
the respective equations i n  the bulk phases, 
paying special attention to the role of-r, ~', B, 
and 0; 

(iv) to derive the condition for interfacial 
mechanical equilibrium, generalizing Eq. 
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[1.4], by means of  a thermodynamic varia- 
tional principle. 

It is known that one must impose some 
physical conditions to define the position of  
the dividing surface [see, e.g., Refs. (4-6, 12- 
14)]. Here and hereafter in this paper the di- 
viding surface supposedly has been chosen in 
a certain way, irrespective of its concrete def- 
inition. The results thus obtained are valid for 
any choice of the dividing surface. The analysis 
of the dependence of % ~', B, and O on the 
choice of  the (arbitrarily curved) dividing sur- 
face is postponed to further investigations. 

Despite the fact that we will finally arrive 
at some quasistatic relationships, it is conve- 
nient to work in the beginning with the rates 
of  change of some quantities with time. Then 
it is easy to obtain the respective infinitesimal 
increments of these quantities during an ele- 
mentary quasistatic process. For example, if 
6t is a time increment, if ~I, is the space rate- 
of-strain tensor, and i f /}  is the time derivative 
of the mean curvature, H,  then 64, = ~ t  is 
the space strain tensor and 6H = /}rt  is the 
differential of H,  which takes part in Eq. [ 1.1 ]. 

2. SURFACE RATE-OF-STRAIN TENSOR 

Before studying the tensions in a membrane 
we will discuss briefly its deformations. The 
mathematical description of surface defor-  
mations has been worked out by Scriven (15), 
Aris (16), Eliassen (17), and Evans and Skalak 
(11). Some of  their results are adapted and 
extended below according to our needs. The 
mathematical apparatus of the differential ge- 
ometry is described in detail in Refs. (17-19) .  

(a) Stretching and Shearing Parameters 

Let (u ~, u 2) be curvilinear coordinates on 
the surface, and let R( u ~, u 2, t) be the running 
position vector of  the dividing surface. Then 

OR 
a~, - O u  u [2.1] 

and 

0 
VII = a 'u [2.2] 

Ou ~' 

are the vectors of the surface basis and the 
surface gradient operator. Here and hereafter 
the Greek indices take values 1 and 2, and 
summation over the repeating indices is car- 
ried out. It is known that the curvature tensor 

b = -~Tiin [2.3] 

(n is the running unit normal to the surface) 
is a symmetrical surface tensor, whose eigen- 
values are the two principal curvatures, c~ and 
c2. Then it is clear that the trace of_b is equal 
to 2H (cf. Eq. [1.2]) and the determinant of 
_b is the Gaussian curvature K = c~ c2. 

1 
U_li=a"a~ and _ q = ~ ( _ b - H U ~ i )  [2.41 

are the surface idemfactor and curvature de- 
viatoric tensor. The eigenvalues o fq  are 1 and 
-1 ,  whereas both eigenvalues of  UII  a re  equal 
to 1. Therefore U .  and q are constant surface 
tensors; i.e., the covariant derivatives of their 
components are zero: 

ax,# = qx~,~ = O. [2.51 

In particular, the components of__Un 

au~ = a , .  a~ [2.6] 

are in fact the components of  the surface met- 
ric tensor. In view of Eq. [ 2.4] the curvature 
tensor can be expressed as a sum of  isotropic 
and deviatoric parts: 

bx~ = Hax, + Dqxu. [2.7] 

Being a constant tensor in the regular points, 
q is not defined in the ombilic points (where 
i )  = 0). However, in all equations of geomet- 
rical or physical importance q is multiplied by 
a factor, which tends to zero when approaching 
an ombilic point (cf. Eq. [2.7 ] ) and the con- 
tribution of q is zero in these special points. 

Let us suppose in addition that (u 1, u 2) are 
the material surface coordinates [see Ref. (17) 
for details]. Then 

(0.) i2 , 
V = - ~  ulu  2 

is the velocity of the surface material points. 
According to Eliassen (17) the surface rate-of 
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1 (a) (b) 

= ~ (Vs,. + V.,. -- 2bs .vM) ,  [2.9] 
FIG. 2. A surface element before (a) and after (b) a 

deformation of shearing at constant area. 
where 

v , = a  s . v  and v t ' l = n . v .  [2.10] 

Let us consider the scalar quantities 

1 das, 
&= aS"ds"=-2 a"" dt 

= aS"vs,. - 2Hv H [2.11] 

1 das~ 
lJ=qS"ds"=2 qs~ dt 

= qS"vs, . - 2 D r  H [2.12] 

(cf. Eqs. [2.7] and [2.9]).  To  find the meaning 
o f  & let us recall the identity ( 16, 17, 20) 

1 das, = (a)_l/2 d 
aS" dt ~ ( a )  1/2, [2.131 

where a is the de terminant  of  the surface met- 
ric tensor  as.. If  

A(t)  = f f (a)l /2duldu 2 [2.14] 

is the area of  a material  surface parcel, then 
from Eqs. [ 2.11 ], [ 2.13 ], and [ 2.14 ] it follows 
that  

d A -  f f i~(a)l/2duldu2. [2.15] 
dt 

(Note  that  (a )  1/2 is in fact the Jacobian o f  the 
surface curvilinear coordinates.) Hence  & is 
the rate o f  dilation (stretching) per unit  area 
of  the surface. Similarly,/J represents the rate 
of  shear per unit  area (see Fig. 2).  An alter- 
native expression for &, which follows directly 
f rom Eqs. [2.2] ,  [2.10] ,  and [2.11] is 

= V I I  " V .  [2.16] 

The  total dilation and the total shear per 
unit  area o f  the surface are (cf. Eqs. [2 .11] -  
[2.131) 

fOt 1 ft das~ a = & d t = ~ J  ° aS~---~-dt 

1 I a ( t )  l = m ' [2.171 

f0 if0'  aas " fl = lJdt = 5 qS ~ _ a t ,  [2.18] 

where a ( 0 )  is the value of  a in the initial mo- 
ment  t = 0. It is noteworthy that 6o~ = &6t is 
the increment ,  which takes part  in the right- 
hand  side o f  Eq. [ 1.1 ]. 

Equat ions [ 2.17 ] and [ 2.18 ] considerably 
simplify when the rate-of-strain tensor  is di- 
agonal in the basis o f  the principal curvatures 
all the time. (This  is so, for example,  in the 
familiar case o fax i symmet r ic  deformations of  
an axisymmetr ic  membrane ;  see Refs. (11, 
21 ).) Then  the lines of  curvature can serve as 
material coordinate  lines on the surface. Due 
to the orthogonali ty o f  these coordinates one 
has 

qll  = a l l  = 1/a11, q22 = _a22 = - 1 / @ 2  

al2 = a21 = q12 = q21 = 0, 

al2 = a21 = ql2 = q21 = 0, [2.19] 

and one obtains f rom Eqs. [ 2.17 ] and [ 2.18 ] 

1 . I axl(t)a22(t)l 

l ,  lall(t)a22(O)l 
= 'n al 'O'a22(O 'l I [2.201 
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To elucidate the geometrical meaning of  a 
and 3 let us consider an elementary cell from 
the coordinate network, produced by the lines 
of curvature (see Fig. 3). Let 6s,,/z = 1, 2, be 
the sides of this deformable surface element. 
It is known from the differential geometry 
(19), that 

~&(t) = (al l ) l /28u 1, 

~S2 = ( a 2 2 ) l / 2 ~ 3 u  2- [2.21] 

The circumferential extension ratios along the 
coordinate lines are 

y t l_  6&(t) yt2_ ~Sz(t) [2.22] 
~ S I ( 0 )  ' ~ $ 2 ( 0 )  " 

In view of Eqs. [2.21] and [2.22] one can 
transform Eqs. [2.20] into the following form: 

= ln(XlY~2), /3 = ln(Ytl/X2). [2.23] 

One sees now that when the surface extension 
is isotropic (Xl = X2) the shearing parameter 
3 is zero, and vice versa, if an interfacial de- 
formation at constant area [bs~(t)6&(t) 
= 6Sl(0)Ss2(0) = const] takes place, then 
)kl)k 2 = 1 and a = 0. 

Evans and Skalak (11) have proposed al- 
ternative parameters, ~ and fi, characterizing 
the interfacial dilation and shear, which are 
connected with X~ and X2 as follows: 

= )kl)k 2 - -  1, 

fi = (X21 + X2)/(2X~X2) - 1. [2.24] 

/ F s2( t )  . . . . .  

u u + 6u 1 u 1 ul+ 6u 1 

(a) (b) 

FIG. 3. Deformation of a surface element with sides of 
length 6s~ and 6& at the initial moment t = 0 (a) and at 
a subsequent moment  t (b). The coordinate lines u ~ 
= const are lines of curvature. 

From Eqs. [2.23] and [2.24] one obtains 

= exp(a )  - 1, 

fi = cosh(3)  - 1. [2.25] 

Hence ~ ~ a only for small deformations. In 
general, if 6a in Eq. [1.1] was replaced by 
6~, the coefficient 3' in Eq. [1.1] would no 
longer have the meaning of interfacial tension. 
The problem is discussed in more detail in 
Ref. (21 ), where some applications of this for- 
malism to deforming axisymmetric mem- 
branes are also given. 

We will use below the stretching and shear- 
ing parameters, a and 3, because of their sim- 
ple relations with the rate-of-strain tensor (see 
Eqs. [2.11] and [2.12]). 

For future reference we quote here also the 
equations 

I:I = H.,v" + ( H  2 q- D z ) v  In] 

+ ±.,.~,,t.l [2.26] 2 t~ ~,/~u 

f)  = D , v  ~ + 2HDvLnl + ±,,,,,,Lnj2~ v,~,. [2.27] 

Eq. [ 2.26 ] was obtained by Eliassen (17),  and 
Eq. [2.27] can easily be derived from Eliassen's 
expression for/£ (K = H 2 - D 2 is the Gaussian 
curvature). 

(b) Examples  

We will consider now two simple examples 
which demonstrate the advantages of the for- 
malism, illustrate the meaning, and give an 
idea for the values of some quantities, es- 
pecially of  the shearing parameter, 3. 

Example  1. Let 

z = z ( x ,  t) [2.28] 

be the equation which determines the shape 
of a sheet (say, of paper) at time, t (see Fig. 
4). The sheet is supposed to have translational 
symmetry about the axis y, which is orthog- 
onal to the plane of the drawing. We suppose 
that at the initial moment,  t = 0, the sheet has 
been flat and lying in the plane z = 0. Let the 
abscissa, x, and the ordinate, y, be the local 
surface coordinates. The material points on 
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z 

o 
r 

FIG. 4. Shape of a deforming sheet, which has transla- 
tional symmetry along the y-axis. 

the sheet are numera ted  by their coordinates 
at the initial m o m e n t  t = 0: u 1 = Xo, u 2 = Yo. 
Dur ing the deformat ion one has 

x = X(Xo, t), y = Yo. [2.29] 

Let i, j ,  and k be the unit  vectors along the 
axes x,  y, and z. Then  the position vector o f  
a point  o f  the sheet is 

R = ix + jy + k z ( x ,  t). [2.30] 

Then  f rom Eq. [2.1] one obtains 

OR Ox Ox 
a~ - OXo i ~oXo + kz'  OXo 

a2=oyo J' z ' =  t" [2.31] 

Eqs. [2.6] and [2.31] lead to 

a l l ( t )  = (1 -F- Z ' 2 ) ( 0 ~ 0 )  2, 

azz(t) = 1, [2.32] 

and the mixed components  o f  a,~ are equal to 
zero. The values o f  the respective components  
at the initial m o m e n t  are 

a11(0) = a22(0)  = 1, 

a12(0) = a21(0) = 0. [2.33] 

The sheet is incompressible. Hence a = 0 and 
it follows f rom Eq. [2.20] that  

all(t)a22(t) = a t l (0)a22(0) .  [2.34] 

By substituting Eqs. [2.32] and [2.33] in- 
to [2.34] and subsequent integration one 
finds the explicit form of  the funct ion x0 
= X o ( X ,  t): 

K Xo(X, t) = (1 -~ Z ' 2 ) l / 2 d x .  [2.35] 

Moreover,  it follows from Eqs. [2.20],  [2.32], 
[2 .33] ,  and [2.34] that  not  only , ,  but  also/3 
is identically zero during the deformation.  Al- 
though intuitively transparent this result is by 
no means  trivial, becaus~ neither the curva- 
tures H and D ( H  = D due~to the translational 
symmet ry )  nor  the surface velocity field 

\ oT )x ° \ at Lo 

in the right-hand side o f  Eqs. [2.11] and [2.12] 
is equal to zero. 

Example 2. Let us consider the deformat ion  
o f  a sphere into a biconcave disk at constant  
area. [Similar deformations are observed in 
experiments with red blood cells (11 ).] It is 
convenient  to use spherical coordinates r, 0, 
~. The equat ion o f  the surface is 

R = ir(0)sin 0 cos 

+ j r (0)s in  0 sin ~ + k r (0)cos  0 [2.36] 

with 

r2(O) = b2cos20 + c2sine0, 

b < c ,  0 < 0 < T r  [2.37] 

(see Fig. 5). We choose 0 and ~o as local surface 
coordinates. In the initial m o m e n t  t = 0 the 
surface was a sphere o f  radius R (b = c = R) .  
The surface material points are numera ted  by 
their coordinates u 1 = 0o and u 2 = ~o at the 
initial moment .  Similarly to [2.32] one derives 

:(0_0t2 
all ~000} (r2 + r '2) '  

dr 
a 2 2  = r2sin20, r '  = - -  • 

dO' 
[2.38] 
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z 
LO 

~ =  0 . 6 o  

FIG. 5. Deformation of  a sphere into a biconcave disk. 
0 is the polar angle and e2 = 1 - b4 /c  4 (cf. Eq. [2.37]). 

the other components of the tensor a,~ are 
zero. In the initial moment  

a11(0) = R 2, a22(0) = R2sin20o. [2.39] 

The instantaneous area of the surface is 

A = 27rC2[(1- e2)l/2 + 1  arcsin(e)] 
6 

~2 = 1 - b 4 / c  4. [2.40] 

The incompressibility condition, Eq. [ 2.34 ], 
along with Eqs. [2.37], [2.38], and the 
boundary condition 0010=~/2 = 7r/2, leads to 

,[ COS 00 = ~pp ( 1  - -  ~2COS20)1/2COS 0 

' 7 + - arcsin (e cos O) , 

where 

R 2 

P -  c 2 

[2.411 

p sin200 
fl = In [sin2O + (1 -- ~2)l/2cos2O]sin2O " 

[2.43] 

Eqs. [2.41] and [2.43] determine fi as a func- 
tion of 0. At the initial moment  e = 0, p = 1, 
0 = 00, and/3 is identically zero. When 0 < e 
< ~r3/2, fl is a function of 0, which takes neg- 
ative values. If e > f 3 / 2  a dimple appears at 
the center of the disk and ~ is positive in the 
proximity of the dimple (see Fig. 6). 

3. E L E M E N T A R Y  W O R K  OF I N T E R F A C I A L  

D E F O R M A T I O N  

(a)  Micrornechanical Derivation 

As mentioned earlier, the continuous and 
nonisotropic real pressure tensor P is replaced 
in the idealized system by an isotropic tensor 

f ' =  flU_U_, P =  P~O(--X) + PHO(X), [3.1] 

which is discontinuous at the dividing surface. 
P~ and p n  a r e  the values of the isotropic pres- 
sures in the two neighboring bulk phases of 
the idealized system and _U is the space idem- 

0.2 

0.1 

0.0 

, r  ar sin  ,] - [ ( 1 - £ ) w 2 +  
I 

-9.t 
[2.42] 

The latter equation follows from Eq. [2.40]. 
Finally, Eqs. [2.20] and [2.34] yield -0.2 

fl = ln[a22(O)/az2(t)] ,  

~ .  6o ° 
m i i | 0 ! 

= 0.99 

and then from Eqs. [2.37-2.40] and [2.42] FIG. 6. Plots ofthe shearing parameter, fl, vs polar angle, 
one obtains 0, for the three axisymmetIic surfaces shown in Fig. 5. 
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factor. The mechanical work, done for defor- 
mation of the interface during a small t ime 
interval St, can be expressed as an excess 
quantity ( 5 ): 

fA i~wdA = - £ ( P -  ~)" (~6t)dV. [3.2] 

Here 6w is the work of  interfacial deforma- 
tion per unit area of  the dividing surface, dA 
= a 1/2duldu2 is a surface element, ":" denotes 
double scalar product of  two tensors, and ,I~ is 
the space rate-of-strain tensor: 

~I, = ½ [Vw + (Vw)+].  [3.3] 

Here w is the velocity field in the bulk phases 
and " + "  denotes conjugation. For slow qua- 
sistatic processes we will use Eliassen's (17) 
kinematical restriction 

W = V - -  X ( V I I V )  ° n, [3.4] 

where ), is the perpendicular distance from the 
point in the space to the dividing surface. The 
three coordinates (u 1, u 2, X) form a curvilinear 
coordinate network in space. This network 
moves together with the deforming dividing 
surface. Eq. [3.4] states that each material 
point is fixed at a point of  the moving coor- 
dinate network (u 1, u 2, X). In particular, each 
layer of  material points, corresponding to 
= const at a given time moment ,  remains par- 
allel to the dividing surface during the further 
deformation. The integration in the left-hand 
side ofEq. [ 3.2 ] is carried out over an arbitrary 
parcel of  the dividing surface and the integra- 
tion in the right-hand side--over  the respective 
volume shown in Fig. 7. The latteral surface 
of this volume is orthogonal to the dividing 
surface. The vectorial element ds on the lateral 
surface can be expressed in the form (17) 

ds = v. L dXdl, [3.51 

where dl is an arc element on the contour C 
(see Fig. 7), v is the outer running unit normal 
to C in the dividing surface, and 

L = (1 - 2XH)UII -k X b [3.6] 

I 

;1: Jl 2 

', I I 

FIG. 7. An imaginary cylinder whose lateral surface is 
orthogonal to the dividing surface (between phases I and 
II) and whose bases are parallel to it. n and v are running 
normals to the dividing surface and to the contour C, 
respectively. 

is a surface tensor. Similarly to Eq. [3.5] one 
can express the volume element in Eq. [3.2] 
in the form ( 17, 22) 

d V  = xdAdX, 

X = (1 - ~KH) 2 - }k2D 2. [3.7] 

The substitution of Eq. [ 3.4 ] in Eq. [ 3.3 ] leads 
to 

1 
= ~ [(1 - 2XH) 

× (w~# + w~,.) + X(w~,~b~ + w~,~b~.) 

- 2 ( b . . -  XKa..)vHla"aL [3.81 

The derivation ofEq.  [ 3.8 ] is given in the Ap- 
pendix. Introducing the tensor 

P× = P -  ~_, [3.9] 

one obtains from Eqs. [3.2] and [3.7] 

£ 6wdA = - f v  PX:~6txdXdA" [3.10] 

Then using the arbitrariness of  the parcel A 
one obtains from Eq. [ 3.10 ] the expression 
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~ 2 

6w = - px  . ~ r t x d X .  [3.11] 
1 

Further simplifications in the right-hand side 
of Eq. [ 3.11 ] are possible only if some infor- 
mation about the nature of the process is 
available. Let the surface tensor ~ be expressed 
in the form 

= I ( U I I .  c]~)Uii _{_ l ( q :  ~ )q .  [3.12] 

Eq. [ 3.12 ] means that the tensor @ is diagonal 
in the basis of the principal curvatures. In other 
words, the curvature of the dividing surface is 
in correspondence with the deformations in 
the adjacent phases or vice versa. 

From Eq. [ 3.12 ] it follows directly that 

P×" (I) = 1p× : [_UUII(UI I : ~ )  _~_ q(q .  _~)]. 

[3.13] 

The same equation [3.13 ] can be obtained 
under another assumption. If the real pressure 
tensor has the form 

p : I ( ~ _ U I I -  P P ) U I I  

+ ½(q_" P)q_+ PNnn, [3.14] 

then Eq. [ 3.13 ] holds without any limitations 
on the form of ~.  The representation [ 3.14 ], 
which was introduced in slightly different (but 
equivalent) form by Buff (9, 10), means that 
at each point of the material continuum two 
of the eigenvectors of P are directed along the 
two lines of curvature of the surface X = const 
passing through the same point. The third ei- 
genvector is always orthogonal to the dividing 
surface. These properties of P in the space can 
be thought of as being induced by the geometry 
of the interface. 

Some computations, included in the Ap- 
pendix, yield 

1 
UlI(UII : ___~) + q(q" ~ )  = X (XUii~ + Xq~ 

- 2 X L / 1 -  2Xq. L / ) ) ,  [3.15] 

where, as usual, the dot symbolizes time de- 
rivative. The substitution from Eqs. [ 3.13 ] and 
[ 3.15 ] into Eq. [ 3.11] leads to 

with 

b w =  3"6~ + ~6~ + B r H  + OrD [3.16] 

6 a = &6 t ,  6 ~ = ~ 6 t ,  

6 H = / 1 3 t ,  6 D = b r t  [3.17] 

and 

3` = 1 U H "  P _ ~ x d X ,  
1 

~-=_1 9-PxxdX, [3.181 
1 

B = L " px XdX, 
1 

O =  (q .  L): PXXdX. [3.19] 
1 

Eq. [ 3.16 ] gives the sought-for expression for 
the mechanical work of interfacial deforma- 
tion. 6a is the dilation of the dividing surface 
and 3' is the interfacial (stretching) tension; 
6/3 measures the elementary shearing of the 
dividing surface and ~ is the interfacial shear- 
ing tension. 6H and 6D represent the elemen- 
tary bending and torsion of the interface, and 
B and O are the corresponding interfacial 
bending and torsion moments. 

(b) Discussion 

Equation [ 3.16 ] expresses the interfacial 
deformation as a superposition of dilation, 
shear, bending, and torsion. A comparison of 
Eq. [ 3.16 ] with Gibbs' equation [ 1.1 ] shows 
that a new term, ~-6/3, appears. For a common 
liquid interface this term is usually neglected. 
However, as pointed out by Evans and Skalak 
( 11 ), the shearing effect is very important for 
biological membranes, which often deform at 
constant area ( ra  = 0). If the pressure tensor 
P is transversely isotropic, i.e., if 

_P = PT~UII + Punn [3.20.] 

it follows from Eq. [ 3.18 ] that ~" is identically 
zero. Hence Eq. [3.20] should not be applied 
when describing subjects like biomembranes. 
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The stretching, bending, and torsion effects 
have been investigated by Murphy (2),  who 
have used the condition for transversal iso- 
tropy [ 3.20 ]. By substitution of  Eq. [ 3.20 ] in 
Eqs. [ 3.18 ] and [ 3.19 ] one can derive the re- 
suits of Murphy as a special case. (Murphy 
has used 6H and 6K as independent variations. 
We preferred to use here the Gibbs variables 
6H and 6D because of their geometrical trans- 
parency (see Fig. 1 ) and physical convenience: 
they lead to coefficients B and O having one 
and the same physical dimension.) Sometimes 
it is convenient to introduce the quantities 

3 '1=3"+~"  and 3 ' 2 = 3 " - ~ ' .  [3.21] 

(It is shown in Ref. (6) that 3" i and 3"2 are the 
eigenvalues of  the hydrostatic surface stress 
tensor at the surface of tension.) Moreover, 
one can define 

B~ = ½ ( B + O ) ,  B2=  ½ ( B - O ) ,  [3.22] 

PT1 = 1 ~(Un + q) _P_P, 

P T 2 =  1 ~ ( U n - _ q )  P .  [3.23] 

Then one easily derives from Eqs. [3.7] and 
[3.18] that 

3"i = ( / 5  - -  PT1 ) (  1 - -  2 X H  + X2K)dX, 
1 

i =  1,2. [3.24] 

Similarly, it follows from Eqs. [2.7], [3.6], 
and [ 3.19 ] that 

Bi = (PTI --/5) { X -- X 2 
1 

× [ H + (  1)iD]}dX, i =  1,2. [3.251 

If one can neglect the contribution of the long- 
range interactions in the integrals [ 3.24 ] and 
[3.25] (it is not always possible), one can drop 
out the terms with X 2 and thus the results of 
Buff (9, 10) are obtained as approximate ver- 
sions of  Eqs. [ 3.24 ] and [ 3.25 ]. ( Buff has de- 
noted Bi, i = 1, 2, by Ci / s  and called them 
"the intensive curvature terms.") 

For a spherical dividing surface with radius 
ro one has H = - l / r 0 ,  D = 0, ~" = 0, O = 0, 
Pxl = PT2, 3'1 = 3"2 = 3', B1 = B2 = B / 2  and 
it follows from Eqs. [3.24] and [3.25] that 

3/ = ( t 5 _  PT)(1 + X/ro)Zdh,  
l 

B = (PT -- /5)(1 + X/ro)XdX. [3.261 
1 

Eqs. [ 3.26 ] are in fact equivalent to Eqs. [ 1.6 ] 
and [1.7], which have been first obtained by 
Tolman (7).  

Boruvka et al. (24, 25) follow another 
(slightly different) way in the thermodynamics 
of  curved interfaces. Instead of  the expression 

6w = fA i~wdA = "vrA + B A ~ H  + OA6D , 

which follows from our Eq. [3.16 ] for ~ = 0 
and for an interface of uniform curvature 
(sphere, cylinder, or plane), they used another 
equation of the type 

~w = 3"BN~A + B ~ ( A H )  + O~(AD) .  

It is obvious that these authors used another 
definition of  the interfacial (film) tension: 

3" BN = 3" _ B H  -- OD.  

One sees that 3"BN has the meaning of  work 
(per unit area) done during an elementary de- 
formation of  the dividing surface at fixed 
products A H  and A D .  Such a deformation is 
a combination of dilation, bending, and tor- 
sion (cf. Fig. 1 ). In contrast, the usual inter- 
facial tension, % is connected only with the 
simple dilation of the surface area (at constant 
H and D).  That  is why, following Refs. ( 3, 4, 
10) we deal with 3' (instead of  3"BN) in the 
present text. 

4. F U N D A M E N T A L  E Q U A T I O N S  O F  T H E  
L O C A L  I N T E R F A C I A L  T H E R M O D Y N A M I C S  

(a) Micromechanical  Derivation 

There are two approaches in the interfacial 
thermodynamics. In one of  them Gibbs fun- 
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damental equations are postulated for all bulk, 
surface, line, and even point phases (4, 5, 24). 
In the other approach, the interfacial funda- 
mental equations are derived from the fun- 
damental equations of the bulk phases (4, 13, 
26). So far this last approach has been applied 
rigorously only for flat and spherical interfaces. 
Our aim below is to extend the second ap- 
proach to interfaces of arbitrary curvature. 

As is known (2, 6) the adsorptions of  the 
components in a mult icomponent system can 
be expressed as 

rk = (Ok -- ~k)XdX, 
1 

k =  1,2 . . . . .  N, [4.11 

where Pk and 

Pk = p~0(--X) + p~0(X) [4.21 

are the density profiles of the kth component  
in the real and in the idealized systems. Indeed, 
in view of  Eq. [ 3.7 ] one obtains the total in- 
terfacial (excess) mass of  the kth component  
by simple integration of Eq. [ 4.1 ]: 

N~ = fA rkdA = fv(Pk--  ~k)dV. 

If u and s are the local bulk densities of the 
internal energy and entropy in the real non- 
homogeneous system, one can similarly derive 
expressions for the surface excess densities of 
these quantities, 

with 

~X x2 
u~ = (u - ff)xdX, 

1 

~X x2 
Ss = (s - g)xdX, 

1 

[4.31 

bl = UI0(- - )k)  -]- b/II0(~k), 

S =  SI0( - - )k )  -]- SII0(~k). [4.4] 

As usual, the superscripts I and II denote the 
values of  the respective quantity in the two 
phases of  the idealized system. As far as we 

know, the expressions [4.1] and [4.3] have 
been first obtained by Murphy (2).  Our pur- 
pose below is to derive thermodynamic rela- 
tionships between u~, &, Fk (k = 1, 2 , . . . ,  N) 
from the Gibbs fundamental equations in the 
bulk phases. For the sake of simplicity we will 
restrict ourselves only to slow equilibrium 
processes, for which the temperature, T, and 
the chemical potentials, t~k, of the soluble 
components are constant throughout the sys- 
tem. It is not necessary to presume that the 
chemical potentials of the insoluble compo- 
nents (present only at the interface) are con- 
stant throughout the dividing surface. 

Let t/, g, and Xk be the local (bulk) mass 
densities of internal energy, entropy, and mass 
of the kth component: 

=u/p,  g=s /o ,  x k = & / o ,  

k = 1, 2 . . . . .  N. [4.51 

The Gibbs fundamental equation ofa  noniso- 
tropic material continuum is usually written 
in the form (20) 

1 N 
~ = T 6 g - -  P : ~ t  + Z #k6Xk. [4.6] 

P k=l 

Here &i stands for (dS/dt)6t (the same for 3g 
and 6Xk). Then by means of the continuity 
equation 

dP + p V . w =  0 
dt 

and of Eq. [4.5 ] one can easily transform Eq. 
[4.6] as follows: 

du : T ( d S  ) 
~ + uV.w \ dt + SV.W 

- P : ~ I , +  ~k=, [ dPk ) Uk~--~ + pkV" W . [4.7] 

On the other hand, it was proven by Eliassen 
(Ref. (17),  Eq. [D.2.18]) that  

dx 
-- X(V ° W --  V I I ' V  ),  [4.8] 

dt 
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By means of Eq. [4.8] one can easily prove 
that the equation 

( du ) d(uX) 
X ~ - +  u V . w  - ~ -  + uXVII-V [4.9] 

is identically satisfied. In the idealized system 
instead of Eqs. [4.7] and [4.9] one has 

T du~ T(dSY + s Y V ' w )  
~ + u Y V ' w =  \ dt 

- P Y ' O +  ~ "  [dp'~ ) 
k = l t X k l T  q- IO~ v ° w  , 

and 

Y =  I, II, [4.10] 

[ duY .w)  + uyv 

d(u~'x) 

dt 
- -  + u Y x v I I . V .  [4.11] 

Then from Eqs. [4.4] and [4.11] one obtains 

[ du' du" ] 
x 0 ( - x )  ~ / -  + 0(x) ~ -  + a v .  w 

d(ffx)  
- - - + f f X V n .  V. [4.12] 

dt 

The subtraction of Eq. [4.12] from Eq. [4.9], 
followed by integration with respect to X, leads 
to 

1 d)kx - 0 ( - • )  ~ -  - 0(X)  d[  

dus 
+ ( u - f f ) V ' w  = - ~ - + U s V n . v  [4.131 

(see also Eq. [ 4.3 ] ). 
Equations of the type of Eq. [4.13] can be 

derived also for the entropy and mass densities, 
s and Ok, k = 1, 2 . . . . .  N. Then from Eqs. 
[4.7] and [4.9] one easily derives 

dt +us&= ~ dt + ssix _ , px:ci ,  dX 

+~{dI ' k k= ,  \ a t  ) . ~ , ~ - +  r ~ s  , [4 .14]  

where Eqs. [2.16], [3.9], [4.1], and [4.31 have 
been used. The multiplication of Eq. [ 4.14 ] 
by ?)t in view of Eqs. [3.11], [3.161, and [3.17] 
leads to the interfacial fundamental equation 

N 

?)Us = T?)ss + ~ I, Xk?)I~k + (3" - -  (.Os)?)o~ 
k = l  

where 

+ f?)I3+BrH+O6D, [4.151 

N 

ws = u s -  T & -  ~ ~Zkrk [4.16] 
k = l  

is the interfacial density of the grand ther- 
modynamical potential. If the interface is an 
ideal two-dimensional fluid and the adsorbed 
matter is soluble in the bulk phases, then 3' 
= ~Os, ~" = 0, and Eq. [4.16] transforms into 
(6) 

N 

?)Us = T?)ss + ~ #kfFk + BbH + O?)D. 
k = l  

[4.17] 

The interfacial density of the free energy is 

N 

fs = us - T& = w~ + ~ #krk. [4.18] 
k 1 

Then the fundamental equation [4.15 ] can be 
rewritten in the form 

N 

G = -ss~T + ~ Uk?)rk + (3' -- ~0s)?)a 
k = l  

+ f?)fl + B?)H + O?)D. [4.19 ] 

(b) Discussion 

If all components present at the interface 
are soluble at least in one of the neighboring 
bulk phases, then 3' = ms and the term with 
?)a in Eqs. [4.15] and [4.19] will disappear. 
However, if there are insoluble components 
at the interface, which are not in contact with 
a bulk reservoir containing these components, 
then the respective variations ?)Pk should be 
connected somehow with the interfacial dila- 
tion ?)a. Some additional information can be 
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gained by means of the interfacial mass bal- 
ance equation of an insoluble component  

dI'k 
+ Pk~7ii .v = --~Tn" I~, [4.20] 

where I~ = Fk(Vk -- V) is the mass current due 
to surface difusion with vk being the velocity 
of the kth surface component.  We deal with 
an insoluble adsorbed component  and that is 
why we have omitted the contribution of the 
mass exchange between the bulk and the in- 
terface in Eq. [4.20]. It is known that the right- 
hand side of Eq. [4.20] represents the mass 
current due to the surface diffusion. Let us 
multiply this equation by 6t. In view of Eqs. 
[ 2.16 ] and [ 3.17 ] we obtain 

6Fk = --Fk6a -- 6Ak, [4.21] 

where 

6 A  k = (VII"  ISk)6t = { V I I - [ F k ( ¥  k - -  v ) ] } 6 / .  

6Ak is the elementary amount  of matter trans- 
ported by surface diffusion. The experiments 
show ( 11, 27, 28) that a change in the shape 
of  the interface can produce redistribution of 
the adsorbed matter: depending on their shape 
the molecules of some adsorbed components 
prefer to occupy those parts of the area which 
have positive values of the mean curvature, 
H,  whereas the molecules of other components 
concentrate around places with negative H.  
Therefore, a deformation, which causes ex- 
tension of  one of the adsorbed components 
could lead to compression of another adsorbed 
component.  This redistribution gives rise to 
the increment 6Ak even for quasistatic pro- 
cesses. 

When the composition of the insoluble sur- 
face mixture is uniform throughout the inter- 
face (i.e., the composition does not depend on 
the local curvature), then ~Ak = 0 and one 
obtains from Eq. [4.21] 

6I'k = -- Pk6a, 

k = M +  1, M + 2  . . . . .  N. [4.22] 

It is supposed here that the adsorbed compo- 
nents with k = M +  1, M +  2 . . . . .  N a r e  

insoluble in the bulk phases. In view of Eq. 
[ 4.22 ] one can transform Eq. [ 4.19 ] to read 

M 

6~, = - s s 6 T -  ~ rk6~k + (3' -- ~s)6a 
k=l 

+ ~6fl + B 6 H +  06D, [4.23] 

where 

Ws = Ws + 
N M 

rk~k = f ~ -  ~ r~uk 
k=M+l k=l 

[4.24] 

is the surface density of the modified grand 
potential (cf. Eq. [ 4.18 ] ). The chemical po- 
tentials of  the soluble components are appro- 
priate parameters of the thermodynamic state, 
because they are determined by the compo- 
sition in the bulk phases. In particular, one 
can derive from Eq. [4.23] a version of the 
Shuttleworth (20, 29) equation: 

7 = ~ , + (  0~s] [4.25] 
\ O a  ]T,  fl, H,D,,ul . . . . .  >M 

The derivative in Eq. [4.25] is zero only at 
equilibrium spreading (contact with reservoir 
of the insoluble adsorbed component) or when 
there are no adsorbed insoluble components 
at all (see Refs. (30, 31)). 

5. C O N D I T I O N S  FOR INTERFACIAL 
M E C H A N I C A L  E Q U I L I B R I U M  

(a) Derivation by Variational Principle 

The integral excess interfacial free energy 
and its first variation are 

FS = fA fsdA, 

6FS=6 fA f~dA= fA(6f~+ f~6a)dA, 

where we used the fact that 6a = 6(dA) /dA.  
The substitution of f~ and 6f~ from Eqs. [4.18] 
and [4.19 ], and the assumption that the tem- 
perature and the chemical potentials as well 
as their variations are uniform throughout the 
interface, yield 
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N 

bF s= - S ~ 6 T  + ~ IZk6Nk 
k=l 

+ £ ( ra + rrfl + BfH+ 0 6 D ) d A ,  [5.1] 

where 

S ~ = ~ J d A  
dA 

and 
C 

N~ = JA rkdA, 

k = l , 2  . . . .  , N  [5.21 

are the total interfacial amounts of entropy 
and mass of the different components. The 
variation in the free energy of  the two bulk 
phases of  the idealized system is 

N 
?)F b = - ( S  I + S I I ) f i T +  ~ #kr(NIk + NII) 

k=l 

- -  p I 6 v I  - -  p I I 6 v I I ,  [5.3] 

where S r, N~, V y (Y = I, II) stand for the 
entropy, the mass of  the kth component,  and 
the volume of  the bulk phase Y. The total 
amounts of  the respective quantities for all the 
system are 

F = F b + F s,  S --- S I + S I1 + S s, 

g~-- V I "1- V II , 

Nk = NI~ + N~ + N~, k = 1,2 . . . .  ,N .  

Then the summation of  Eqs. [ 5.1 ] and [ 5.3 ] 
yields 

N 

6F = - S r T  + ~ #krNk 
k=l 

_ (pI _ p n ) r V I  _ p n r v  + fA 

X ('yra + ~6fl + B r H  + 0 6 D ) d A .  [5.4] 

When deriving Eq. [ 5.4 ] we supposed that all 
chemical potentials are uniform throughout 
the system; if some components are present 
only in the film (interface), their chemical po- 
tentials are uniform throughout the film (in- 
terface). 

Now, let the elementary process in the sys- 
tem be a deformation of  the interface 

6R = ~"a. + on [5 .5]  

(R is the running position vector of  the divid- 
ing surface and n is its unit running normal) 
at fixed boundaries 

~.l= ~-2 = n = 0, 

n,. = 0 over the contour C [5.6] 

(~" = v"~t and r/ = vtnJ~t are infinitesimal 
quantities and C is the contour comprising the 
surface). T, V, and Nk ( k = 1, 2 , . . . ,  N)  are 
constant during such a process and hence 

_ pn)  L r/dA 6F ~ ( p I 

+ fA (76a + ~rfl + B rH  + O~D)dA.  [5.7] 

By multiplication of Eqs. [2.11], [2.12], 
[2.26], and [2.27] by 6t one obtains 

6a = a"~'.,~ - 2Hr/, 

6B = q"~ ~,~ - 2Dr~, 

6H = H,,,~" + ( H  2 + D e ) r / +  la"~r/,.., 

1 ~#a 

These equations in conjunction with the equi- 
librium condition 6F = 0 yield 

0 

+ (BII,. + OD,.)~U]dA 

+ £ { [pn _ pi  _ 2H'y - 2D~ 

+ ( H  2 + De)B  + 2HDO]r/ 

+ ½(Ba "~ + Oq~°)r/,.~}dA. [5.8] 

Using the known Green theorem (19) one can 
represent the surface integrals in Eq. [5.8], 
which contain the derivatives ~-.,~ and r/,.~ in 
the integrand, as sums of  surface integrals 
containing ~'. and r/, and line integrals over the 
contour C. The integrals over C are equal to 
zero due to Eq. [ 5.6 ]. Moreover, the variations 
~'. (# = 1, 2) and r/are independent. Then by 
setting the coefficients before f .  (g = 1, 2) and 
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equal to zero one finally obtains the sought- 
for conditions for mechanical equilibrium: 

7,~ + ~,,q~, = BH,,  + OD,,, # = 1, 2; [5.9] 

-2H3,  - 2D~" + ( H  2 + D2)B + 2HDO 

+ ! t , ,u~n + q"~O,~) = P~ - p I I  [5.10] 
2 \ ~ ~ ,~a  

which must hold in each point of the dividing 
surface. More precisely, Eq. [5.11] is a con- 
dition for tangential and Eq. [ 5.12 ] for normal 
equilibrium. (Murphy (2) has erroneously 
considered ~/ and ~,,~ as being independent 
variations and thus the number of equations 
obtained by him is greater than the real num- 
ber of the independent variations.) 

(b) Discussion 

Equation [5.10] is a generalized form of the 
Laplace equation [1.4]. Except for the last 
term in the left-hand side of Eq. [ 5.10 ] it was 
obtained by Buff (9, 10) from a phenome- 
nological expression for the surface stress ten- 
sor postulated by him. Indeed, by means of 
Eqs. [1.21, [3.21], and [3.22] Eq. [5.10] (ir- 
respective of the term with the second deriv- 
atives) can be transformed to read 

- - C I ' ~ I  - -  C2~2 ~- c~B1 + c 2 B 2  = p 1  _ p i i ,  

which is the result of Buff(9,  10). (Note that 
in Refs. (9, 10) Buff accounts also for the 
weight of  the interface, which is neglected 
here.) However, the tangential balance in Ref. 
(10) 

( 3 , - B H ) , , = O ,  # =  1,2, 

differs significantly from our expression (Eq. 
[5.9]). This could mean that the phenome- 
nological surface stress tensor postulated in 
Ref. (10) is not entirely correct. 

At the surface of tension (see Ref. (6))  B 
= O = 0 and the balance equations [5.9] and 
[ 5.10 ] considerably simplify: 

(3,a"~+~-q"~),~--0, ~ = 1 , 2 ;  [5.111 

- 2 H 7  - 2D~ = px _ p~x. [5.12] 

If the coordinate lines are chosen to be the 
lines of curvature, from Eqs. [ 2.7 ], [ 3.21 ], and 
[ 5.11 ] one obtains 

(3'1),1 = 0, (3'z),2 = 0, [5.13] 

which means that one of the 7i's (i = 1, 2) 
must be constant along the lines of maximum 
curvature and the other must be constant 
along the lines of  minimum curvature. More- 
over, ci = - 1 / R i  (i = 1, 2), where R1 and R2 

are the two principal radii of curvature. Then 
Eq. [5.12] along with Eq. [1.2] leads to 

"/(1/RI + l /R2)  + ~(1/R~ - l /R2)  

= p l _ p n .  [5.14] 

If the shearing tension f is zero (the interface 
is a two-dimensional fluid), Eq. [5.14] reduces 
to the usual Laplace equation. In addition, ~" 
= 0 yields 7~ = 3'2 = 7 and then Eq. [5.13] 
shows that in this case "y must be constant 
throughout the whole interface. 

6. C O N C L U D I N G  R E M A R K S  

An investigation of the interracial rate-of- 
strain tensor, el, and of the mechanical work 
for interfacial deformation is presented in this 
paper. The interfacial shear deformation was 
characterized by a scalar parameter /3. The 
important special case, when the tensor el is 
diagonal in the basis of the principal curva- 
tures, was considered in more detail. The in- 
terfacial stretching and shearing tensions, 3' 
and f, and the interfacial bending and torsion 
moments, B and O, were expressed as integrals 
over the components of the pressure tensor. 
These expressions are more general than the 
respective equations of Buff (10) and Mur- 
phy (2).  

The Gibbs fundamental equations of an in- 
terface are derived in Section 4 from the fun- 
damental equations of the bulk phases. Then 
by variation of  the total free energy of the sys- 
tem the interfacial conditions for mechanical 
equilibrium which generalize the equations 
obtained earlier by Buff(10)  are derived. The 
normal balance equation reduces to the known 
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Laplace equat ion when B = O = 0. The last 
relation is satisfied at a special dividing surface, 
the so-called "surface o f  tension." 

APPENDIX 

In view o f  Eqs. [2.10] and [3.4] one has 

W = aUwu q- hi) [n], 

w.  = v u - h(b~v, ,  + v ! f ] ) .  [A.1] 

The surface gradient o f  the space vector w is 
(17)  

VIIW = a"a  ~ ( w.,. - bu~ v 1~ ] ) 

+ a"n(b~w~ + v!f]) .  

Moreover ,  the space gradient operator  can be 
represented in the form ( 17 ) 

1 0 
V = - L • ~ i i  "~- n - -  

x -  Oh 

(cf. Eqs. [3.6] and [3.7]) .  Then  

1 
Vw = - [( 1 - 2hH)a .~  + hb . . ] a"a  ~ 

x 

0 w  
X Vnw + n -  

Oh 

= a"a"[(1  - 2 h H ) w . . .  

- (1 - 2XH)b.~v [~1 + hb~w~,~ 

- hb' j ,b~, .v["l]/x  + a~n[(1  - 2XH) 

X b~w~ + ( 1 - 2 h H ) v ! f  l 

+ h b ~ b ; w ~  + hb~,v !~ l] /x  

- na"[b~v~ + v,~]]. [A.2]  

The substitution o f  Eq. [A.2] in Eq. [3.3] 
along with Eq. [ 3.7 ] and the Gauss equat ion 
b~,b~ = 2Hb~ - Kr~ leads to Eq. [3.8] .  

By means  o f  Eqs. [2.7] ,  [2.11], [2.12],  
[2 .26] ,  [2 .27] ,  [A.1],  and the identity b,,,~ 
= b~,,,  one obtains that  

A1 = a~'"w,,,, = & + 2Hv In] 

- X(H& + D/J + 2 / I )  

A2 = q~'"w~,,. = l~ + 2 D r  t'l 

- X(H/3 + D& + 2 / ) )  

J~l 1 gv(1A~ [~a a = ~a t ,v. . . . .  + w~,~b~,) = HA1 + DA2 

B2 = ½q"~(w~,~b~ + w~,.b~) = D A ,  + HA2 

C1 = a~'~(b~,~ - XKa.~)v  tnl = 2 ( H -  h K ) v  tnl 

C2 = q""(b,,. - hKa,,~)v tnl = 2 D r  t'q. 

Then  it follows f rom Eq. [3.8] that  

1 
a~"~,~ = ~ [(1 - 2 h H ) A ~  + XB~ - G ]  

1 
qU,~,, = X [( 1 - 2hH)A2 + h/~2 - C2], 

[A.3]  

where ~,~ = a , .  q,- a~. Moreover,  U I I  = a "p 

X a.a~, q = q"~a~a~, __L = ( 1 - 2XH)__UII + hDq,  
and one can derive Eq. [3.15] f rom Eq. [A.3]  
by means  o f  some simple but  t ime-consuming  
calculations. 

ACKNOWLEDGMENTS 

The work is supported by the Committee for Science 
of Bulgaria. The author is indebted to Referee A for his 
valuable comments. 

REFERENCES 

1. Gibbs, J. W., "The Scientific Papers of J. Willard 
Gibbs," Vol. I. Dover, New York, 1961. 

2. Murphy, C. L., PhD thesis, University of Minnesota, 
1966. University Microfilms, Ann Arbor, Michi- 
gan, 1984. 

3. Kondo, S., J. Chem. Phys. 25, 662 (1956). 
4. Ono, S., and Kondo, S., "Molecular Theory of Surface 

Tension in Liquids," in "Handbuch der Physik," 
Vol. X. Springer, Berlin, 1960. 

5. Rusanov, A. I., "Phase Equilibria and Surface Phe- 
nomena." Khimia, Leningrad, 1967 [in Russian ]; 
"Phasengleichgewichte und Grenzflachener- 
scheinungen.' Akademie Verlag, Berlin, 1978. 

6. Ivanov, I. B., and Kralchevsky, P. A., in "Thin Liquid 
Films" (I. B. Ivanov, Ed.), p. 49. Dekker, New 
York, 1988. 

7. Tolman, R. C., J. Chem. Phys. 16, 758 (1948). 
8. Buff, F. P., Z Chem. Phys. 23, 419 (1955). 
9. Buff, F. P., "The Theory of Capillarity," in "Handbuch 

der Physik," VoL X, p. 281. Springer, Berlin, 1960. 
10, Buff, F. P., Discuss. FaradaySoc.  30, 52 (1960). 
11. Evans, A. E., and Skalak, R., CRC Critical Rev. 

Bioeng. 3, 181 (1979). 

Journal of Colloid and Interface Science, Vol. 137, No. 1, June 1990 



CURVED INTERFACES, THIN FILMS, AND MEMBRANES, I 233 

12. Good, R. J., and Buff, F. P., in "The Modern Theory 
of Capillarity" (F. C. Goodrich and A. I. Rusanov, 
Eds.). Akademie Verlag, Berlin, 1981. 

13. Ivanov, I. B., and Toshev, B. V., Colloid Polym. Sci. 
253, 593 (1975). 

14. Kralchevsky, P. A., and Ivanov, I. B., in "Surfactants 
in Solution" (K. L. Mittal, Ed.), p. 1549. Plenum, 
New York, 1986. 

15. Seriven, L. E., Chem. Eng. Sci. 12, 98 (1960). 
16. Aris, R., "Vectors, Tensors and Basic Equations of 

Fluid Mechanics." Prentice-Hall, New York, 1962. 
17. Eliassen, J. D., PhD thesis, University of Minnesota, 

1963. University Microfilms, Ann Arbor, MI, 1983. 
18. Weatherburn, C. E., "Differential Geometry of Three 

Dimensions," Vols. I and II. University Press, 
Cambridge, 1939. 

19. McConnell, A. J., "Application of Tensor Analysis." 
Dover, New York, 1957. 

20. Podstrigach, Y. S., and Povstenko, Y. Z., "Introduc- 
tion in Mechanics of Surface Phenomena in De- 

formable Solids." Naukova Dumka, Kiev, 1985 
[in Russian]. 

21. Gurkov, T. D., and Kralchevsky, P. A., J. Surface Sci. 
Technol., submitted for publication. 

22. Buff, F. P., J. Chem. Phys. 25, 146 (1956). 
23. Rowlinson, J. S., and Widom, B., "Molecular Theory 

of Capillarity." Clarendon, Oxford, 1982. 
24. Boruvka, L., and Newmann, A. W., J. Chem. Phys. 

66, 5464 (1977). 
25. Boruvka, L., Rotenberg, Y., and Newmann, A. W., 

J. Phys. Chem. 89, 2714 (1985). 
26. Toshev, B. V., and Ivanov, I. B., Colloid Polym. Sci. 

253, 558 (1975). 
27. Markin, V., and Glaser, R., Stud. Biophys. 80, 201 

(1980). 
28. Markin, V. S., Biophys. Z 36, 1 (1981). 
29. Shuttleworth, R., J. Phys. A 63, 444 (1950). 
30. Eriksson, J. C., J. Colloid Interface Sci. 37, 659 ( 1971 ). 
31. Benson, G. C., and Yun, K. S., in "The Solid-Gas 

Interface" (E. A. Flood, Ed.), Vol. 1, p. 203. Dek- 
ker, New York, 1967. 

Journal of Colloid and Interface Science, Vol. 137, No. 1, June 1990 


