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ABSTRACT 

A general method for calculation of three-phase contact angles from interferometric experimen- 
tal data is proposed. The method is applicable for both usual and differential interferometry. It is 
specified for the case of horizontal films formed in a cylindrical capillary. The method was tested 
with model and experimental data for the meniscus profile. In particular, it is found that the 
contact angle of the meniscus coincides with the contact angle of several different lenses floating 
in the film. This fact implies that the line tension effect in this case is below the threshold of 
experimental accuracy. 

INTRODUCTION 

Contact angles (the angles subtended by three or more interfaces at their 
line of intersection) are important macroscopic characteristics of a capillary 
system. These angles, liable to direct measurement, are related by the Neu- 
mann-Young equation, and hence they give information about the interfacial 
tensions and interfacial energy. As shown by Derjaguin [ 1 ] and Princen and 
Mason [ 21, the contact angle at the periphery of a thin film also accounts for 
the interaction between the film surfaces. This idea was applied and developed 
in subsequent studies [ 3-61. 

It should be noted that the contact angle is a purely macroscopic concept. In 
the real system, sketched in Fig. 1, there is a microscopic transition region 
between a thin liquid film and the capillary meniscus (the Gibbs-Plateau bor- 
der), where the film in a microscopic scale gradually changes its thickness. 
The shape of the meniscus surfaces (away from the transition region) satisfies 
the known Laplace equation 
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(1) 

where o is the equilibrium surface tension between the two fluid phases, RI and 
R2 are the two principle radii of curvature at a point on the interface and PC is 
the capillary pressure at this point. The profile of the interfaces in the transi- 
tion region satisfies more complicated equations, accounting for the interac- 
tion between the meniscus surfaces (see e.g. Refs [ 71 and [ 81) . As illustrated 
in Fig. 1, the macroscopic contact angle, 20, is subtended by definition between 
the two elctrapolatecl meniscus surfaces, satisfying Eqn (1) [6,7]. Hence the 
contact angle 20, corresponds to a macroscopic model, representing the film 
as a membrane of zero thickness (the so-called membrane model). Sometimes 
it is preferable to use a detailed model, representing the film as a layer of finite 
thickness h [5]. In particular, the detailed model can be used for the case of 
very small contact angles, when the membrane model is not applicable, because 
the extrapolated meniscus surfaces do not intersect (see Refs [ 91 and [lo] ) . 
If the meniscus surfaces are not symmetrical (e.g. due to the action of the 
gravity) two different contact angles, 0: and 02, correspond to the detailed 
model (Fig. 1). In this paper we will restrict our considerations to the mem- 
brane model when it is applicable. 

The simplest way to determine the contact angles (both of thin films and of 
single interfaces) is to take side-view pictures of the system [ 11,121. The major 
shortcoming of this method is that the region close to the contact line does not 
appear in the picture, so that the extrapolation of the surfaces until they in- 
tersect can be connected with considerable error. This procedure can given 
correct results if the contact angle is large or if the effects of gravity are neg- 

Fig. 1. Sketch of the transition region between a horizontal thin liquid film and the capillary 
meniscus. The solid and dashed lines represent the real and the extrapolated meniscus profiles, 
respectively. 
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ligible and the surfaces are parts of spheres [ 13,141. An original modification 
of this method was developed by Mysels et al. [ 15,161 for spherical films (at 
the top of soap bubbles). 

Prins [ 171 and Clint et al. [ 181 developed a method for macroscopic flat 
films formed in a glass frame in contact with a bulk liquid. They measured the 
rise in the force exerted on the film at the moment when the contact angle is 
formed. Another method was developed by Princen [ 191 and Princen and 
Frankel [20], for the same system. They determined the contact angle from 
the data for diffraction of a laser beam refracted by the liquid meniscus. 

In this paper we will focus our attention on the interferometric methods for 
measurements of contact angles. The main feature of these methods is that 
the profile of the meniscus surfaces is determined from the data concerning 
the positions of interference fringes in the liquid meniscus. The fringes are due 
to differences in the optical paths, A, between light beams, reflected (or re- 
fracted) by two interfaces. If monochromatic light of wavelength A is used, the 
fringes of maximum or minimum intensity (brightness or darkness) are loci 
of points satisfying the requirement 

A=ii2/2, i=O, 1,2, . . . . * (2) 

where i is order of interference. There are three different ways to produce in- 
terference patterns: 

(i) Usual interferornetry ( UI). This method is illustrated in Fig. 2 (a) for 
the case of a flat thin liquid film. The interference pattern appears when the 
system is illuminated from above by monochromatic light. The light beams, 
reflected from the lower meniscus surface -& (r), interfere with the beams 
reflected from the upper meniscus surface & (F) . If n,, n, and n3 are the re- 
fractive indexes of the three neighboring phases [Fig. 2 (a) 1, then 

A=2(2, +&)h (3) 

When n2> n,, n,, then i in Eqn (2) is odd for the bright and even for the dark 
fringes. This method was used in Refs [ 21-271. 

(ii) Differential interferometry in reflected light (DIRL). The basic principle 
of differential interferometry consists of splitting the original image into two 
images [ 28,291. In the so-called shearing method only horizontal splitting is 
used, so that the two images are shifted at a distance d [Fig. 2 (b) 1. In the 
DIRL method each fringe is created by the interference of two beams, reflected 
by the surfaces Z2 ( F,F’ ) and 2; ( F,F’ ) with the same F and F' . Then 

A=2(Z, -Zh)n, (4) 

and i is odd for the dark fringes and even for the bright ones. This method was 
used in Refs [30] and [31]. 

(iii) Differential interferometry in transmitted light (DITL). In this case 
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Fig. 2. Section of the reflecting interfaces (upper part of the figure) and sketch of the resulting 
interference pattern (lower part) for the cases of usual interferometry (a) and differential inter- 
ferometry (b ) . 

each fringe is created by the interference of two beams, refracted by the sur- 
faces 2, (r,r’ ) and 2; (r,r’ ) with the same r and r’ [Fig. 2 (b) 1. Then 

d=n,[(Z,+Z,)-(Z~+Z;)]-n~(Z,-Z;)-n,(Z,-Z~) (5) 

and i is odd for the dark fringes and even for the bright ones. This method was 
applied by Zorin [ 321 and Zorin et al. [ 33 ] for flat thin liquid films. 

The calculation of the contact angle from the interference pattern is simple 
only when the interfaces are spherical [22,25-271. Otherwise the interpreta- 
tion of the data meets considerable mathematical complications. Scheludko et 
al. [ 211 approximated the shape of the meniscus around the contact line [Fig. 
2(a)] byaparabola,Z=Aor2+A,r+A2 anddeterminedtheconstantsA,,A, 
and A2 by applying Eqn (3) only to three fringes. A weakness of this method 
is that such a purely empirical approach, which does not use the Laplace equa- 
tion, Eqn ( 1 ), makes the extrapolation procedure uncertain, as pointed out by 
Haydon and Taylor [ 221. This shortcoming was avoided by Kolarov [ 341, who 
developed a method based on an approximate solution of the Laplace equation. 
A more accurate procedure was proposed by Babak [lo]. 

We formulate below a general approach for interpreting the interference 
pattern and for calculation of the contact angle based on the exact solution of 
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the Laplace equation. Then the method is specified for a horizontal thin liquid 
film in a circular capillary [Fig. 2 (a) ] and the results are compared with the 
method of Kolarov [ 341. New experimental data for horizontal films contain- 
ing lenses is proceeded by means of our method for the meniscus and by means 
of the method of Haydon and Taylor [22] for the lenses, and the results are 
compared. We hope that the general approach formulated below and its appli- 
cation for a specified system will be helpful for the utilization of the interfero- 
metric methods for the large variety of capillary systems. 

INTERPRETATION OF THE INTERFERENCE PATTERN 

General approach 

Let Fi, i= 1,2,...,N, be the location of the ith interference fringe and let AZi 
be the thickness of the liquid meniscus on the place of the respective fringe. ri, 
i= 1,2,...,N can be measured directly from the observed interference pattern or 
from its photograph. For UI a common microscope can be used, whilst a spe- 
cially designed microscope (e.g. Epival Interphako, Carl Zeiss, Jena [ 351) is 
needed for differential interferometric measurements. AZi, i= 1,2,...N, can be 
calculated from Eqns (3)-(5) depending on the method used. In all cases, 
dZi>/ A/4n, > 100 nm (A = 546 nm ). It is expected that for distances greater 
than 100 nm the interaction between the two meniscus surfaces is negligible, 
and hence the interferometric data are not affected by the film-meniscus tran- 
sition region. Then the profile of the meniscus surfaces must satisfy the La- 
place equation, Eqn (1) , which can be transformed into a second-order differ- 
ential equation [36] whose solutions for the two meniscus surfaces leads in 
principle to a theoretical expression for AZi: 

A& =dZ(ri; a! 1 ,..., (xk), i=1,2 ,..., N (6) 

where al, CY~,...,CX~ are several parameters usually connected with the boundary 
conditions at the contact line. (For example, one of these parameters can be 
the contact angle, another can be the location of the contact line, etc.) In gen- 
eral, the values of the parameters (x1, (Y 2,...,~k can be determined from the 
interferometric data (ri&i), i= l,...,N, by using the least-squares principle, 
i.e. from the condition that the function 

@1(a19.**9a,)=it1 [dZiBdZitri; a19***9~k)12 (7) 

is a minimum. 
Usually the experimental error of ri is greater than the error of A&. [The 

wavelength Iz of the monochromatic light in Eqns (3)-(5) isknownwithgreat 
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accuracy. ] Then from a statistical viewpoint it is correct to determine 
(Y~,cY~,...,cY~ from the condition for minimum of the function 

@2(al,.*.,ak)= 2 [ri-Xi(dZi; cY1,...p(Yk)]2 
i=l 

(8) 

where 

Xi(dZi; o!l,**.,(Yk), i= l,***JV 

is the inverse function of dZ in Eqn (6). 

(9) 

As far as we know, the optimization approach (the least-squares principle) 
was first introduced by Gauss in 1801 for determining the orbital parameters 
of the asteroid Ceres from data obtained by astronomic observations [46]. 
With capillary systems this approach was used by Huh and Read [ 471, and by 
Rotenberg et al. [48] for the determination of surface tension and contact 
angles from the shapes of axisymmetric fluid interfaces. The application of the 
general approach for a specified system is not a trivial problem: one has to 
develop a method for calculation of the functions @i, or Q2. 

The approach based on Eqn (7) or (8) can be applied to horizontal films 
(Fig. 2)) as well as to spherical films [Figs 3 (a) and (b) 1. The types of the 
functions dZ in Eqn (6) and X in Eqn (9) depend on the specified capillary 
system. If these functions are complicated or they are not available in explicit 
form, the minimization of Q1 or o2 with respect to the parameters (~~,...,a~ can 
be carried out numerically. It is expedient to minimize with respect to the least 
possible number parameters al,..., cyk, eliminating the other parameters of the 
interfacial profile from the condition for mechanical equilibrium at the contact 
line [ 8,13,37,42 ] : 

y+q +a, +a,=0 (10) 

The above vectorial equation is illustrated in Fig. 3 (b): y, al and a2 act tan- 
gentially to the film and the two meniscus surfaces and are equal in magnitude 
to the film tension y and the respective surface tensions a, and a2. The force 
a, is directed to the center of curvature of the contact line and is determined 
by the line tension K and the radius of curvature r, of the contact line: 1 a, I = IC/ 

r C. 
The general approach described for the calculation of contact angles from 

interferometric data is applied below for a specified system. 

Application to horizontal films in a capillary 

Let us consider a horizontal thin film surrounded by an axisymmetric liquid 
meniscus [Fig. 2 (a) 1. (Such films can be formed experimentally inside a cy- 
lindrical capillary [ 381. ) It is convenient to choose the surface of tension of 
the film to be the XY plane of the coordinate system. Let 2, (r ) and 2, (r ) be 
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Fig. 3. Sketch of a bubble or drop from a liquid of lower density, attached to an interface. The 
bubble (drop) can be attached to a capillary [ 151 (a) or it can be floating [30] (b). The vectors 
illustrate Eqn ( 10 ) . 

the generetrixes of the two meniscus surfaces; r is the distance to the axis of 
symmetry (the Z-axis) and both Z1 (r) are positive quantities by definition 
[Fig. 2 (a) 1. Then the Laplace equation, Eqn (1)) for the two meniscus sur- 
faces can be transformed to read [ 361: 

d sin 0j I sin 6” 

dr r 
= PO + ( - 1 )‘dpgzi (11) 

tan ej = dZj/&, j = 1,2 (12) 

Here Ap=p,-p, =p2-p3 is the difference between the mass densities of 
phases 2 and 1 (phase 3 being taken as identical to phase 1) , g is the acceler- 
ation due to gravity, o is the meniscus surface tension and PO is the value of 
the capillary pressure, PC, on the level of the film (2~0). Obviously, the last 
term in Eqn (11) accounts for the contribution of the hydrostatic pressure, 
and 0, (j= l,2) are running slope angles. 

According to the membrane model of the film-meniscus transition region 
the two meniscus surfaces intersect at the contact line. Hence 

(13) 



306 

where r, is the radius of the contact circumference. Besides, if phases 1 and 3 
are identical, the vertical projection of the vectorial Eqn (10) reads osin 
& ( rC) = asin & ( rC ), and therefore 

&(r,)=&(r,)=& (14) 

Equations (13) and (14) serve as boundary conditions for the differential 
equations (11) and (12). 

It is convenient to introduce dimensionless variables 

r=qr, XC =9rC,y1 =9.G,y2 =9&, P=P0190 

where the parameter 

q= (&lo) 1’2 

has dimension of reverse length. Then Eqns (11 )- (14) take the form 

sin 0, dsin 0j 

dx + x 
=P+ (-1)jYj 

tan tYj = dyj/dx, j= 1,2 

Yl(&)=Y2k)=o 

elw=e2z(d=ec 

(15) 

(16) 

(17) 

(13) 

(19) 

(20) 

Now it is easy to solve numerically the differential equations (17) and (18) 
along with the boundary conditions (19) and (20) (e.g. the numerical method 
proposed by Hartland and Hartley [ 391 can be used). At given values of x,, 0, 
and P the numerical integration starts from the point x = x,, yj = 0 (j = 1,2 ) . In 
this way one can calculate the function 

AY= y(~;x,,e,,p)=~,(x;x,,e,,p)+Y~(x;~,,e,,p) (21) 

determining the dimensionless thickness of the liquid meniscus. The inverse 
function 

r=x(dY;r,,e,,p) (22) 

expresses the (dimensionalized) distance to the axis of symmetry correspond- 
ing to meniscus thickness dy. Then if 

Ayi =qAZi = is i= 1,2,...,N 
2 

(23) 

are the dimensionalized experimental UI data for the meniscus thickness [cf. 
Eqns (2), (3) and (IS)], the quantities 

Xi=X(Ay’.X 8 P) t, c, c, (24) 

will be the calculated theoretical values for the positions of the interference 
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fringes. In fact, Eqn (24) is a dimensionalized version of Eqn (9), and it is 
seen that the parameters a! 1 ,..., CQ in Eqn (9) in our case are x,, 0, and P. Ac- 
cording to the general approach described above, these parameters can be de- 
termined by minimization of the function 

(25) 

where (xi, dyi), i= 1,2,...,N, are couples of experimental values for the ith fringe 
[cf. Eqn (8) 1. In order to start the minimization procedure a zeroth-order 
approximation (x, (O) ,Od”’ ,PCo)) for the parameters (x,,&,P) is needed. Let R 
be the radius of the capillary in which the film is formed, and let r-do) be an 
approximate estimate of r, ( rc (O) should be placed somewhere between the first 
interference fringe and the film of uniform degree of darkness). Then one can 
use for the zeroth-order approximation the values xi”’ =qr~“),8~o) = 
arcsin (ri”/R) and P (O) = 2/ (qR ). Another method for obtaining a very accu- 
rate zeroth-order approximation for small angles (in the case of UI or DIRL) 
is described in Appendix I. The error in the values of x,, 0, and P thus found, 
which is due to the random experimental error of the data for Xi in Eqn (25)) 
can be estimated as explained in Appendix II. 

We carried out the minimization of @(x,,&,P) in Eqn (25) by using the 
Hooke-Jeeves method [ 44,491. This numerical method consists of the follow- 
ing. Steps of appropriate initial length dx,, de, and dP are chosen along the 
three axes in the space of the variables 3t,, 0, and P. In this way a three-dimen- 
sional rectangular lattice of constants &, de, and dP is defined. Then the 

TABLE 1 

Three sets of ideal “experimental” data for ri=x,lq and AZi=AyJq* The values of r,=X,fq and 
P,,=qaP are the same for the three sets: r,= 20 pm and PO=300 Pa. The values of the other 
parameters usedare: a=30 mN m-‘, q=5.716 cm-‘, ii=O.546~ and n2=1.334 

i Set 1: f&=0.3’ Set2: f?,=l’ Set 1: &=lO” 

ri (pm) AZi (~1 Fi (Pm) AZi (pm) ri (W) AZi (pm) 

1 22.796 0.10232 21.957 0.10232 20.290 0.10232 
2 24.187 0.20465 23.238 0.20465 20.579 0.20465 
3 25.274 0.30697 24.275 0.30697 20.867 0.30697 
4 26.202 0.40929 25.173 0.40929 21.155 0.40929 
5 27.028 0.51162 25.980 0.51162 21.441 0.51162 
6 27.780 0.61394 26.718 0.61394 21.727 0.61394 
7 28.477 0.71627 27.405 0.71627 22.012 0.71627 
8 29.129 0.81859 28.050 0.81859 22.296 0.81859 
9 29.745 0.92092 28.660 0.92092 22.580 0.92092 

10 30.330 1.02324 29.241 1.02324 22.862 1.02324 
11 30.889 1.12556 29.797 1.12556 23.143 1.12556 
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values of @(x,&P) in the initial point (the zeroth approximation) and in its 
nearest neighbors in the lattice are calculated. By comparison of these values 
one can determine the direction of faster decrease of @(x,,&,P), as explained 
in Refs [ 44 and 491. Then a step is made in this direction and the behavior of 
0 (x,&P) in the neighboring lattice points is studied again. The procedure is 
repeated until a minimum value of @ is found (the path from the initial point 
to the point of minimum @follows the trajectory of faster decrease of 0). Then 
the steps &, de, and dP are decreased and the procedure is started again from 
the point of minimum 0 in order to find the coordinates of this point with 
higher accuracy. The program is stopped when dx,, de, and LIP become less 
than the random experimental error of the respective quantities. The program 
is quickly convergent (e.g. the processing of the data contained in Table 1 by 
IBM PC XT takes less than 1 min 1. 

RESULTS AND DISCUSSION 

Comparison with model meniscus profiles 

A straightforward way to check the method for calculation of the contact 
angle is the following. At given values of the parameters 0,, zc and PO one can 
find by numerical integration the respective solution of Eqns (17) and (18) 
determining the meniscus profile. This means that the function X in Eqn (22) 
is found. By using Eqn (23) for dy, one can calculate the exact positions, xi 
(i= l,...,N), of the interference fringes. Thus an ideal set of “experimental” 
data (xJyi) is provided. The test of the minimization procedure consists of a 
reconstruction of the meniscus profile from the ideal data (nJyi), i= l,...,N, 
and especially in a comparison of the values of 0,, x, and P, characterizing the 
restored and the original profiles. 

Table 1 contains three test sets of ideal “experimental” data; corresponding 
to three values of the contact angle: t&- -0.3, 1 and 10”. (For t9,>10” UI is 
difficult to apply owing to the very close location of the fringes, and it is ex- 
pedient to use differential interferometry.) The values of the parameters used 
to provide the data in Table 1 are typical for foam films formed in a capillary 
(see e.g. Refs [ 241 and [ 341) and A = 546 nm corresponds to the green line of 
the Hg spectrum. 

The values of e,, r, and PO, determined by means of minimization procedure 
from the data in Table 1, are compared with the exact values in Table 2. A 
comparison is also made with the method of Kolarov [ 341 for interpreting the 
interferometric data. This method consists of the following. If the slope of the 
meniscus surfaces and their gravitational deformation are negligible, one can 
write 

sin B,xtan en, h-y (26) 
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TABLE 2 

Comparison of the values of 0, r, and PO, calculated by the minimization procedure proposed in 
this paper and by the method of Kolarov [ 341, with the exact values of these three parameters for 
the three test sets in Table 1 

Set Method e, (“1 r, (P) P0 (Pa) 

Exact 
Minimization 
procedure 
Kolarov [34] 
Exact 
Minimization 
procedure 
Kolarov [34] 
Exact 
Minimization 
procedure 
Kolarov [ 341 

0.3000 

0.2996 20.00 300.0 
0.2481 19.93 301.5 
1.0000 20.00 300.0 

0.9999 20.00 300.0 
0.9862 19.99 301.6 

10.0000 20.00 300.0 

10.0033 20.00 300.2 
10.1550 20.00 306.6 

20.00 300.0 

Then an integration of Eqn (17) along with Eqns (18) and (26) yields [ 24,341: 

dy 1 x-gzPx2+B (27) 

where B is a constant of integration, and y=yl=yz owing to neglecting the 
gravity effect. The integration of Eqn (27) gives 

Y-_y(x,)=$2 -xy) +B In (x/x1) (23) 

where 3tl is the dimensionalized radius of the first fringe. Then 

Yi=iXi+B (29) 

where 

yi=Y(xi)-Y(X,) 

ln(%l&) 

,XiZ +-x: 
21n (Xi/Xl )’ 

i= 2,3,...,N 

Hence the data for Yi versus Xi should obey a linear dependence, whose slope 
and intersect yield the values of P and B. Then x, is determined by solving the 
equation 

y(xI)+;(x: -xt) +B In (x,/xl) =O (30) 

and from Eqn (27) one can calculate the contact angle [ 341: 



(31) 

Thus the method of Kolarov provides a simple procedure for calculation of the 
contact angle of horizontal films at the cost of some approximations. A com- 
parison with the exact values of &, r, and PO in Table 2 shows that the method 
of Kolarov works very well for ideal “experimental” data, except the case of 
small contact angles (0, < 0.3 ’ ) . 

However, the real experimental data always contain a random error due to 
the inaccuracies of the measurements. The main sources of random error are 
the measurements of the positions ri of the interference fringes of maximum 
intensity (brightness or darkness). 

In order to study a situation closer to the real one we introduced a randomly 
distributed error into the data for ri (i= 1 ,...,N) in Table 1. We used a generator 
of random quantities and assumed a gaussian distribution of the error with 
standard deviation dri=0.02 pm. The ideal “experimental” data modified in 
this way are shown in Table 3. These data were also proceeded by using the 
minimization procedure proposed in the previous section and the procedure of 
Kolarov [ 341. The calculated values of & r, and PO are compared with the 
exact values in Table 4. A comparison between Tables 2 and 4 demonstrates 
that the results of the procedure of Kolarov [ 341 are more strongly affected by 
the random error of ri. We consider that this fact can be explained at least in 
part by the special role of the first interference fringe in the method of Kolarov 
[see Eqns (28)-(30) 1. Nevertheless, except for very small 0, (&<:0.3” ) the 

TABLE 3 

The three sets of data in Table 1 modified by introduction of a randomly distributed error in the 
values of ri with standard deviation Ari = 0.02 pm 

i Set 1: &=0.3’ Set 2: 0,=1’ Set 1: 0,= 10” 

ri (pm) Azi bud ri (Pm) AZi (w-d ri (pm) AZi bd 

1 22.782 0.10232 21.870 0.10232 20.275 0.10232 
2 24.193 0.20465 23.286 0.20465 20.582 0.20465 
3 25.262 0.30697 24.307 0.30697 20.862 0.30697 
4 26.189 0.40929 25.208 0.40929 21.165 0.40929 
5 27.037 0.51162 25.959 0.51162 21.447 0.51162 
6 27.768 0.61394 26.678 0.61394 21.742 0.61394 
7 28.487 0.71627 27.443 0.71627 22.000 0.71627 
8 29.135 0.81859 28.066 0.81859 22.288 0.81859 
9 29.732 0.92092 28.595 0.92092 22.593 0.92092 

10 30.341 1.02324 29.219 1.02324 22.851 1.02323 
11 30.886 1.12556 29.835 1.12556 23.141 1.12556 
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TABLE 4 

Comparison of the values of &, r, and PO, calculated by the minimization procedure proposed in 
this paper and by the method of Kolarov [34], with the exact values of these three parameters for 
the three test sets in Table 3 

Set Method e, (0) rc (PI PO (Pa) 

Exact 
Minimization 
procedure 
Kolarov [34] 
Exact 
Minimization 
procedure 
Kolarov [ 341 
Exact 
Minimization 
procedure 
Kolarov [ 341 

0.3000 20.00 300.0 

0.2417 19.90 299.9 
0.1134 19.70 301.6 
1.0000 20.00 300.0 

0.8856 19.87 303.6 
0.5512 19.45 310.6 

10.0000 20.00 300.0 

9.8038 19.99 355.8 
9.8427 19.98 389.8 

method of Kolarov can provide a good zeroth approximation for the general 
minimization procedure. A method for obtaining a zeroth approxir ation, valid 
also for small S,, is proposed in Appendix I. 

Experiment with a horizontal film containing lenses 

To check the interferometric method and the minimization procedure we 
carried out some experiments with horizontal foam films. The film was formed 
inside a capillary of inner radius 1.8 mm. We used 0.1 mol l-1 aqueous solution 
of sodium dodecyl sulfate. The surface tension of the solution was o= 29.9 mN 
m -’ at the temperature of the experiments, 25°C. Under these conditions dp 
in Eqn (16) was 0.998 g cm-l. The construction of the measurement cell (the 
one containing the film) was the same as in Ref. [ 401. Measures were taken 
to allow saturation of the vapors around the ftirn and the meniscus. The film 
was illuminated from above (through the objective of the microscope) by 
monochromatic light of wavelength 1= 546 nm. 

The equilibrium thin film (of approximate thickness 5 nm) contains several 
lenses of radii between 10 and 30 pm (Fig. 4). Owing to the usual interference 
circular fringes are observed in the meniscus as well as in each lens. 

We measured the radii of the first 11 interference rings (both dark and bright ) 
in the meniscus along six different radial directions. The averaged values of 
these radii are presented in Table 5. Then we processed these data by numer- 
ical minimization of the function @in Eqn (25 ) and determined 0, = 1.9 + 0.1’) 
r, = 926.4 + 0.9 pm and P, - - 33 f. 4 Pa (the errors are estimated as explained in 
Appendix II ) . 



Fig. 4. A photograph of the usual interference pattern produced by several liquid lenses floating in 
a horizontal foam film in the vicinity of the circular contact line between the film and the capillary 
meniscus. The length of a scale division is 10 ,um. 

TABLE 5 

Data for the radii of the interference rings in the meniscus in Fig. 4, measured by means of a 
microphotometer 

Interference Fringe radius, 
order, i ri (w) 

1 928.0 
2 929.4 
3 930.6 
4 932.0 
5 933.1 
6 934.5 
7 936.0 
8 937.0 
9 937.9 

10 939.1 
11 940.1 

To compare the contact angle of the meniscus with the contact angles of the 
lenses we also measured the radii of the interference rings of five lenses in Fig. 
4. Then we determined the contact angle of each lens using the following pro- 
cedure [ 411. 

An estimate shows that the gravitational deformation of the surfaces of a 



313 

Fig. 5. Section of the spherical upper surface of a lens: Oz is the axis of symmetry; 
RL are the coordinate of the center 

and the radius of the sphere. 

lens is negligible, and hence they 
upper surface of a lens then reads 

r2+ (Z+Z,)2=R; 

are parts of a sphere. The equation of the 

(32) 

where RL is the of curvature of the 
in Fig. 5. The of the at r = ri will be 

dZi=2(R~-r2)“2-220 

of Eqn of 
to 

-& (RE -r3’/2-_Zo (34) 
2 

From Eqn (34) one derives 

E= (RE -rF+k)1’2- (RE -rF)lj2, ka 1 

Eqn (35 ) can be transformed to read 

(35) 

4n,(rf+k -rS> kA 
l/2 

-- 
kA 16% 

(36) 

Then RL can be calculated for each pair of rings (i z K). The averaged values 
of RL found in this way are presented in Table 6 for the different lenses. Then 
2, can be calculated from Eqn (34) for each ring. Using the determined mean 
values of RL and 2, one can calculate the contact radius rt of the lens by setting 
up Z=O in Eqn (32): 

rk = (RE -2i)1/2 

Finally, one can calculate the contact angle of the lens 

f3,” = arcsin ( rk/RL) (37) 
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TABLE 6 

Values of the radius of curvature, RL, of the contact radius, r,L, and of the contact angles, e,“, for 
five different lenses in Fig. 4 

Lens &+3 (pm) r,” fO.l (pm) e,“*0.02 (0) 

1 588 19.4 1.89 
2 607 20.0 1.89 
3 673 22.4 1.91 
4 838 28.0 1.91 
5 879 29.4 1.92 

The determined values of r,” and 0: are also presented in Table 6. One sees 
that, in spite of the difference in the contact radii of the lenses, their contact 
angles coincide in the framework of the experimental accuracy. Hence a line 
tension effect on the lens contact angle is not detected in this experiment. 
[Such an effect could in principle exist because of the force balance equation, 
Eqn (lo), whose horizontal projection in this case reads 2~7 cos t9,” = y+ 

Iclrc”.l 
In addition, the contact angles of the lenses, 0,” = 1.90 2 0.02’) turns out to 

be in a good agreement with the contact angle of the meniscus, 0, = 1.9 5 0.1’) 
determined independently from the interference fringes in the meniscus by 
using the minimization procedure. 

CONCLUDING REMARKS 

This paper is devoted to the general procedure for the calculation of three- 
phase contact angles from interferometric data. The theoretical curve deter- 
mining the profile of the liquid meniscus is in principle known: it is a solution 
of the Laplace equation, depending on several parameters which are connected 
with the boundary conditions at the contact line. These parameters (one of 
them the contact angle) can be determined by fitting the interferometric data 
to the theoretical curve. According to the least-squares method the condition 
for best fit is expressed as the condition for a minimum of the functions a1 or 
QZ defined by Eqns (7) and (8). When the solution of the Laplace equation 
cannot be expressed analytically, the minimization of the function @i (or &) 
should be carried out numerically along with a numerical solution of the La- 
place equation. All available conditions for mechanical equilibrium at the con- 
tact line (like Eqn (10) or the buoyancy force equation [ 421) must be used to 
decrease the number of the unknown parameters. 

This general approach can be applied both to horizontal films (Fig. 1) and 
to curved films [Fig. 3 (b ) 1. The interferometric data can be provided by the 
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usual interference [Fig. 2 (a) ] as well as by differential interference (in re- 
flected or transmitted light) [Fig. 2 (b ) 1. 

The minimization procedure was specified for horizontal films formed inside 
a cylindrical capillary. The method was checked against model data for the 
meniscus profile, and it turned out that the minimization procedure reproduces 
the parameters of the profile with a high accuracy. The general method also 
works well for small contact angles (0, < 0.3” ) where the approximated method 
of Kolarov can fail. The minimization procedure was also tested for a photo- 
graph of a horizontal film containing liquid lenses (Fig. 4). The contact angle 
of the biconcave meniscus (around the film) calculated by the minimization 
procedure was in good agreement with the contact angle of the lenses. The 
latter does not depend on the contact radius of the lenses, which means that 
the line tension effects in this case are below the threshold of the experimental 
accuracy. 

Summarizing the results of this paper we propose the following scheme for 
handling interferometric data with horizontal films in a capillary. 

(1) The method described in Appendix I is used to calculate the zeroth-order 
approximation for the contact angle 0,, the contact radius r, and the capillary 
pressure P,, from the interferometric data. 

(2) The gravity deformation of the meniscus is estimated by means of Eqn 
(Al7 ). If the gravity effect is negligible, then the values of O,, rc and P,, provided 
by the zeroth approximation can be regarded as accurate. 

(3 ) If the gravity effect cannot be neglected, the minimization procedure 
based on Eqn (25) is used to determine &, r, and PO. 

(4) The errors in the calculated values of PO, r, and 0, are determined by 
Eqns (A19), (A21) and (A22). 

It should be noted that in all cases reported in this paper, when we applied 
the general minimization procedure, the calculated values of & r, and PO are 
practically the same as those calculated by the method proposed in Appendix 
I. 

Results for the application of the minimization procedure for floating bub- 
bles, like that in Fig. 3 (b ), will be soon published [ 431. 
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APPENDIX I 

Zeroth-order approximation for the parameters 19,, rp, and PO 

The minimization procedure based on Eqn (25) is rapidly convergent if a 
good zeroth-order approximation is used. We obtained such an approximation 
in the following way. 
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In the vicinity of the contact line, where the interference rings are observed, 
usually P >> yi (i= 1,2). Then an approximate form of Eqn (17) reads 

-$ xsin f3) = Px (Al) 

We omitted the subscript on 0 in Eqn (11) because there is no difference be- 
tween the upper and lower meniscus surfaces when the effect of gravity is ne- 
glected. From Eqns (14) and (Al) one easily derives 

Q sin 0=+X+; 

where 

(AZ) 

Q=x, sin &- &XC (A3) 

is a constant of integration. Besides, for 8 < 10 ’ one can use the equation (with 
relative error less than 0.0001) 

dy s=tan &sin B++3in3 8 (A4) 

A substitution from Eqn (A2) in Eqn (A4), followed by integration with re- 
spect to x, yields 

y(x)= 3 (x’-x:)+(l+iPQ) :(x2-rf)+Qlnf 
Q 

+$f$$+ya 
a 

(As) 
wherey,=y(x,). At the contact line y(x,) =O and then Eqn (A5) gives 

0 z 3 (x:-x:)+(l+>Q) z(xE-X:)+Qlni 
a 

Q 
+- 43 $$+y* =o (A6) 

a 

Now let X, be a given number (we used for X* a crude preliminary estimate 
for the contact radius CC,). The dimensionalized local thickness of the meniscus, 
d Y = q&T, can be expressed as 

~YkP,&s~a) =~Y(~;P,QcY~J (A7) 

Hence d Y depends on the three unknown constants P, Q and ya in Eqn (A5 ). 
According to Eqn (7) these constants can be determined from the condition 
for minimum of the function 
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(AS) 

where xi and dyi (i= 1,2,...JV) are experimental data for the interference fringes. 
(ri = xi/Q is measured directly and dyi is calculated from Eqn (23 ) at known 
interference order i.) 

A necessary condition for minimum of @I (P,Q,ya) is 

The substitution of Eqn (A8) in (A$) along with Eqn (23) yields 

GP+w~Q-~~~Y~=B~ 

~21P+~22Q+~)23~a=82 

~J’+~12&+~13~a=#4 

where 

(AlO) 

(All) 

In spite of the fact that Eqn (AlO) has the form of a set of three linear equa- 
tions for the determination of P, Q and y*, the set (AlO) is not linear; some of 
the coefficients cy,, and j?,,., depend on P and Q. To solve the problem we used 
iterations. At the beginning we set P= Q=O in Eqn (All) and then solved Eqn 
(AlO) for P,Q and ya. The values of P and Q obtained were substituted again 
into Eqn (Al 1) and the calculated values of CX~,, and pm were used to find the 
next iteration for P, Q and y* from Eqn (AlO) and so on [lo]. With the values 
of P, Q and y* determined in this way we calculated X, and 19, from Eqns (A3 ) 
and (A6). 



The above procedure for the determination of &, r, = xc/q and PO = oqP turned 
out to be very accurate: for all sets of experimental or model data for ri and dZi 
presented in this paper the procedure based on Eqn (AlO) gave the same val- 
ues of B,, r, and PO as the fuU numerical minimization procedure based on Eqn 

(25). 

APPENDIX II 

Effect of gravity and estimation of random errors 

An integration of Eqn (17) yields 

sins,=~~+~+(-l)~~jy,(C)idl 

XC 
(A12) 

where q is defined by Eqn (A3). By using dyj/dx z sin 6’j as an approximate 
version of Eqn (18) one derives from Eqns (19) and (A12) 

Yj(X) =Y’O’(X) +Yjg’(X),j=1,2 (A13) 

with 

y”‘(x) =iP(x'-x,') +Qln (n/x,) (A14) 

determining the meniscus profile in the absence of gravitational deformation 
and with 

yi’g’(z) = (-1)’ 
LX 

I I y yj(C)Cddc (A15) 
xc XC 

expressing the effect of gravity on the meniscus shape. 
The interference fringes are located between z, and xN, where N is the num- 

ber of the last accounted interference fringe. Hence IC, < x < %N is the domain 
of interest when dealing with the interferometric data. In view of Eqn (23) one 
has 

(Al61 

The substitution of Eqn (A16) into the right-hand side of Eqn (Al5) yields 

W y@)(X)=(_l)j- J 
32% 

x&-X: -2x,2In 3 
XC 

(A17) 

Then the effect of gravity can be estimated by means of the equation 



Iy,@)(xN) 1 NqA XL-zf -2z,21n(xN/xC) 

Y ‘“‘(%v) ’ 8n, P(.&-x,2) +4Qln(xN/zC) 
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w3) 

The right-hand side of Eqn (A18) can be calculated by substitution of the 
values of zC, P and Q determined by the xeroth-order approximation described 
in Appendix I. 

The three parameters P, Q and y* satisfy Eqn (AlO), and the errors in these 
parameters can be estimated by means of the standard formulae [ 45 ] 

(Al91 

where @I is defined according to Eqn (AS), D = 1 a,, 1 is the determinant of 
the set (AlO) and 

A 11 =a22a33 -%Ba32, A 22 = Qll a33 - ~3~~31,&3 = a22a11- a21 (~12 

The substitution x = x, in Eqn (A14) leads to 

(A201 

which is an approximate version of Eqn (A6). Equation (A20) can be used to 
estimate the error in xC. From Eqn (A20) along with Eqns (15) and (A12) one 
calculates 

ax X: -x: ax, ln(x,/xC) aa c=- -1 
ap 

-=- 
4sin 6, ’ aQ - sin 9, ' ay, sin e, 

These expressions, in conjunction with Eqn (A19), determine the error in x,: 

(A21 1 

Analogously from Eqn (A3) one determines the error in the contact angle 0,: 
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