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ABSTRACT 

In this work we develop the basic idea that the mechanical properties of a curved Gibbsian 
dividing surface are characterized, not only by the surface tension, but also by surface moments. 
It is shown that an additional surface bending moment term is to be introduced in the interfacial 
balance of the force moments at a spherical dividing surface. The existence of surface bending 
moment leads to a difference between the dilational surface energy and the surface tension. These 
two quantities are expressed in terms of integrals over the components of the pressure tensor for 
an arbitrarily chosen spherical dividing surface (not necessarily the surface of tension). The re- 
lation between dilational surface energy and surface tension is generalized for interfaces with an 
arbitrary curvature. A similar relationship was derived for a surface shearing energy, which is 
important for interfaces exhibiting shearing elasticity, like biomembranes. The relation between 
the dilational surface energy and the interfacial density of the grand potential is discussed. The 
results can be useful for the analysis of data for microemulsions, interfacial waves, vesicles and 
biomembranes. 

INTRODUCTION 

The effect of the curvature on the interfacial tension can affect the occur- 
rence of many processes in microheterogeneous systems, such as formation of 
microemulsions and phase nucleation. During the last decade the interest in 
curvature effects has increased due to the intensive studies of microemulsions. 

The purpose of the present work is to demonstrate the difference between 
surface tension and surface dilational energy for curved interfaces. These two 
quantities coincide for a flat interface or for the so called “surface of tension”, 
introduced by Gibbs [ 11. For interfaces with low surface tension (like micro- 
emulsions) the thermodynamic surface of tension can be located away from 
the real transition zone between the two neighbouring phases. In this case it is 
more appropriate to use other dividing surfaces, different from the surface of 
tension. Then one has to account for the difference between surface tension 
and surface dilational energy, which is due to the presence of surface moments. 
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In the first part of this paper we will consider the simpler case of spherical 
interfaces. The difference between surface tension and surface energy is more 
pronounced for arbitrarily curved interfaces; in this case the surface tension 
is, in general, a tensorial quantity, whereas the surface energy is a scalar quan- 
tity, connected with the invariants of the tensors of the surface tension, surface 
moments and surface curvature. The resulting relationships are the subject of 
the second part of this paper. The thermodynamic aspect of the results (and 
especially the connection between surface dilational energy and surface den- 
sity of the grand thermodynamic potential) is discussed at the end of the paper. 

Many works have been devoted to the mechanics and the thermodynamics 
of curved fluid interfaces [l-13], but because of the diversity of approaches 
and notations an outline is needed. 

The theory of curved interfaces originates from the work of Gibbs [ 11. Ac- 
cording to him the work of deformation of an elementary parcel, AA, of an 
interface, can be written in the form 

6w, = y&x + B&H+ 96D (1) 

Here 6w, is surface mechanical work per unit area, aa! =G(dA)/dA is the rel- 
ative dilation of the element dA from the dividing surface, and 

H= 3 (c, +cz), D=j (c, -c,) (2) 

where cl and c2 are the two principal curvatures of this surface; H and D are 
the mean and the deviative curvatures (the latter being a measure for the local 
deviation of the surface from spherical shape). One sees from Eqn (1) that 
y& is the work for simple dilation (SC ,=&,=O) of the interface, BSH is the 
work for simple bending of the interface (&, = 6c2, aa! = 0), and SD is the work 
for simple torsion of the interface (&, = -6c2, &.=O) - see Fig. 1. B and 19 
are called bending and torsion moments, respectively [ 21. When all chemical 
components are soluble in at least one of the bulk phases, y equals the density 
of the surface excess of the grand thermodynamic potential (see, e.g., Eqn 
(158) in Ref. [ 31). In other words, y can be perceived as the surface energy per 
unit area. When the Gibbsian dividing surface is chosen to be the surface of 
tension, the respective value ys of y can be interpreted as the mechanical sur- 
face tension. 

Some authors [2,13] have used in Eqn (1) variables H and K=H2-D2 
instead of the variables Hand D in the Gibbs approach; the variables Hand D 
have the advantage of providing simple geometrical interpretation (cf. Fig. 1 ), 
and moreover, the bending and torsion moments B and 8 have the same phys- 
ical dimension. 

For isotropic deformations of a spherical interface 6D =O and the other 
quantities in Eqn (1) do not depend on the position in the surface. Then an 
integrated form of Eqn (1) reads 
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Fig. 1. Independent modes of surface deformation. 

SW, = y&A +ABGH (3) 

where 6Ws=A6w,, A being the surface area. On the other hand, Kondo [4,5] 
and Rusanov [ 61 have derived (by using different approaches) an alternative 
expression for 6 W, 

(4) 

where a is the radius of the spherical dividing surface and the derivative [ dy/ 
&z] corresponds to a change of a at a fixed physical state of the system. For a 
spherical surface H= - l/a and from Eqns (3) and (4) one finds [3] 

87 B=a2 [-& (5) 

y and B can be expressed as integrals over the components of the pressure 
tensor by the so called “hydrostatic approach”, developed in Refs [ 5-71. Our 
analysis below is based mainly on this approach and therefore we will consider 
its physical basis in more detail. 

Imagine a spherical drop or bubble, phase cy, surrounded by another fluid 
phase, j3. Due to the symmetry of the system the pressure tensor has only three 
nonzero components; P,, and Pee= Pw, where r, 8 and q are polar coordinates 
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(r is the distance to the center of curvature). The force (per unit area), acting 
normally to any surface, r=constant, is P, and it is called the normal com- 
ponent of the pressure tensor PN(r); tangentially to the same surface acts 
PT (r) = PO@= Pw, which is called the tangential component of the pressure 
tensor. 

Let us consider a portion of the system, enclosed between two spheres of 
radii r, and rp The total force acting on the surface, hatched in Fig. 2, in a 
direction, perpendicular to it, is [ 51 

‘B 

d&J Pgdr 
s 
rm 

(6) 

The respective force moment is given by 

(7) 

Following Gibbs [ 1 ] one can define an idealized system by introducing two 
bulk phases, a! and /I, homogeneous up to the spherical dividing surface of 
radius a,. Then one can consider the dividing surface as a membrane (of zero 
thickness) with surface tension yS. Then the counterparts of Eqns (6) and (7) 
for the idealized system are 

IDEALIZED 

SYSTEhl SYSTEM 

V 
Fig. 2. Real and idealized two-phase system of spherical symmetry. 
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(8) 

(9) 

where 

Ps(r) = 
{ 

P,forr<a, 
PBfor c-a, 

is the pressure.in the idealized system. The requirement for the idealized sys- 
tem to be mechanically equivalent (in terms of force and moment) to the real 
one, yields [ 5 ] 

v 

744, = s 
p,-P,) rdr (10) 

m 

rfl 

y,az= s (P,-P,) r2dr (11) 
ra 

where Eqns (6)- (9) have been utilized. Equations (10) and (11) can be con- 
sidered as a set of two equations determining yS and a, [ 91. In particular, 

a* = (r (P,-PT)r2dr r (Fs-P,)rdr) 
ro! lb 

is the radius of the surface of tension. 
The condition for equivalence between the idealized and the real systems 

with respect to the mechanical moment can be analogously derived for an ar- 
bitrary spherical dividing surface of radius a (not necessarily the surface of 
tension) [ 6,9] : 

‘B 

p”= 
s 

(P-P,)r” dr (12) 
m 

where 

P= 
1 

P,forr<a (13) 
Pa for r> a 

Note that y in Eqn (12) is, in general, different from yS, which satisfies not 
only Eqn (12) but also the force balance, Eqn (10). 
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The differentiation of Eqn (12) with respect to a for a constant physical 
state of the system (fixed PT, P,, P,, r, and rs) leads to [4,6] 

dY 2Y 
[ 1 aa +,=pa-P, (14) 

which is the generalized form of the Laplace equation, first derived by Kondo 
[ 41. On the other hand, the condition for hydrostatic equilibrium [ 5,8,9] 

d(r2Cdz2 rP 

dr 
T (15) 

integrated between r, and rB along with the force balance Eqn (lo), yields 

?=pa -Ps 
8 

(16) 

it is supposed that . The comparison 
tween Eqn (which is valid every dividing surface) and Eqn shows 
that 

(17) 
a=* 

at the surface with Eqn (5) implies 
that zero at the surface 

Eqns and one derives 

dy 2 zi+x y-2=o (18) 

where 

x=a/a,, Y=YlYs (19) 

The solution of Eqn (18) along with the boundary condition y (1) = 1, reads 

y(x) ++; x (20) 

This equation, first derived by Kondo [ 41, represents the dependence of the 
interfacial tension on the choice of the dividing surface for a given physical 
state. Then from Eqns (5), (19) and (20) one can find the respective depen- 
dence for the bending moment B [ 31 

B B-X3-1 -~ 
=2ya 2x3+1 

(21) 

Equations (20) and (21) are illustrated graphically in Fig. 3. Equation (20) 
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Fig. 3. Dependence of the dilational energy y and surface moment B on the position of an arbi- 
trarily chosen spherical dividing surface under constant physical state. 

lies on the basis of the thermodynamic analysis of the curvature dependence 
of the surface tension (see Ref. [ 5 J for details). 

In summary, according to the existing hydrostatic theory of spherical inter- 
faces the idealized system is mechanically equivalent to the real one [with 
respect both to the acting forces and to the force moments - see Eqns (10) 
and (11) ] only for one specially chosen dividing surface, the surface of tension. 
In spite of the fact that y can be defined properly for each spherical dividing 
surface, it can be interpreted as the hydrostatic surface tension only for the 
surface of tension. Indeed, the moment balance, Eqn (12), [giving as a corol- 
lary Eqn (14 ) 3, holds for all dividing surfaces, whereas the force balance, Eqn 
(lo), is satisfied only at the surface of tension. However, as pointed out by 
Miller [ 10 1, for interfaces of low surface tension (like critical emulsions and 
micro-emulsions), the mathematical surface of tension can be located far away 
from the real transition region between the two phases; then it is more appro- 
priate to use dividing surfaces, other than the surface of tension. 

Our aim in this paper is to construct the idealized system in such a way, that 
the condition for mechanical equivalence to the real system (with respect both 
to the forces and to the force moments ), be fulfilled for every dividing surface 
(not necessarily the surface of tension.) In this way a hydrostatic surface ten- 
sion, a, which is different from y, is defined for every dividing surface. The 
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difference between o and y turns out to be proportional to the surface bending 
moment, B. The resulting extended theory contains as a special case all equa- 
tions quoted above in this section. In addition, some equations, which are known 
to hold at the surface of tension, are generalized for every dividing surface and 
some new relationships are derived. We believe this analysis will be useful for 
the studies of microemulsions, where the use of the surface of tension is not 
convenient and bending moment effect [ 10,111 as well as the effect due to the 
entropy of mixing [ 121 is important. The problem about the difference be- 
tween interfacial tension and interfacial excess free energy [ 131 is discussed 
at the end of the paper. 

BENDING MOMENT OF A SPHERICAL INTERFACE 

We postpone consideration of the general formalism to the next section and 
here we will restrict our treatment to uniform spherical interfaces. In this case, 
besides the surface tension (denoted now by a), we will ascribe to the idealized 
system a surface bending moment M, acting on the dividing surface in Fig. 2. 
Then instead of Eqns (8) and (9) one can write for the force and moment in 
the idealized system 

rfi 

de Prdr-aad 
s 

(22) 
rcr 

‘B 

de 
I 

Pr2 dr- cru2dB+ Mud0 (23) 
rcl 

In view of Eqns (6) and (7)) the conditions for mechanical equivalence be- 
tween the idealized and the real system now read 

‘B 

aa= 
I 

(P-P&r dr (24) 
ra 

rs 

ou2-Mu= 
5 

(P-Pr)r2 dr (25) 
rcr 

Comparison of Eqns (12) and (25) leads to the following connection between 
y,oandM 

(26) 

Therefore, y but not ts will satisfy the generalized Laplace Eqn (14). Ftemem- 
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bering that y in Eqn (1) multiplies the elementary interfacial dilation &x, we 
will call y “dilational surface energy”, in order to distinguish between it and 
the proper surface tension, o. 

On the other hand, by integration of Eqn (15) one can derive from Eqn (24) 
a counterpart of Eqn (16) 

2”=p, -p, 
a 

(27) 

(In contrast to Eqn (16), Eqn (27) holds for every choice of the spherical 
dividing surface. ) Then it follows from Eqns (5)) (14)) (26) and (27)) that 

B=2M (28) 

(As demonstrated in the next section, B is the trace and M is one of the two 
(equal) eigenvalues of the surface tensor of moments. )-In view of Eqn (28) 
the connection between the surface dilational energy and surface tension, Eqn 
(26)) can be transformed to read 

y=+r~+ $BH (29) 

where H= - l/a is the mean curvature of the sphere. In the next section Eqn 
(29) will be generalized for arbitrarily shaped interfaces. It is seen from Eqn 
(29) that y and rr coincide only at the surface of tension, where B = 0 

Y*=fz3 (36) 

As mentioned earlier, Eqns (10) and (11) uniquely determine the two pa- 
rameters l/s and a,. However, in the present approach Eqns (12) and (24) do 
not determine the three parameters y, o and a. Then a can be considered as a 
free parameter, connected with the choice of the dividing surface. Hence o, 
similarly to y, depends on the choice of the dividing surface. From Eqn (27) it 
follows that 

(31) 

The formal dependence of tr on a (at a fixed physical state) is linear, i.e., it is 
much simpler than the analogous dependence of y on a, exhibiting a minimum 
- see Fig. 3. 

Whereas Eqn (10) holds only for the surface of tension, Eqn (24) is valid 
for every choice of the dividing surface. Then Eqn (24) can be differentiated 
with respect to a at a given physical state. The result reads 

a+a 
[ 1 
2 = <Pa-P& 
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The latter equation is satisfied identically due to Eqn ( 31) . This fact can serve 
as an indication for the self-consistency of the approach developed in this sec- 
tion. One can easily check, that the dependence on B on a 

following from Eqns ( 19 ) - (21) , satisfies the differential equation 

dB L-1 aa =2y 

(32) 

(33) 

which is a counterpart of Eqn (5). Buff [7] and Goodrich [ 151 have derived 
the equations 

‘B 

Y* = I 
(J%-&) $dr (34) 

* ra 

‘B 

YS = I 
(PN -P,)? dr (35) 

ru 

which are valid only for the surface of tension. Our purpose below is to gener- 
alize Eqns (34) and (35) for an arbitrarily chosen dividing surface. 

An equivalent form of Eqn (15) is 

Upon integration it leads to 

Then in view of Eqn (27) one obtains 

On the other hand, from Eqn (12) one derives 

V 

$=j a3 (P, -P/j) - 4 <P,r:-P/&) - 
s 

P&dr 
ra 

Besides, by means of Eqn (15) one can easily prove that 

(36) 

(37) 

(33) 
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‘B ‘B 

2 PTr2 dr=P&-Part - PNr2 dr 
s I 

(39) 
ra ra 

Thus, from Eqns (38) and (39 ), along with Eqns (27) and (37) one obtains 

(40) 

Equations (40) and (37) are in fact the generalizations sought for Eqns (34) 
and (35 ) . A new expression for B follows from Eqns (5) and (40 ) 

(41) 

The last equation can also be derived by means of Eqns (29)) (37) and (40). 
Equations (37)) (40) and (41) can be used for calculation of the surface 

tension, a, surface dilational energy, y, and surface bending moment, B, if some 
model expression for ( PN - Pr ) is available. 

At the end of this section we will briefly discuss the problem about the po- 
sition of the surface of tension with respect to other dividing surfaces and the 
interfacial transition zone. 

Let a, be the radius of a given dividing surface, located somewhere in the 
interfacial transition zone, say the radius of the equimolecular dividing surface 
- see Ref. [ 51. Besides, let yV, a, and B, be the values of the respective quan- 
tities at this specified surface. Then Eqns (19) and (20) yield 

For a=~,, one obtains from Eqns (5), (14) and (16) 

The elimination of y,/u, between Eqns (42) and (43) leads to 

(42) 

(43) 

(44) 

(45) 

Then with 

&&-a, 

one finally obtains 



(46) 

(at the last step Eqn (29) was used). Equation (46) shows that the sign of 6 
is connected with the sign of B,: ~5, > 0 when B, > 0 and vice versa. Some cal- 
culations, based on the statistical mechanics [ 5,9] show, that 6> 0 for a drop 
of pure liquid. Hence some conclusions for the bending moment can be made. 
It can be expected that B, > 0 for drops and B, < 0 for bubbles. 

Equation (46) also suggests, that for low surface tensions (a, 5 1 &/a, I) the 
surface of tension can be located away from the real interfacial zone, in agree- 
ment with the suggestion of Miller [lo]. 

GENERALIZATION FOR AN INTERFACE OR MEMBRANE OF ARBITRARY 

CljRVATkE ’ 

Our purpose below is to find a generalized version of Eqn (29)) relating the 
surface dilational energy, 7, with the surface tension, a, and the surface bending 
moment, B, for arbitrarily shaped interfaces. The adequate formalism for this 
case is provided by the differential geometry of surfaces - see, e.g., Refs [ 14,16- 
20]. 

Let (U ‘, U” ) be curvilinear coordinates on the surface, and let R (u ‘,u’,t ) be 
the running-radius vector of the dividing surface. Then 

(47) 

are the vectors of the surface basis and the surface gradient operator. Here and 
hereafter the Greek indices take values 1 and 2, and summation over the re- 
peating indices is carried out. It is known that the curvature tensor 

b= - VIIn (48) 

(n is the unit normal to the surface), is a symmetrical surface tensor, whose 
eigenvalues are the two principal curvatures, cl and c2. Then it is clear that the 
trace of b is equal to 2H (cf. Eqn (2) ) and the determinant of b is the Gaussian 
curvature K=c1c2. 

U,, =apa, and q=k (b-I~&Jii) (49) 
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are the surface idemfactor and the curvature deviatoric tensor. The eigenval- 
ues of q are 1 and - 1, whereas both eigenvalues of VI1 are equal to 1. Therefore 
I& and q are constant surface tensors, i.e., the covariant derivatives of their 
components are zero 

aA,, = qhP,” - -0 (50) 

In particular, the components of Un 

a pv =a,w (51) 

are in fact the components of the surface metric tensor. In view of Eqn (49) 
the curvature tensor can be expressed as a sum of isotropic and deviatoric parts 

b+, = HaA, + %A, (52) 

Let us suppose in addition that ( u1,u2) are the material surface coordinates. 
Then 

dR 

v= dt u1,,2 ( > (53) 

is the velocity of the surface material points. According to Eliassen [ 181, the 
surface rate-of-strain (stretching) tensor, d,, is defined by the expression 

where 

u,=a,*v and uCn)=n-v (55) 

In spite of the fact that we will finally arrive at some quasistatic relation- 
ships, it is convenient to work in the beginning with the rates of changing of 
some quantities with time. Then it is easy to obtain the respective infinitesimal 
increments of these quantities during an elementary quasistatic process. For 
example, if St is a time increment, then dp& are the components of the surface 
strain tensor. Similarly, if a is the time derivative of the mean curvature, then 
SH = H6t is the differential of H, which enters Eqn (1) . 

As shown in Ref. [ 211 the scalar quantities 

&=a@“d/lv andb=qwd,, (56) 

characterize the local rates of dilation and shearing, respectively. The corre- 
sponding differentials are 

&X = d& and S#?=j& (57) 

in particular, 6a! takes part in Eqn (1) . For purely fluid interfaces the shearing 
deformation Sj? does not contribute to the work of interfacial deformation, 
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expressed by Eqn ( 1). However, as pointed out in Refs [ 21-231, if the interface 
is a biomembrane, an additional term accounting for the shearing elastic en- 
ergy should be included in Eqn ( 1) 

6w, =~~Y+@~+B&I+~ISD (58) 

( in Eqn (58) accounts for the surface density of the shearing energy in the 
same way as y accounts for the energy of dilation. Benson and Yun [ 241 dem- 
onstrated that the shearing elasticity can also lead to a difference between 
surface energy and surface tension. That is why we will work below with the 
more general Eqn (58) instead of Eqn ( 1) . 

We will restrict our considerations to quasistatic processes, for which the 
rate-of-strain tensor d, is diagonal in the basis of the principal curvatures all 
the time. (This is so, for example, in the familiar case of axisymmetric defor- 
mations of an axisymmetric membrane - see Ref. [22] .) In this case, having 
in mind Eqn (56)) one can write 

(59) 

Due to the physical relation between stress and strain, one can present the 
surface stress tensor (the tensor of the surface tension) in the form 

oPrcv = go,, + rqrv (60) 

If al and a, are the eigenvalues of the tensor aPV (in our case they are the 
tensions acting along the lines of curvature), then it follows from Eqn (60) 

o= f (a, +r~~i) and q=i (a, -ax) (61) 

According to Refs [ 3,22,24] Q is the hydrostatic surface tension (generalizing 
o in Eqn (27) for arbitrarily curved interfaces) and q is the shearing tension. 
The meaning of the components of a, in an arbitrary surface basis is illus- 
trated in Fig. 4a. 

Let us consider a tensorial field of the surface moments 

(62) 

defined throughout the dividing surface. (In other words we consider the in- 
terface as a two-dimensional continuum of Cosserat [ 141. ) Obviously, M1 and 
M2 are the eigenvalues of the tensor Mp as well as a, and 0, are the eigenvalues 
of a,. Sometimes [ 141 the surface momenta are characterized by another tensor 

N,, =M& (63) 

where E,, is the surface alternator defined as in Refs [14,16-M]. The meaning 
of the components of the tensors Nfly and Mpy is illustrated in Fig. 4b and c. It 
is seen that N,, (and N22) represents normal moment (it causes torsion of the 
surface element), whereas N,, (and N21) represents tangential moment (it 
causes bending of the surface element). Hence the mechanical interpretation 
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Fig. 4. (a) Components of the surface stress tensor O. (h) Compoqents of the surface moment 
tensor N. (c) Components of the surface moment tensor I’$ 

of NPy is similar to that of aPV (cf. Fig. 4a and b). However, NPp is not a sym- 
metrical surface tensor and that is why the symmetrical tensor MPy is prefer- 
ably used in the works devoted to shells [ 191 and biomembranes [ 221. 

A necessary condition for equilibrium (see, e.g., Eqn (3.45) in Ref. [ 141) is 

bpvN P” =EP”dtJ w (64) 

A substitution from Eqns (60)) (62) and (63) shows that Eqn (64) is identi- 
cally satisfied by the above expressions for aPV and MN”. 

According to Eqn (4.26) in Ref. [ 141 the mechanical work of surface defor- 
mation per unit area and per unit time can be expressed as 

dw, 
x=6: (v~~v+lJIIxw) +w: (l$w) (65) 

where the double scalar product of two dyadics is defined according to Gibbs 

(ab):(cd) = (a-c) (b-d) 

and w is the angular velocity. In our case w is a vector field, defined on the 
surface, characterizing the rotation of the unit normal, n, during the bending 
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of the surface. As illustrated in Fig. 5, 1 w 1 =dqo/dt= 1 An I/ ( In I At) at k-+0. 
Accounting for the fact that I n I = 1 and that w is perpendicular to the plane, 
defined by the vectors n and An/At, one obtains an explicit expression for w: 

dn 
w=nXz 

As shown in the Appendix to this paper, a substitution from Eqns (60)) (62)) 
(63) and (66) into Eqn (65), along with Eqns (54) and (59)) leads to the 
result 

(67) 

Having in mind that 6H= I&, 6D = I%% and Eqn (57) one finally obtains 

6w, = [o+ $ (Ml +kf,)I-I+ 1 (MI -M,)D]Sa! 

+ [q+ $ (MI +M,)D+ 4 (MI -A!f,)H]&3 (68) 

+ (M, +M,)M+ (Ml -I&)&I 

The coefficients multiplying the independent differentials in Eqns (58) and 
(68) must be equal. Hence one obtains: 

--. . . 
n(t’ At) 

Fig. 5. Rotation of the unit normal during the surface deformation. 
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B=M, +M, (69) 

f&Ml-M, (70) 

y=o+ tBH+ jtlD (71) 

(=rj+iBD+f13H (72) 

For a spherical interface D=O and Ml = M2= M. Then Eqns (69) and (71) 
will reduce to Eqns (28) and (29), respectively. In other words, Eqn (71) is 
the generalization of the connection between the dilational surface energy, y, 
and the surface tension, a, sought for. In addition we obtained a similar rela- 
tionship, Eqn (72), connecting the shearing surface energy, r, with the shear- 
ing tension, ?j. 

DISCUSSION 

All the coefficients in the right-hand side of Eqn (58) (y, & B and f3) are 
surface excess quantities and can be expressed as integrals over the excess 
pressure tensor 

(Kj is the bulk idemfactor). Indeed, as shown in Refs [3,21] their values at 
each point of an arbitrarily curved dividing surface are: 

B= (4:p”ldA ; e= 1 (q*L):P”Acu 
J 
11 

J 
I1 

(73) 

(74) 

where 

~=(1-~)2-~2D2and~=(1-2WI)~n+~b (75) 

and the integration is carried out along the normal to the surface at the re- 
spective point. 1 has the meaning of distance to the dividing surface and the 
limits of integration, A 1 and &, correspond to points placed in the bulk of the 
neighbouring fluid phases. For a spherical dividing surface with radius a, one 
has H= -l/u, D=O and 

p=PTvn +p,nn 

Then Eqn (73) for y reduces to Eqn (12)) and Eqn (74) for B reads 
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12 

B=2 (P,-P)(lf@ 
s 
I1 

The last equation, known as the Tolman-Buff equation [5], can be derived 
simply by substitution of Eqns (12) and (24) into Eqn (29) with A = r- a. 

While Eqn (73) elucidates the meaning of y from a hydrostatic viewpoint, 
the thermodynamic interpretation of y calls for additional discussion. A ques- 
tion of special interest is how the surface energy, y, is related to the surface 
density of the excess grand thermodynamic potential, 0,. In order to answer 
this question, let us consider an elementary portion, dA, of the curved dividing 
surface. Let the excess values of the internal energy, entropy, grand potential 
and number of adsorbed molecules of the ith component on that portion be 

dU,=U,dA,dS,=S,dA,dSZ,=o,dA,~~=TidA (76) 

where u,, s,, CD, and & are the respective surface densities (i= 1,2, . . . . lz). 
Let the area dA of the portion under consideration be changed during a ther- 

modynamic process by 

(77) 

According to Gibbs [ 1 ] the changes of the thermodynamic parameters in Eqn 
(76) are related by the fundamental equation 

S(dUs)=TS(dS,) + i piS(dNs) +SW, 
i=l 

(78) 

where SW, is the mechanical work of deformation of the surface element dA. 
(One sees that the essence of the Gibbs approach is to apply the fundamental 
equations of an uniform surface locally, i.e., for each elementary portion, dA, 
of the curved interface. ) Since 6w, in Eqn (58) is mechanical work per unit 
area, then 

SW,= (y&Y+@/3+B6H+86D)dA (79) 

Besides, due to Eqns (76) and (77) 

S(dU,) = (au, +u,Sa)dA (86) 

and so on for the other differentials in Eqn (78). Thus Eqn (78) can be trans- 
formed to read 

dU,=T&,+ 5 llisri+(Y-o*)6cu+rsP+BGH+86D (81) 
i=l 

where 
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ws =u,-Ts,- i pi& 
i=l 

(82) 

is the interfacial density of the grand thermodynamic potential. It is demon- 
strated in Ref. [ 211 that Eqn (81) can be derived from the (local) fundamental 
equations of the two neighbouring phases. 

The number of the independent differentials in the right-hand side of Eqn 
(81) is related to the type of the interface and of the quasistatic process. If the 
internal energy of the interface does not depend on its quasistatic dilation, 
then 

(83) 

and it follows from Eqn (81) that 

Y=% (84) 

Hence the surface energy y equals the interfacial density of the grand potential, 
o,, for processes of equilibrium interfacial dilation, which do not change the 
surface density of the internal energy, u,. For example, such is the case when 
all components present at the interface are soluble at least in one of the neigh- 
bouring bulk phases. 

Now, let ri be the interfacial density of a component, which is insoluble 
the bulk and for the interfacial balance reads [ 17,18,21,25] 

As pointed out in Ref. [ 211, Eqn (85) holds only in the case, when there is no 
surface diffusion of the respective component. A multiplication of Eqn (85) 
by 6t, along with Eqn (57) and the identity & = Vu *v, leads to [ 

k 

OS =o, + ri,Ui=U~-TS,- 
i=m+l 

(88) 



is the surface density of the modified grand potential. Then the surface energy, 
y, is expressed by the equation 

‘=@ + 

ai& -( > da! T,f3,H,D,~1,~2 ,..., p m 

By combining Eqns (71) and (89)) one obtains 

a&, 
O=Os + da -0 - jBH- +OD 

T,B,H,D,P~,P~....,P,,, 

(89) 

(90) 

which is a generalization of the Shuttleworth equation [26] for curved 
interfaces. 

Boruvka et al. [ 131 followed another (different but equivalent) way in the 
thermodynamics of the curved interfaces. In Ref. [ 131 they postulated the 
local fundamental equations 

~u,=T~s,+~~~S~~+~C,~H+C,SK (91) 
i 

~,=Ts,+C~~~~+~“+~C,H+C,K (92) 
i 

which are to be compared with our equations 

6~s = T&s + C/,ttiSri +BdH+&?D (93) 

U,=Ts,+C~iri+r (94) 

[Eqn (94) follows from Eqns (82) and (84), and Eqn (93) - from Eqns (81) 
and (84) for fluid interfaces: r= 0. ] We introduced the subscript “B” in order 
to distinguish between y’s in Eqns (92) and (94). The comparison of Eqns 
(92) and (94) yields the equation 

y=yB+2C1H+C2K 

which in view of Eqn (84) coincides with Eqn (20) in the work of Boruvka et 
al. [ 131. Due to the identity K= Hz - D 2, a comparison of Eqns (91) and (93 ) 
gives 

(95) 

Hence, the difference between Eqns (91) and (93) rests in the choice of the 
independent variables: (H,K) in Eqn (91) and (H,D ) in Eqn (93). We pre- 
ferred to use the couple (H,D ) because of the simple geometric interpretation 
of 6H and 6D - see Fig. 1, and because of the fact that the coefficients B and 
8 have the same dimension and are simply connected with the eigenvalues of 



the surface moment tensor - see Eqns (69) and (70). Besides, 6D= 0 for a 
spherical interface (6K# 0 in this case) and all the equations for surfaces of 
arbitrary curvature automatically reduce to the respective equations for spher- 
ical surfaces in Befs [ 5,6,9,20]. 

CONCLUSIONS 

In this work we have followed the general idea of Gibbs [ 1 ] and Buff [ 201, 
that the mechanical properties of a curved Gibbsian dividing surface are char- 
acterized not only by the surface tension, 0, but also by bending and torsion 
moments, B and 19. Special attention is paid to the most simple (but important) 
case of a spherical interface. It is demonstrated that in order to make the ideal- 
ized system mechanically equivalent to the real one, an additional surface 
bending moment term must be introduced in the moment balance equation, 
Eqn (25). The existence of surface bending moment leads to a difference be- 
tween the surface dilational energy, y, and the surface tension, a, - see Eqn 
(29). Two new expressions [Eqns (40) and (41) ] are derived, allowing the 
calculation of y and B if some model expression for the distribution of the 
pressure tensor across the interface is available. For the surface of tension 
(B=O) all derived equations reduce to relationships known in the literature. 
It is also demonstrated that for interfaces of low surface tension the surface of 
tension can be located far away from the interfacial zone (i.e., far away from 
one of the different equimolecular dividing surfaces used in the thermody- 
namics of microemulsions ) - see Eqn (46 ) . 

The idea that not only the surface of tension, but also every dividing surface 
must correspond to mechanical equivalence between the idealized and the real 
system is supported and generalized by the treatment of an arbitrarily curved 
interface as a two-dimensional continuum of Cosserat. This means, that ten- 
sorial fields of the surface tension, Eqn (60)) and of the surface moments, Eqn 
(62), are distributed throughout the dividing surface. Such an analysis shows 
that the bending moment, B, equals the trace of the surface moment tensor 
[Eqn (6911, h w ereas the torsion moment, 0, equals the deviator of the same 
tensor, Eqn (70). The difference between surface tension and surface energy 
is more pronounced in this case: the surface tension, a, is in general a tensorial 
quantity, whereas the surface energy, y, is a scalar quantity, connected with 
the invariants of the tensors of surface tension, surface moments and surface 
curvature, according to Eqn (71). In addition, we derived a similar relationship 
for the surface shearing energy, c, which is important for interfaces exhibiting 
shearing elasticity, like biomembranes [ 22,231. 

The mechanical meaning of 7, <, B and 19, revealed by Eqns (73 ) and (74 ) , 
is determined by the different distribution of the pressure tensor in the real 
and idealized systems. It turns out that a curved interface behaves as a two- 
dimensional continuum of Cosserat even if the bulk phases are not three-di- 
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mensional continua of Cosserat (absence of internal moments in the bulk 
phases). The thermodynamical meaning of the dilational surface energy y is 
discussed. When an isothermal surface dilation (at fixed curvature) does not 
change the local composition of the interface, y equals the interfacial density 
of the grand thermodynamic potential, o,, see Eqn (84). When the deforma- 
tion of the interface is accompanied by extension of an insoluble surface layer, 
the surface energy y can be expressed as a sum of the reduced grand potential 
0, and its derivative with respect to the dilation cr - see Eqn (89). 

We believe that the study presented will be useful when analyzing experi- 
mental data for emulsions, microemulsions, interfacial waves, vesicles and bi- 
ological membranes. 
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APPENDIX 

According to Eqns (60 ) and (66) r~ and w are pure surface tensor and vector, 
respectively. Then CJ : (VII X w ) = O-and Eqn (65) reduces to 

%=rJ: (P,,v)+ly: (&;Iw) (A.1) 

Because r~ is a symmetric surface tensor one obtains 

CT: (Vg)=;a: [l&v+ (VIIIv)+] =opYd/,V (A-2) 

where “ +” denotes conjugation (cf. Ref. [ 181). The substitution from Eqns 
(59) and (60) inEqn (A.2) yields 

0: (l$v)=adr+q/l (A.3) 

In view of Eqns (47) and (66) the last term in Eqn (A.1 ) can be transformed 
in the following way 

(A.4) 

Having in mind the fact, that the vector (&r/&~lo X (dn/c%) is directed along 
n and the Weingarten equation [ 16,181 



one then derives 

ly: (VIIW) = -8: {a%X (a” ~+tgb#.,} at 
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(A.5 1 

With the help of Eqn (63) and the relations 

da” 
llxY&= -nXaA(u”,” -ZI”‘U(~)), nXaA =cAbao 

(see, e.g., Ref. [US], Eqns (B.3.38) and (B&.35)), one obtains 

8: (I&w) =M’“{~- (IJ,,, -b,,u (n))b;} (A.6) 

Making use of the fact that the symmetric tensors Mp” and bfl” are both di- 
agonal in the basis of the principal curvatures, along with Eqn (54)) one easily 
transforms Eqn (A.6 ) to read 

(A.7) 

Besides [ 14,181, 

ab 
~=u~b,,+up,b,~+u”b~,,,-b~bb,u’“‘+u,::! at 
bZboy =2Hb,, - (H2-D2)apv 

and (see Refs [3,14,18,21] ) 

(A.8) 

64.9) 

l%=H,,zF+ (H2+D2)u(“)+t a%,$‘~ (A.lO) 
i>=D P $‘+~HDu(~)+ f ~fl”u(~) SP 

A substitution from Eqns (59)) (62) and (A.8) into Eqn (A.7)) in view of Eqns 
(54), (A.9) and (A.lO), leads to 

8: (VIIw)=(Ml+M2)(il+;H&+~Dj)+ 
(A.ll) 

+ (Ml -M2) (b+ fD&++Hj) 

Finalling, a combination of Eqns (A. 1) , (A.3 ) and (A. 11) gives directly Eqn 
(67). 
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