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A new source of attraction between similarly charged colloidal particles in ordered suspensions is considered. The attractive 
force is due to the correlation between the fluctuating displacements of the colloidal particles from their equilibrium positions in 
the colloid crystal lattice. The effective charge of a particle, the eigenfrequency and the energy of attraction are calculated on the 
basis of a dynamic model of the counterion atmosphere. 

1. Introduction 

It has been established experimentally by many 

authors [l-8] that spherical particles of submicron 
size in monodisperse latex suspensions form crystal- 
like ordered structures. These structures, called “col- 
loid crystals” 19 1, differ from the usual (molecular) 

crystals by the size of the particles and by the mag- 
nitude of the interparticle distances. In particular, 
the interparticle distances are too large for the at- 
tractive van der Waals forces to be important. That 

is why some authors [ lo- 131 attribute the observed 
disorder-order phase transition only to the screened 
electrostatic repulsion between the charged latex 
particles. A phase coexistence and phase boundary 
between ordered and disordered domains, which are 

not due to sedimentation, were detected in several 
experiments [6-81. Sogami and Ise [ 141 pointed out 
that a phase coexistence is possible when there is a 
net attractive interaction between the colloidal par- 

ticles. They attempted to reveal the nature of this at- 
traction by ascribing it to Coulombic interaction be- 
tween the macroions through the intermediary of 
counterions. A different possibility for attraction, 

connected with charge fluctuations on the surface 
of an ordered phase, was discussed by Imai and 
Yoshino [ 15-171. 

We propose now a new effect which can give rise 
to attraction between the charged particles in colloid 

crystals. The basic idea is that a fluctuating displace- 

ment of a particle from the centre of the counterion 

atmosphere produces a fluctuating dipole. This di- 

pole can interact with a neighboring fluctuating di- 

pole. Also, the displacement of one charged particle 

can disturb the charge distribution around a neigh- 

boring particle and induce an additional dipole mo- 

ment. We show below that the total dipole-dipole 

interaction (both between spontaneous and induced 

dipoles) averaged over time leads to attraction. In 

this respect this effect resembles the London disper- 

sion forces between molecules. 

We suppose that, besides the attractive energy, each 

colloidal particle in the colloid crystal has another 

potential energy 

Uo(s)= $K&’ (1) 

corresponding to harmonic oscillation. Here m and 

s are the mass of the particle and the magnitude of 

its displacement from the centre of the potential well; 

w. has the dimensions of frequency. In section 4 be- 

low, the potential energy Uo(s) is attributed to the 

electrostatic attraction between the effective centres 
of the positive and negative charges: the charged col- 

loidal particle and the centre of its counterion at- 

mosphere. Such an interaction gives rise to a quasi- 

elastic force f=dU,Jds tending to restore the equi- 
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librium position of the particle at the centre of the 

well. 

2. Fluctuations in a colloid crystal lattice 

Each colloidal particle in a colloid crystal is en- 
circled by the “atmosphere” of the counterions dis- 
sociated from the particle surface. Because of the 

fluctuating motion of the particle around the centre 
of the potential well the effective centres of positive 
and negative charges do not coincide. Thus, a fluc- 

tuating dipole appears. The moment p of such a di- 
pole for small fluctuations is proportional to the dis- 
placement s of the particle from the well centre: 

P=@ 3 (2) 

where the proportionality constant q has the dimen- 
sions of electrical charge. A dynamic model of the 
counterion atmosphere allowing calculation of q is 

presented in sections 4 and 5. 
Let s(‘) and s(‘) be the instantaneous displace- 

ments of two particles in the colloid crystal and let 
R be the vector connecting the two resulting dipoles, 

P (l)=q8(1), p’2’=qS’2’, (3) 

Then the dipole-dipole interaction energy will be 

1181 

(4) 

where 

0~: =qZ/meR3 (5) 

with 6 the dielectric permittivity of the liquid me- 
dium. Our purpose now is to derive equations al- 
lowing calculation of Up_ For the sake of simplicity 

we first consider a one-dimensional crystal and we 
then generalize the results to three dimensions. 

Let R be the nearest-neighbor separation for a one- 
dimensional “colloid crystal”. The fluctuating par- 
ticle experiences four forces: two stemming from the 

energies V, and Q,, the viscous friction force and the 
random Brownian force. Then, in view of eqs. (1) 
and (4) the equation of motion of particle n reads 

x,+P,~~+W~Xn-20~(,Un-,+X,+,)=A”(t), (6) 

where X, is the position of particle n with its own lat- 

tice point chosen as origin; p is a coefficient char- 

acterizing the force of friction and A,(t) is the ac- 
celeration due to the Brownian force. Only the 
interaction between nearest neighbors is accounted 
for in eq. (6). Let us define the Fourier transforms 

.? and A’ of X, and A, by the equations 

a, I 

x,(t) = I s 
do dkl(w, k) exp[i(nk-wt)], 

--oo -n 

(7) 

A,(t)= 1 dw j dkA(w, k) exp[i(nk-wt)]. 

--m -X 

(8) 

Here k is a dimensionless wave number. Substituting 
in eq. (6) we obtain 

(-o’-ipo+wz)_Z(o, k)=A( -0 , k) (9) 

with 

w:.=w&4w;cosk. (10) 

Using the approach of Landau and Lifshitz [ 19,201, 
we can write the correlation of the Brownian accel- 
erations as 

Wks T 
A,(t)A,(t’)= ~ ,~ ~(r-t’)4d. (11) 

The presence of the term 8( t- t’ ) d,,, means that the 
Brownian accelerations of different particles at dif- 
ferent times are independent [ 19 1. The coefficient 
2flk,T/m is determined from the condition2 = kBT/ 
m (ka is the Boltzmann constant,T the tempera- 

ture), see ref. [ 2 1 1. After a Fourier transformation 
eq. ( 11) takes the form 

A( w, k) il(w’. k’ ) = 

The displacement correlation is calculated by means 
of cq. (7), along with (9) and (12) (see ref. [20] 
for details), 

(13) 
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The averaged energy of attraction for two nearest 

neighbors is calculated from eq. (4) written for the 
particles n and n- 1, 

up=-2mw~.X,(t)x,_,(t). 

Solving the integral in ( 13) for l=n- 1, we thus 

obtain 

qJkB~=f[1-M~H, Z,(5)=lIJ=P, (14) 

&u;/ w; . (15) 

Similarly, one can determine 

x2 =&I(t) x,(t)= mw’ I kBT I (<) . 
0 

Note that Z,(r) > 1 and hence UP< 0, i.e. UP corre- 

sponds to attraction, 
This method for calculating of x2 and UP can be 

directly generalized for a three-dimensional simple 
cubic lattice. The results in this case read 

(17) 

~,,lkJ-=W-WI > 

where 

(18) 

n II T 

l(T)= $jJ?’ dk,dkdk, I@(k,,k,,k,OI-‘3 
0 0 0 

(19) 

@(k,,k,,k,,<)=1+2t(coskz+cosk,-2cosk,) _ 

(20) 

As earlier Z&, is the averaged energy of dipole-dipole 
interaction between two nearest neighbors in the col- 
loid crystal lattice. For <-PO one has I( 5) = 1 and eqs. 

( 16) and ( 17) both lead to the known formula 
x’ = k,T/m& valid for a Brownian oscillator [ 221. 
Besides, for small <by expanding the function 0 in 
terms of 5, and by carrying out the integration in eq. 
( 19), taking also into account eqs. (5) and (18), 
one can derive 

UP =: -6kBTq4/~2m2u~R6. (21) 

Hence, similarly to the energy of van der Waals in- 
teraction, 0, is proportional to Re6 (for wt cc& ) 
and corresponds to attraction. 
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A closer inspection of the integral Z(t) in eq. ( 19) 
shows that 

fJ 

forO<{Gg, 

I(l) =a, forlri. (22) 

Here K(a) is the total elliptic integral of Legendre 

of the lirst kind and 

a(k+@ [(1-2<coskj)2-4<2]-1’2. (23) 

The fact that the integral I( 5) is divergent at & i in 
conjunction with eq. ( 17) indicates infinite motion 

of the Brownian particle, i.e. “melting” of the colloid 
crystal. The value C=g corresponds to a limiting 
value of the mean-squared displacement: 

sp= (zZ(t))li2a126 (3)“‘. (24) 

Correspondingly, in a stable colloid crystal the av- 
eraged energy of interaction between two neigboring 
dipoles, UP,, (cf. eq. ( 18) ) cannot exceed the lim- 
iting value ]oP(<=i)] =0.29kBT- see fig. 1. 

Although limited, this attractive energy is com- 
parable to the thermal energy k,T. It is difficult to 
say to what extent this energy will play a role in the 

behavior of colloid crystals. Our aim was to propose 
in the present paper a new source of interparticle at- 
traction in such systems and to develop a theory for 
its calculation. According to our theory the energy 

C&, is a strong function of the parameters q and CL)” 

--5 
Fig. 1. The averaged dipole+%pole interaction energy, U,, be- 
tween two neighboring particles versus {=w~/w~ in a colloid 

crystal of simple cubic lattice. 
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(see e.g. eq. (2 I) ), which in turn depend on the spe- 
cific system under consideration. 

3. Cell model of a colloid crystal 

A latex crystal can be considered as an assembly 
of unit cells each containing one charged colloid par- 
ticle - fig. 2a. The particle is encircled by the at- 
mosphere of the dissociated counterions the whole 
cell being electroneutral. 

To simplify our treatment we approximate a unit 
polyhedral cell with a sphere of the same volume. The 
radius of this sphere is denoted by R, in fig. 2. In the 
same figure the sphere of radius R, contains the col- 
loid particle itself as well as the nearest counterions, 
which move together with the particle: we call RI the 
hydrodynamic radius of the particle, Let us denote 
by & the magnitude of the electric charge of the 
particle, i.e. the net charge, contained in the sphere 
of radius R,. Due to the fluctuations the particle 
centre at a given moment will be at a distance s from 
the cell centre - fig. 2b. The particle motion will per- 
turb the ionic atmosphere so that its centre of charge 
will not coincide with the cell centre. If the distance 
between the charge centres is h, the instantaneous 
dipole moment is p=Q,&. We assume h and s are 
proportional for small displacement, i.e. 

h=Dh/ds(,s+ P(s2) . 

Then the expression for the dipole moment can be 
written as 

Cl _ 
8’ \ 

0 \ 
\ 

/’ - \ 

(4 

P”W, 4% Qe,(W~L=o , (25) 

cf. eq. (2). The attraction between the effective 
centres of the positive and negative charge gives rise 
to a quasi-elastic force which tends to return the par- 
ticle to the centre of the cell; the harmonic potential 
energy can be expressed by eq. ( 1). The physical or- 
igin of the quasi-elastic energy U,, is discussed in more 
detail below. 

In section 2 we showed that the mean-square dis- 
placement of a Brownian particle from its equilib- 
rium position in a colloid crystal (with simple cubic 
lattice) can be calculated from eq. ( 17). A compar- 
ison between eq. (18) and fig. 1 reveals that 
I(5) 31(O) = 1. Thus eq. (17) leads to an estimate 
for wO: 

w$ > 3kBT/ms2 . (26) 

s’ can be calculated from the experimental data of 
Ito et al. [23] for ordered latex suspensions. By us- 
ing an ultramicroscope and image data analyzer there 
authors determined the quantity 

G=2( fs2)‘12/R. (27) 

For an ordered suspension with 8% volume fraction 
of Latex N400 they found R = 730 nm, and G= 0.02 1 

[ 231. From their data one can calculate 
m=3.52x10-14g, so that from eqs. (26) and (27) 
one finds w. b 0.8 x lo6 s- ’ at room temperature. The 
relaxation time of the counterion atmosphere is of 
the order of 1 0e3 s [ 241. This large difference in time 

’ b) 

Fig. 2. Cell model of an ordered latex suspension: a time-averaged picture (a), and an instantaneous displacement of a particle from the 
cell centre (b). 
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thus obtained are shown in table 1 for two different 
concentrations of Latex N400. The frequency w. is 
of the order of lo6 s-’ and Q&e is smaller than 
2.3~ 10’. These values confirm the above estimate 
based on eqs. (26) and (38). The “width” of the 
counterion atmospherex-’ is comparable to the par- 
ticle radius RI. Also, &z Q and ? <si as it should be 
for a stable colloid crystal. UP is of the order of 0.1/&J 
for the more concentrated suspension. 

4. Model of the counterion atmosphere 

One can assume that a colloidal particle, moving 
rapidly in the potential well, acts like a stirrer: it 
makes the ion concentration homogeneous in the 
close vicinity of the particle. Let pin be the absolute 
value of this homogeneous charge density - see fig. 
3. Further, because of the long relaxation time of the 
ionic atmosphere we assume that the charge distri- 
bution in the remaining part of the cell maintains its 
spherical symmetry. Because of the attraction be- 
tween the particle and the dissociated counterions, 
the concentration of the latter should decrease with 
F (see fig. 3). Then, 

Pin ZP, (28) 

where 

B=Q&n(K: -R:) (29) 

is the absolute value of the mean charge density in 
the cell. 

Consider the force 

(30) 

P’ 

Pin------ 
_-____ u P ------ --- 

Ri 
c 

R2 
r 

Fig. 3. Sketch of the charge distribution of the counterions around 
a colloid particle of hydrodynamic radius RI. 
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of interaction of a colloid particle (of charge Q,,sit- 
uated at ri ) with its counterion atmosphere of charge 
densityp; in eq. (30) r12=r2-rl, r12= lr121. The in- 
tegration in eq. (30) is carried out over the volume 
between the spheres of radii R, and R, - fig. 2b. If 
the z axis is oriented as shown in 5g. 2b, then the 
magnitude off can be expressed as 

(31) 

In the framework of the present model p has spher- 
ical symmetry with respect to the centre of the cell 
- see fig. 3. Hence the integration over the volume 
outside the sphere of radius &= R, +s (fig. 2b) does 
not contribute to the force J Besides, P=Pin = const. 
inside this sphere. Then the integral in eq. (3 1) can 
be easily calculated: 

f= (47r/3c)Qe,pin~ - (32) 

This is the quasi-elastic force acting on the particle. 
Since eq. ( 1) yields 

f=dUJds=mw;s 

one obtains the expression for the frequency WO: 

&=(W3em)Qeffpin. (33) 

If the charge of the particle is negative (which is 
the case with latexes), the centre of the negative 
charge is at z(-)=- s (fig. 2b). The distance 
h=.z(+)--z(-) between the effective centres of the 
positive and negative charges is 

12=( j- zp(r) dr)/a,+s. (34) 
VCd 

By carrying out the integration one obtains 

h= (4ER:pi,/3Qe,+ 1 )s+ S(s2) . (35) 

A combination of eqs. (25) and (35) yields 

q=Qe&rR:~,, . (36) 

The elimination of Pin between eqs. (33 ) and (36 ) 
leads to a relationship between q and wo: 

q= Qeff+ (mdQ,~)Rfd. (37) 

From eqs. (28), (29) and (33) one derives 

QeK< [cmoi(Ri -R:)]“‘, (38) 
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which provides an upper limit for the effective charge 
of a colloid particle. Since I( <) < I( % ) = 1.58 (cf. eq. 
(22)), by using eqs. (17), (27), (38) and the data 
for the latex studied in ref. [ 231 one calculates QCn/ 
eG2.3~ lo3 (e is the magnitude of the electron 
charge). This number is about 1% of the total num- 
ber of surface ionizable groups per particle given in 
ref. [23]. 

5. Determination of pi,, 

We still need one more equation for determining 
pi,,. To obtain such an equation we assume that 

p(r) =P1nr forR, Gr<R, +s, 

P(r)=/% eXp( - s), (39) 

fOrR, +Scrs~R~, 

(40) 

where SZ(?)“~ and v(r) is the electrostatic po- 
tential, satisfying the Poisson equation 

Aw= - (4nlcMr) (41) 

with boundary conditions 

v(R, +J)=o, dy/dr(r=R,)=O. (42) 

Eq. ( 40 ) holds for colloidal particles whose ionic at- 
mosphere contains only one kind of ions of charge 
ze. (Eq. (40) can be generalized for the case when 
electrolyte has been added to the solution.) The con- 
dition for electroneutrality of a cell reads 

Qem=1"s ( 4rcr2p( r) dr . 
RI 

(43) 

By using the linearised version of eq. (40) 

~(r)=pi,[ l- (ezlk3Vdr) 1, 

forR, +S<r<R2, (44) 

one can easily solve eq. (4 1) along with the bound- 

ary conditions (42). Then in view of eq. (44) one 
transforms eq. (43 ) to 

C&F= Ipio{$n[(RI +S13-R:] 

+4nlF(R,) -F(R, +S) I} I , (45) 

where 

F(r)=(R,Ix2)[C(x)(xr-lI)exp(xr) 

-C( --xl (xr+ 1) exp( -xr) I , (46) 
-I 

evPx(R2-R~)l 

xw( -xR) , (47) 

X2=4rez2pin/tkeT. (48) 

Eq. (45 ) yields the sought for connection between 

Pin and Qeff- 

6. Numerical results and discussion 

The parameters R, R,, R2, m, c and Tare usually 
known from experiment. From the data of Ito et al. 
[ 231, one can calculate S* by using eq. (27). Then 
one can determine the four parameters IS,, q, Qefl and 

Pin from the four equations (17), (33), (37) and 
(45 )_ The use of this procedure along with the data 
of Ito et al. [23] is not entirely self-consistent, for 
eq. ( 17 ) refers to a particle in the bulk of a simple 

cubic lattice, whereas 7 was determined in ref. [ 231 
for particles situated at the boundary of a face- 
centred-cubic lattice with the glass wall of the ex- 
perimental cell. The parameters &, S, and x can be 

calculated by means of eqs. (5), (151, (24) and 
(48 ). We calculated the averaged energy of attrac- 
tion between two nearest neighbors in the colloid 
crystal, o,,, from eq. (18). The integral I(<) in eq. 

(22) was calculated numerically. In all cases we used 
e = 78.2 and T= 298 K. The values of the parameters 

Table I 
Parameter values for two different concentrations of Latex N400 

Concentration 

R, (nm) 
R (nm) 

RZ (nm) 
(7 )‘j2 (nm) 

SP (nm) 

x-’ (nm) 
&I e 
4/e 

WI (s-l ) 
c 

- upplkBT 

2% volume 8% volume 

fraction fraction 

200 200 

1070 730 

591 403 

27 14 

34 16 

205 116 

532 717 

620 994 

7.0x 105 1.SXlO~ 

0.054 0.102 

0.019 0.093 
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N400. The frequency w0 is of the order of 1 O%-’ and 
Q&e is smaller than 2.3 x 10”. These values confirm 
the above estimate based on eqs. (26) and (38). The 
“width” of the counterion atmosphere x-l is com- 
parable to the particle radius R,. Also, cc $ and 
? <s: as it should be for a stable colloid crystal. UP 
is of the order of 0.1 kgT for the more concentrated 
suspension. 

Additional theoretical analysis of the importance 
of UP for ordering in latex suspensions is needed. We 
intend to investigate the role of the new attractive 
forces on the phase behavior and other properties of 
microheterogeneous systems containing charged 
particles. 
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