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A new method is developed to measure the contact angle of air bubbles attached to an air-water 
interface. The measurements made from the microscopic interference pattern (Newton rings), which 
are obtained by viewing the bubble in reflected light, are used in conjunction with the solutions of the 
Laplace equations to the fluid interfaces to obtain the contact angle of the film. Measurements made 
from a differential microscopic interference pattern were used to check the validity of the results. 

Introduction 
The interactions between fluid surfaces are an impor- 

tant factor in the stability of dispersed systems. One 
way to study these interactions involves measuring the 
contact angle of thin fluid films formed by fluid drop- 
lets attached to fluid interfaces. From the contact angle 
we can obtain the film tension, which is directly related 
to the change in the free energy of the film. These films 
can be likened to the films that exist in real dispersed 
systems. 

In the literature, several different methods have been 
proposed to measure the contact angle between the film 
and the meniscus of a fluid-fluid system. Huisman and 
Mysels1v2 have developed the method for a gas bubble 
lying over a liquid. To determine the contact angle, they 
extrapolated the interfaces from photomicrographs of the 
elevation of the bubbles. Light interference methods, on 
the other hand, have a definite advantage over the pho- 
tomicrographic method in relation to their reliability and 
accuracy. This is because interference fringes represent 
a vertical distance, between surfaces, which is smaller 
than the resolution obtained from photomicrographs of 
elevations of the surfaces. Princen3s4 and DeFeijter et 
al.5 used a laser diffraction pattern to obtain the menis- 
cus profile and contact angle for plane verticle films using 
geometrical equations for the meniscus profile. Sche- 
ludko et al.,6,7 in studies of planar films, developed the 
“topographic” method, where the approximate meniscus 
profile and hence the contact angle are derived from the 
radii of the interference rings surrounding the film perim- 
eter. However, the value of the capillary pressure of pla- 
nar films is limited by the size of the capillary used. In 
real systems, the actual capillary pressures that exist in 
foams can be approximated by the height of stable foams 
and can have a magnitude of up to 1000-1500 Pa. It is 
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known that the film contact angle can be a function of 
the capillary pressure, especially a t  higher values of the 
pressure.* The contact angle a t  high capillary pressures 
could be determined by studying small fluid droplets 
(diameter less than 400 pm) attached to a fluid inter- 
face. In this study, we propose a method to calculate 
the contact angle of aqueous films, formed by floating 
air bubbles, from their microscopic interference pattern. 
We used the air-water system because of its applica- 
tions to foams. The experimental method we used was 
similar to the “shrinking bubble” method used by Prin- 
cen and Mason.g In this method, a relatively large bub- 
ble a t  a liquid surface gradually decreases in size due to 
the gas escaping from within the bubble to the atmo- 
sphere, through the permeable liquid film. The geomet- 
ric parameters of the bubble are recorded optically as a 
function of its size. Ivanov and c o - w ~ r k e r s ~ ~ ~ ~  also used 
the same experimental technique to study the effect of 
film and line tension, in the case of small bubbles. By 
measuring the equatorial diameter and the radius of con- 
tact of the film, they calculated the contact angle using 
the asymptotic solutions of the Laplace equation that 
describes the surface of the bubble. Determining the con- 
tact angle for their system (sodium dodecyl sulfate with 
electrolyte) was simplified by the fact that the surfac- 
tant film was thin and the radius of contact could be 
measured precisely. In the case of systems with small 
contact angles (<4O), the radius of contact is not visu- 
ally distinct and cannot be accurately measured. In this 
case, while viewing the bubble from the top in reflected 
light, we observe an interference pattern (Newton rings), 
in the three-phase contact region. Our new method uti- 
lizes the radii of the Newton rings to determine the con- 
tact angle, without using any major approximations. The 
Laplace equations for the surfaces were integrated numer- 
ically by using the Runge-Kutta method to obtain the 
profiles of the surfaces. These profiles were used to gen- 
erate a set of theoretical Newton rings. To fit the exper- 
imental and theoretical radii of the Newton rings, we 
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Figure 1. Schematic of the experimental cell. 

adapted the general minimization procedure, (devel- 
oped by Dimitrov et a l l4  for planar films) using the radius 
of contact rc as the variable parameter. We verified the 
results obtained by this method using independent data 
provided by the differential interference technique pro- 
posed by Nikolov et a1.12 We also looked into the effect 
of micellar concentrations on the value of the contact 
angle. The new method that we developed can be used 
mainly for systems with low contact angles and thick films, 
the typical situation for emulsion and pseudoemulsion 
film@ (aqueous films formed by oil drops attached to 
an air-water interface). Films (foam and emulsion) from 
micellar solutions exhibit stratification,16 and the final 
thickness of the film (after drainage) can be large with a 
small contact angle, which can be measured by using this 
method. Change in the interactions between the micelles, 
either by adding electrolyte17 (for anionic micelles) or 
by solubilizing oilslS (in the case of nonionic micelles), 
directly affects the properties and the contact angle of 
the film. The contact angle measured by use of this tech- 
nique will be useful in quantifying the change in the film 
properties due to the change in the micellar interac- 
tions. 

Experimental Section 
We used a Carl Zeiss Jena Epival Interphako microscope to 

make the contact angle measurements. This microscope is capa- 
ble of viewing objects in transmitted as well as in reflected light. 
The light source for the reflected light mode is a mercury vapor 
lamp (HBO 50) used along with a multiple grating. The micro- 
scope is equipped with a Max Zhender interferometer, which 
splits the original beam of the image into two beams of differ- 
ent optical paths which when recombined give a shearing type 
differential interference pattern.19 This pattern can be used to 
determine the curvature of surfaces. By changing the grating 
constant and the magnification, a range of curvatures can be 
measured. A specially designed glass cell held the solution in 
which the bubbles were created. The construction of the cell 
is shown in Figure 1. I t  consists of three concentric glass cyl- 
inders with diameters of 57, 15, and 9 mm. The cylinders were 
fixed on one end to  an optical glass plate. Prior to  use, the 
glass cell and all other glassware were cleaned with distilled 
water after soaking in freshly prepared chromic acid for 24 h. 

(14) Dimitrov, A. S.; Kralchevsky, P. A,; Nikolov, A. D. Colloid Surf., 
submitted. 

(15) Wasan, D. T.; Nikolov, A. D.; Huang, D. D. W.; Edwards, D. A. 
In Surfactant Based Mobility Control; Smith, D. H., Ed.; American 
Chemical Society: Washington, DC, 1988; p 136. 

(16) Nikolov, A. D.; Wasan, D. T.; Kralchevsky, P. A.; Ivanov, I. B. 
In Ordering and Organization in Ionic Solutions; Ise, N., Sogami, I., 
Eds.; World Scientific: London, 1988. 

(17) Nikolov, A. D.; Wasan, D. T. J. Colloid Interface Sci., in press. 
(18) Lobo, L. A.; Nikolov, A. D.; Wasan, D. T .  J .  Dispersion Sci. Tech- 

nol. 1989, 10, 2, 143. 
(19) Beyer, H. Jenaer Rundsch. 1971, 16, 82. 

The cell was then rinsed 3 times with small quantities of the 
test solution. The inner cylinder was completely filled with the 
Solution, and the outer cylinder was filled to about half ita height. 
The middle cylinder collected the overflow from the inner cyl- 
inder. The meniscus of the solution within the inner cylinder 
was made almost flat by scraping the top of the cylinder with 
the side of a glass capillary tube. We created bubbles on the 
meniscus of the inner solution using a 1-mL glass syringe with 
a long glass tube at ita tip. The bubble was created by sucking 
the solution within the syringe, leaving a small air gap in the 
glass tube; the size of the air gap determined the size of the 
bubbles. The solution was then expelled from the syringe. At 
the moment when the air pocket reached the tip of the glass 
tube, it formed a bubble which was deposited on top of the 
meniscus. The initial bubble size (diameter) was controllable 
to  about 100 rm. A plastic cylindrical cup with a diameter 
between that of the outer and middle cylinders was inverted 
over the cell such that ita edge lay below the surface of the 
solution in the outer cylinder. The objective fit snugly into a 
hole cut in the roof of the cup, such that the cup moved with 
the objective. The environment around the bubble was thus 
isolated from the outside, preventing evaporation or mechani- 
cal disturbances in the outer solution from reaching the inner 
solution. The microscope was mounted on a 4000-kg antivibra- 
tional block. The light sources for the transmitted and reflected 
light were fitted with a filter for green light (546 nm). For our 
measurements with reflected light, we used a multiple grating 
with a slit width of 48 pm. The experiments were carried out 
by using Shell’s ethoxylated alcohol surfactant Enordet C1415 
AE9 with an average of nine ethoxy groups and a 14-15 carbon 
atom chain. The critical micelle concentration of the solution 
is around 5 x 10-8 mol/L. The two concentrations studied were 
(i) 4 wt % (2.6 x 10-2 mol/L) of surfactant dissolved in dis- 
tilled water and (ii) 1 wt % (6.6 X 10-3 mol/L) of surfactant 
dissolved in a 1 wt % brine solution. The brine was prepared 
with NaC1, obtained from Fisher Scientific, which was ACS cer- 
tified. The surface tension of both solutions was 29.7 dyn/cm. 

The shrinking bubble measurements were made with a sin- 
gle bubble a t  a time. The initial radii of the bubbles were about 
350-375 pm. After formation of the bubbles, we waited for a 
period of 30 min (or longer) before taking measurements to per- 
mit saturation of the environment above the solution. All mea- 
surements were made by using an objective with a magnifica- 
tion of 12.5. Photomicrographs in reflected light were taken of 
the common and differential interference patterns as a func- 
tion of time. The entire procedure took about 3 h for each bub- 
ble studied. The distance between the interference fringes was 
measured from the photomicrographs with a Carl Zeiss Jena 
moving stage micrometer (called Comparator type AB) with a 
magnification of 10, which has a minimum resolution of 0.2 rm.  
Photomicrographic as well as visual measurements were made 
in transmitted light in order to obtain the equatorial diameter 
of the bubbles. Measurements were made at suitable time inter- 
vals until the bubble shrunk to  about 80 bm. 

Experimental Measurements and Calculation 
Procedure 

The main parameters required to characterize the sys- 
tem are (i) the radius of the bubble, R; (ii) the radius of 
t h e  h a t  of the bubble, Rf; and (iii) the contact  angle a 
along with the radius of contact of the film r, (see Fig- 
ure 2). The contact angle a defined in Figure 2 is twice 
the contact angle defined for symmetrical planar films.4 

Measurements and  Interpolation of the  Equato- 
rial Radius of the  Bubble (R). The equatorial radius 
of the bubble can be determined by observing the bub- 
ble in transmitted light. The actual radius of the bub- 
ble, however, must be determined from the Fraunhofer 
diffraction pattern which appears around the bubble equa- 
tor. The theoretical solution for Fraunhofer diffraction 
produced by an edge20 shows that the inner edge of the 
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Figure 2. (a, Top) Fluid particle a t  a fluid-fluid interface. (b, 
Bottom) Definition of the angles a t  the three-phase contact line. 
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Figure 3. Experiment to measure the radius of a capillary from 
the Fraunhofer diffraction pattern. 

first bright diffraction fringe lies close to the edge of the 
object. Since our light source was not ideal (the inci- 
dent rays were not made parallel), we checked the solu- 
tion experimentally by simultaneously observing a glass 
capillary of known inner diameter in reflected and trans- 
mitted light (see Figure 3). In this way, we could see 
that the inner edge of the first bright diffraction fringe 
(seen in transmitted light) was very close to the actual 
inner edge of the capillary (seen distinctly in reflected 
light). The estimated error in measuring the diameter 
of the bubble by using this criterion is about 0.5 pm, which 
is close to the resolution of the microscope. 

For the calculations using common interference (CI) 
and differential interference (DI) measurements, we needed 
the values of the radius of the bubble R at  the moments 
when the CI and DI patterns were photographed. Since 
it is not possible to make simultaneous measurements, 
suitable interpolated values of R were required at any 
time t .  Using the method suggested by Kralchevsky et 
al.,13 we found these values using the expression 

(1) 
where al ,  a2, to,  and q are parameters to be determined 
by a least-squares fit of the experimental data. The curves 
obtained for single bubbles for the two surfactant solu- 
tions are shown in Figure 4. We obtained a good fit with 
this method with a maximum standard deviation of 0.25 
pm. 

Measurement of Curvature of the Hat (I&). The 
radius of curvature of the hat R is measured from the 
differential interference (DI) pattern (see Figure 5). The 
position of the streaks is measured, and Rf is given by12 

R( t )  = a,(t, - t)* + a#, - t)t 

where l k  = kX/4, k is the order of interference of a streak 
( k  = 1, 2, 3, ... ) h is the wavelength of incident light (in 
pm), d is the distance of shearing of the image (in pm), 
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Figure 4. Equatorial radii of the bubbles as a function of time. 

II I " 
111 rings streaks n~ 

Figure 5. Cross section of the reflecting surfaces sheared hor- 
izontally by a distance d and the resulting differential interfer- 
ence pattern. 

and x is the distance of the streak (in pm) from the cen- 
tral streak (position of zero order of interference). 

Since it is extremely difficult to determine the exact 
position of the central coordinate, we used the proce- 
dure developed by Nikolov et a1.12 A function @ is defined 

(3) 

where x'1 and x ' ~  denote the coordinates of the left and 
right of pairs of symmetric streaks numbering n away 
from an arbitrarily chosen origin for the central axis. The 
value of Rf is calculated from eq 2. The value d of a' 
which minimizes @(a') is the most probable value of the 
central axis, and the coordinates of the streaks are given 
by 

(4) 

Calculation of Contact Angle CY Using Common 
Interference (CI). In this subsection, we propose a 
method to calculate the contact angle a using measure- 
ments of the radii of the common interference rings. When 
the films are thick (>200 A), the radius of contact rc can- 
not be accurately measured, and we use the Newton rings 
and equatorial radius R to determine rc as well as the 
contact angle CY. The calculation procedure consists of 
the following steps. 

i. Calculation of the Radius of Curvature of the 
Bottom of the Bubble (Rb). Due to the buoyancy of 
the air bubble, its lower surface is flattened or deformed. 
The radius of curvature at the bottom of the bubble can 
be calculated from the measured equatorial radius by using 
an expression suggested by Kralchevsky et al. (see eq 15 

@(a') = CIRf(~'l,n - a') - R&',,, - a')]' 
n 

x ,  = x', - d 
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force, and its value is obtained by the method suggested 
by Kralchevsky et al.” The elevation of the point of 
contact above the flat surface of the solution, h, (see Fig- 
ure 2), can be calculated by (see eq 15 in ref 13) 

(9) 
4 

y,(Apg/a)”2r,(l + cos 9J 

where ye = 1.781 072 418 is Euler’s number. An error 
estimate of the above equation is provided by Kralchev- 
sky et a1.l1 Since we have two unknowns, h, and 9,, we 
need a second equation. This equation is provided by 
the one derived by Princen,22 with a small modification, 
and it is an exact equation. It is obtained from the con- 
dition of constancy of pressure at  all points of the hori- 
zontal planes situated in the bulk gas and liquid phases 
(see eq 13 in ref 13) 

h, = r,  sin 9, In 

Figure 6. Sketch of the bubble surface with the coordinate 
axes used for the integration of the Laplace equation from the 
boundary z = 0, x = 0, w = 0 to x = rc. 

in ref 11) 

- = 1 - - +  R P P2 l n2 - -  +... 
Rb 6 6( i) (5) 

where P = ApgRb2/u, Ap is the difference in the density 
of the two fluids (the solution and the air), and u is the 
surface tension. Equation 5 is an asymptotic equation, 
and an error analysis has been performed by Kralchev- 
sky et a1.l1 For the size of bubbles we studied, the error 
obtained by using eq 5 is much smaller than the preci- 
sion of the experimental measurements of R. Equation 
5 can be solved for Rb for each given value of R by suc- 
cessive approximations. 

ii. Shape of the Bubble Surface. The lower sur- 
face of the bubble is deformed by gravity, and in this 
case the Laplace equation has no closed analytical solu- 
tion. We accordingly integrated this equation numeri- 
cally. For the bubble surface (see Figure 6), the Laplace 
equation can be written in the parametric form sug- 
gested by Hartland and HartleyZ1 

df df 
- = sin w 
dS ds - = cos w 

dw sin w - = 2 + pf - - 
ds f 

where R and i are dimensionless variables 

R = X / R ,  i = Z / R ,  (7 )  
X and 2 are the real dimensioned variables, and s is the 
arc length of the generatrix of the bubble surface (ds2 = 
dX2 + dZ2). 

An initial value for the radius of contact rc is approx- 
imated from the measurements. The equations are inte- 
grated numercially by using the Runge-Kutta method 
from the coordinates 2 = 0, w = 0, and 2 = 0 (which is 
the apex of the bubble), with appropriate increments in 
s up to the point X = r,, w > 90 (see Figure 6). 

iii. Calculation of the Deformation of the Menis- 
cus Represented by the Angle 9,. At the point of con- 
tact, the tangent to the bubble surface makes an angle 
6, with the horizontal (see Figure 2b). This is given by 

(8) 

where wc is the value of w a t  the point X = rc obtained 
from the integration of the bubble surface. 

The tangent to the surface of the meniscus at the point 
of contact makes an angle 9, with the horizontal. This 
angle \kc is dependent on the gravity or the buoyancy 

4, = 180 - w, 
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P sin 9, = - 1 + -(zc - h‘) ] - sin 4, (10) :[ 2R, 
where zc is the height of the point of contact from the 
bottom of the bubble. By use of an iteration procedure 
between these two equations, the values of h, and Q, are 
obtained. 

iv. Theoretical Description of the Interference 
Pattern. From the profiles of the meniscus and bubble 
surfaces, it is possible to calculate the position at  which 
interference fringes will occur. As we had already men- 
tioned, the profile of the bubble surface is obtained by 
integrating the Laplace equations for the bubble. The 
profile of the meniscus can then be obtained by integrat- 
ing the Laplace equations for the meniscus.21 The equa- 
tions are given by 

d sinw -sin w, m=-- 
dR 32 f P  

dh 
- di = -tan w, 

where i and 2 are dimensionless as before and wm is the 
angle made with the normal to the surface and the ver- 
tical. The boundary conditions for the two surfaces are 

d& 
dx X = rc; 7 = tan (180 - 4J = tan w,; 2, = h, 

for the bubble and 

dfm X = rc; 7 = -tan 9,; 2, = h, dx 
for the meniscus. The subscripts m and b refer to the 
meniscus and bubble surface. 

Using the Runge-Kutta method, we integrated the two 
surfaces simultaneously, with respect to x .  When the dis- 
tance between the two surfaces (2, - Zb) satisfies the 
condition for interference, i.e. 

Z, - 2, = h, = kX/4N ( k  = 1 ,2 ,3 ,  ... ) (12) 
(where N is the refractive index of the solution and h k  is 
the distance which satisfies the condition for interfer- 
ence) the position of a theoretical fringe is obtained. The 
integration is carried out until the number of theoreti- 
cal fringes obtained equals the number of experimental 
fringes observed. 

In the case of two surfaces (in our case these are the 
meniscus and the bubble surface), the rays of light arriv- 
ing vertically are deviated by refraction and reflection at  
the surfaces (see Figure 7 ) .  The corrected distance h k  is 
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Figure 7. Reflection and refraction at  an inclined wedge. 

given by 
h 
4N h, = -(k + 1) X 

2 cos2 ( r  + 42) 
cos (r + 2$) cos ($1 + $2)[1 + cos (2r + $J] 

(13) 

where ~$1 and $2 are the angles described in Figure 7. 
These angles are obtained from integration of the Laplace 
equation 

$1 = w,; $2 = 180 - W, - 
wm and Wb are the angles of the Laplace equation for the 
meniscus and the bubble, respectively. These angles are 
updated at  every integration step 

r = arcsin [(sin $,)/N] 

where N is the refractive index of the solution. The cosine 
terms on the right correct for reflection and refraction 
at  a wedge. The condition for the occurrence of the fringes 
is when the distance between the two surfaces (2, - Zb) 
is equal to h k ,  where h k  is given by eq 13. 
v. Minimization of Dispersion between Experi- 

mental and Theoretical Radii. The disparity between 
the positions of theoretical and experimental rings is given 
by the dispersion 

n 

where n is the number of rings observed in the experi- 
ments, rt(i) the radius of theoretical interference ring, 
and r,(i) the radius of experimental interference ring. 

The ideal match for the experimental and theoretical 
results would result in the dispersion tending to zero. 
However, due to limitations in experimental accuracy, 
this ideal cannot be achieved. We obtain the best fit 
when the value of the dispersion is minimum. The match 
between the theoretical and experimental values of the 
radii of the rings depends on the initial value of rc cho- 
sen in step ii. Hence, the dispersion is a function of rc, 
and the value of rc is varied in such a way as to mini- 
mize the dispersion. For every change in the value of rc, 
the calculation steps i to v are repeated. 

At the minimum dispersion, the contact angle a can 
be calculated (see Figure 2) by 

a = $ , - \ k c  (15) 
Calculation of Angle 8 Using the Differential Inter- 

ference Fringes. From the force balance equations of 
a fluid particle a t  a fluid interface, Ivanov et a1.l0 deduced 
that in the absence of line tension the condition for equi- 
librium of the particle requires that 

B = a/2 + \kc (see Figure 2) (16) 
From the streaks, the value of Rf can be calculated by 

using eq 1. From graphical interpolation, the values of 

I 
120 I60 200 240 2 80 

R iwm 

Figure 8. Contact angle as a function of the bubble radius 
obtained from two experiments made on the system contain- 
ing 1 wt % AE 9.4. 

Rt are obtained for the instants a t  which common inter- 
ference measurements are available. From the value of 
rc calculated from CI measurements and Rf calculated 
from DI measurements, the angle t9 is obtained:13 

B = arcsin (rc/  R,) (17) 
Hence independent measurements from the DI and CI 
patterns could be used to obtain the angles a t  the point 
of contact and to check the validity of eq 16 for the equi- 
librium of the particle. This check could be used in the 
case of larger bubbles, where line tension effects can be 
neglected. 

Results and Discussions 
To confirm that the experiments are reproducible, we 

measured two individual bubbles for the test solution con- 
taining 1 wt % surfactant with 1 wt % NaC1. The con- 
tact angle a, obtained by the minimization procedure, is 
plotted against R, for the two runs, in Figure 8, showing 
a reproducibility of 0.2'. Hence, if the experiments are 
performed in the manner described, reproducible results 
are obtainable. 

Contact Angle from Common Interference Mea- 
surements. Using the radius of contact as the variable 
parameter, we minimized the dispersion, obtaining a good 
fit between the theoretically calculated and experimen- 
tally measured values of the radii of the Newton rings 
(see Figure 9). The standard deviation of the radii of 
the rings was 0.1 pm for both the systems, which is within 
the limits of experimental accuracy. Figure 10 shows the 
contact angle a as a function of the radius of the bubble 
obtained from the experiments. The plot of rc versus 
the capillary pressure 7r (which is calculated from the 
radius of curvature of the bottom of the bubble) is shown 
in Figure 11. 

From Figure 10, we see that for bubbles larger than 
160-pm radius, the contact angle a is practically inde- 
pendent of the bubble size. This is confirmed by the 
results obtained from differential interference measure- 
ments and discussed in the next subsection. We also 
observed, for both systems, that the ratio of R to rc 
decreased from 10.1 to 4.2 with a decrease in the bubble 
radii from 300 to 125 pm. This result indicates a large 
deformation of the lower bubble surface and the menis- 
cus, near the three-phase contact line. This occurs because 
of the effect of gravity, because when the effect of grav- 
ity is negligible, r c / R  equals sin a (which is nearly con- 
stant in our case for R > 160 pm). 
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Figure 9. Best fit of the radii of the Newton rings between 
those obtained theoretically and those measured experimen- 
tally for bubbles of the two systems at  their largest size (first 
measurements). 
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Figure 11. Radius of contact of the film, rc, as a function of 
the capillary pressure. 

Differential Interference Measurements. Mea- 
surements made by Nikolov et al.23 on sessile liquid drops 
show that the correction for the aperture suggested by 
Beye?* is small and random. Hence, this correction is 
taken to be zero. Due to the diffuse nature of the streaks, 
as compared to the sharp streaks obtained by Nikolov et 
a1.12 using SDS, the experimental error in measuring Rf 
was about 44%. The plots of R versus Rf for the two 
systems are shown in Figure 12. From these plots, inter- 
polated values of Rf were obtained to calculate values of 
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Figure 12. Radius of curvature of the film Rf as a function of 
the bubble radius R. 
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Figure 13. Plot of 0 vs a/2 + \kc for the two experimental sys- 
tems. 

B which were then compared with the calculated values 
of CY and \k, from the common interference measure- 
ments, as explained before. Note that only interpolated 
values were used; if one requires extrapolated values, they 
must be used with caution. 

The plot of B versus a/2 + \k, for the two systems is 
shown in Figure 13. The data lie close to the line  CY/^ + 
\k, (the experimental accuracy of the measurements of 
the angle CY is 0.15'). All the differential measurements 
were made for bubble radius R > 160 pm. Below this 
value, the splitting of the two images is almost complete, 
and the streaks do not exist. Hence, it was not possible 
to calculate Rf (unless extrapolation is used) for bubble 
radii lower than 160 gm. Study of smaller sized bubbles 
would necessitate the use of another objective with larger 
magnification. 

The plots of B versus a/2 + \kc confirm that for bub- 
bles larger than 160 pm the line tension can be neglect- 
ed.lo This agrees with the results obtained from the CI 
measurements-the contact angle a is independent of R 
for R > 160 pm. The small decrease in contact angle for 
smaller bubbles (R < 160 pm) may be due to the effect 
of appreciable line tension; pursuing that possibility, how- 
ever, is not in the scope of this study. 

Effect of Micellar Concentrations. In comparing 
the values of the contact angle a for the solutions of two 
different micellar concentrations, we observed an inter- 
esting effect: the contact angle decreases by about 0.35O 
with a decrease in surfactant concentration from 4 to 1 
w t  5%. This phenomenon indicates a decrease in the film 
thickness with an increase in the contact angle. This effect 
could be caused by the osmotic pressure of the micelles. 
If it is assumed that there are no micelles in the film, the 
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osmotic pressure within the film increases with the micel- 
lar concentration in the bulk solution, resulting in a move- 
ment of the solution from within the film to the bulk. 
This would result in thinner f i i  and larger contact angles 
for higher concentrations of the micellar phase. 

In stratifying films it is also possible to reach a meta- 
stable state with micelles being present within the film.16 
In this case, the contact angle depends on the interac- 
tion between the micelles within the film. The size and 
the shape of the micelles, and hence the micellar inter- 
actions, are a function of the surfactant concentration. 
A variation in the micellar interactions (with concentra- 
tion) within the surfactant film could result in a change 
in the contact angle that we observed. 

Conclusions 
The new method to measure contact angles of float- 

ing bubbles involved matching the values of the radii of 
the Newton rings generated by solving the Laplace equa- 
tions for the various surfaces to those obtained from the 
experimental interference pattern. We obtained a good 
fit between the two with a standard deviation of 0.1 pm, 
which is within the limits of the accuracy of the experi- 
mental measurement. The method to determine the con- 
tact angle does not make use of any major'assumption. 
Studies were made with an ethoxylated alcohol surfac- 
tant Enordet C1415 AE9.4 at  concentrations of 1 and 4 
wt  %, which were several times the cmc of the surfac- 
tant. The values of the contact angle that we obtained 
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for this system were as low as 2". Two experiments were 
carried out with the solution containing 1 wt  % surfac- 
tant to check the reproducibility. The experimental tech- 
nique and the measurements were reproducible to within 
0.2" for the contact angle. 

The results obtained by using the new procedure show 
that the contact angle is independent of the capillary pres- 
sure for the larger bubbles (R > 160 pm). To confirm 
this, we measured the angles 8, a, and \k, at  the radius 
of contact using measurements made from the differen- 
tial and common interference patterns. The values of 
these angles were used to check the validity of the equa- 
tion of equilibrium of the particle (eq 16). The results 
show that for these larger bubbles line tension effects 
are negligible. 

We observed a 0.35" increase in the value of the con- 
tact angle a in increasing the surfactant concentration 
from 1 to 4 wt ?& . This effect could be caused by osmotic 
pressure effects or the change in the interactions of the 
micelles within the film at  higher micellar concentra- 
tions. We are making further studies to determine its 
cause. 
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