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Abstract, The radius of curvature at the top of small liguid drops has been
determined both visually and by means of differential interferometry in reflected
light {microscope Epival Interphake, Carl Zeiss—]Jena). Systematic errors in the
interferometric measurements have not been found within the investigated
interval of curvatures. A comparison between the data for aqueous and mercury
drops showed that there is no pronounced effect of the reflectivity of the surface
on the accuracy of the interferometric measurements.

1. Intreduction

The differential interferometry in reflected light is a widespread and powerful
method for studying the structure of solid surfaces and biological objects [1 4].
During the last decade differential interferometry {more precisely, the ‘shearing
method’) has been applied also to fluid interfaces. Zorin |5] determined in
transmitted light the profile of a biconcave liquid meniscus. Del Cerro and Jameson
[6] and Mingins and Nikolov [7] measured the curvature of small o1l lenses floating
on an aqueous surface. The curvature at the top of spherical films of small air bubbles
attached to u liquid surface has been measured [8] in reflected light in order to
determine the film and line tensions [9,10]. The application of diffcrential
interferometry to capillary phenomena was stimulated mainly by the growing
interest in line tension. This quantity, which can play a significant role in the
occurrence of a number of processes of practical rmportance [11] is usually small.
Therefore its determination can be strengly affected by inaccuracies in the optical
method used. Hence it is important to study possible systematic errors involved in
the differential-interferometric measurement of curvature.

The differential-interferometric measurements carried out by Nikolov et al. [8],
which provided some interesting and unexpected data on line temsion, were
performed by using an Epival Interphako (Carl Zeiss—Jena) microscope {12, 4]. The
purpose of the present work is to check the accuracy of the optical method used in [8].
Beyer has pointed out [4] that a systematic error could appear owing to the aperture
angle of the objective, and he derived theoretically the respective corrections, It is
possible that sorne other sources of systematic errors could also exist. Hence, we
undertook an experimental vertfication of the interferometric method using objects
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with known radii of curvaturc of about 100-300 um (radii of same order were
measured in [8]). It is very difficult to produce perfect solid spheres of this size, and
for that reason, we preferred to use liquid drops. These surfaces are optically
smooth, but deformation due to gravity must he taken mto account.

2. Equations for the shape of a sessile drop

The cross-section of a sessile liquid drop on a hotizontal hydrophobic surface 1s
sketched in figure 1. The normal to the generatrix of the drop surface forms an angle
¢ with the positive direction of the z-axis. By observing the drap from the top, one
can measure its equatorial radius R {at ¢ =H}"). The deviation from the spherical
shape due to gravity is more pronounced for the lower drop surface (¢ <90"). The
upper drop surface (90" < ¢ < 180) for small drops (R <1 mm} is nearly spherical;
more precisely it is tangent to a sphere of radius & (6 # R) at ¢ = 180", This radius b
can be caleulated from the measured equatorial radius R (see equation (3} below). On
the other hand, the radius » can be independently mcasured by means of the
interferometric methed used in [8)] and thus the accuracy of this method can be
checked. Ty put this idea into practice we first need some equations describing the
shape of such a drop.

The generatrix 2(x) of the drop surface satisfies the Laplace equation. Using the
angle ¢ as a parameter, one can write this equation in the form [13, 14]

d(sin ¢h)jdx+ sin p{x =2+ BE, }

dz/dx= —tan ¢,

(1)
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Figure 1. A sessile liquid drep on a horizontal hydrophobic surface. ¢ is the varying angle
between the normal to the drop surface and the positive divection of the z-axis; Risthe
equaterial drop radius,



Differential-interferametric measurement of curvatuve 1361

where the dimensionless variables
¥=x/b, Z==z/h and P=pgb*jc (2)

are introduced; ¢ is the gravitational acceleration, p and ¢ are the mass density and
the surface tension of the liquid, respectively. For small drops (like those considered
here) f is a small parameter and the solution of equations (1) can be sought as a series
expansion in powers of §. In this way a full set of asymptotic formulae for the shape of
a sessile drop were denived in [13]. We will utilize some of them here for our present
purpose:

(i) The radius b can be calculated from the measured equatorial radius R by
means of the following equation [15]:

Hb™1=R [t —Bi6+f2(In2—1/6)/6]. (3)

Equation (3) is solved by an interactive procedure using #”=R uas u zeroth
approximation for & on the right-hand side of (3).

{11) The value of the varying slope angle ¢ can be calculated for each given value of
x from the equation [15]:

2
sin(TSO"—¢)=;§{1+£- |:zs—2(z;—1)2}+-ﬁ (2—111%—1)}, 90" < <180", (4
b 6\o "

where =1+ \I.-"'(l —x?).

{111} 'I'hen with the value of ¢ so obtained the corresponding value of #(x} can be
calculated:

F=1+cos ¢+ fi{Lsin? p + £Insin(/2)—4(1 +cos $)}. (3)

In other words, equations (4) and (5) give the function 2(x) in an explicit (but
approximate) form. In the table the accuracy of equations (4) and (3) 1s checked
against the exact values of Z(X) by computer calculations by Hartland and Hartley
[14] at ¢ =175" (near the top of the drop). In our cxperiments (§ < 0-014, see below)
¢ > 175 so that the accuracy of the asymptotic formulae (4) and (5) is ¢ven better
than that given in the table (see [13]), i.e. (4) and (5) yield practically exact values of
Z(£). The ratio R/b in the lagt column of the table is close to unity, which means that
the shape of the upper drop surface is practically spherical.

Values of # calculated from equations (4) and (5) against the corresponding exact computer
data zyy from [14] at p=175" and different 8. The ratio R/ is calculated from equation (3).

log,q B (%107 F(x10%) agy (< 107%) Rib
—2-4 871553 38054 38053 0-9963
—2-2 871553 3-8035 38053 (+9989
—20 871549 3-8056 38052 0-9983

- 1-8 871545 3-8058 3-8052 -9974
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3. Error evaluation of the interferometric method

The basic principle of the shearing method consists in splitting the original hight
beam, coming from the subject, into two beams, which interfere. In the focal plane of
the objective one can observe two equivalent and overlapping images of the subject,
displaced by a distance d, and the created interference pattern. The upper part of
figure 2 is a sketch of the cross-section {in the plane x0z) of the two images of the
reflecting surface (a sessile drop) separated at a distance d along the x-ax1s. The lower
part of the figure is a sketch of the resulting interference pattern (in monochromatic
light). The fringes, which look like parallel lines, are analogous to the so-called
‘streaks’ in [8]. In fact, all the fringes are loci of peints for which the distance between
the reflecting surfaces satisfies the following requirement:

le(x +di2y—2(x—d{2=nd/4, n=0,1,2,...; (6)

here 4 is the wavelength of the light, # is the order of interference and z(x) is the
equation of the generatrix of the drop surface (cf. figure 1). Let us denote the right-
hand side of (6) by D (this quantity is directly measurable} and the theoretically
expected value of D on the left-hand side of (6) by Dk

D=nidj4, D =|z(x—di2)+2(x+d{2)|. (7)
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FFigure 2. A sketch of the cross-section of the reflecting surfaces, shifted by a distance d
(upper part) and of the resulting interference pattern (lower part).
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Then, let us define the quantity
d=(D/JIN—1. (8)

For cach fringe one can calculate D, D, and consequently §. If the values of 8 are
predominantly positive or negative, one can conclude that a systematic error exists.

In order to estimate the inevitable statistical error in 8, we will use z sujtable
approximate expression for §. It was mentioned above that in the region
175" < ¢ <180 (where the interference fringes are observed) the drap surface
practically coincides with a sphere of radius b, And for this reason, in this region the
generatrix of the drop surface can be approximated by

z(x)=\/b2—x2). (9)
T'aking into account that (x +d/2)*<«? one obtains from (7y and (B
D = xdlb

and then from (8) one finds & mxd/(Db) — 1. Ience the mean-square error Ad of the
quantity  can be cstimated from the equation

i 2 x 2 xd 23152
Aﬁ:{(ﬁ Ax) +(ED Ad) —l—(Rz--ﬁ&R) } . (1

where we have used the fact that % R (cf. the table) and Ax, Ad and AR are the errors
in the measurements of the position x of a given fringe, shearing distance d and
equatorial drop radius R. The error in D is negligible because the wavelength 4 1s
known to high precision.

4. Experimental procedure and results

The experimental set-up is shown schematically in figure 3. By ejecting distilied
water from a thin syringe needle over a flat horizontal glass plate covered with 'Teflon
tape many sessile drops of different size were formed. Owing to the hysteresis of the
wetting contact angle, the equatorial cross-section of some drops were elliptical, We
chose for our observations only drops of circular cross-section. The glass plate was
surrounded by filter paper soaked with distilled water. In this way evaporation from
the drops was reduced. The dependence of the equatorial radius of such a drop on
time is shown in figure 4. The correlation coefficient of the straight line is 0:999. At
some moments (denoted by arrows in the figure) photographs were tuken of the
interference pattern produced by the top of the drop. The microscope (Epival
Interphako) and the 25 x objective were the same as in [8]. The shearing distance
was d=12-08 ym with the multiple lighting slit No. 48 of the microscope. The light
source was a mercury lamp HBO-50 (50 W} and the green line of wavelength
4=346"1 nm was used. The photographs were taken at the smallest possible opening
of the field diaphragm and when the aperture diaphragm of the microscope was fixed
around the fourth division. The c¢xposure time was 4--5s (film ORWO, 15 DIN).
The times when the photographs were taken were recorded and the values of the
cquatorial radius at those times were found from the dependence R(t) (see figure 4).

We studied in detail six photographs of the interference pattern from water drops
on Teflon (one of them is shown in figure 5(a)) and one photograph of a mercury
drop on glass (figure 5 (4)). The mercury drop was used as a control to test for the
possible influence of reflectivity of the drops on the accuracy of differential
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Ifigure 3. r_l‘he experimental set-up: (1] a sessile aqueous drop; {2) Teflon tape; (3) olyective
of the microscape; (4) Bilter paper soaked with water, (33 at glass plae.
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Vigure 4. The decrease {(caused by evaporation) of the equatprial radius R of an aqueous

drop with time £. The arrows indicate the moments when photographs of the split image
were taken.

interferometry. The equatorial radii of all the drops were between 190 and 310 um.
The distance x from the central fringe (see figure 2) was measured for each fringe five
times.

With the measured equatorial radius R and fringe coordinate x one can calculate
the value of 13, by means of equations (4}, (5) and (7). Then the value of & and its mean
square error Ad is found for each fringe from equations (8) and (18). The results for
the seven studied drops are presented in figure 6, which shows that the quantity b
takes both positive and negative values and its mean value is close to zero. The mean-
square error curve was calculated from equation {(10) using experimental values
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(b)

Figure 5. Differential interference pattern in light reflected from the top of a liquid
drop: (a) aqueous drop (R=308 um), (b) mercury drop (R =282 um). Shearing distance
d=12:08 um; 25 x objective. The length of the reference marker is 50 um.
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Figure 6. The quantity § (equation (8)) versus fringe coordinate x: data from seven
photographs of liquid drops. The two lines represent the standard deviation Ad of ¢ due
to random error in the measurements of x and R.

Ax=011 uym, Ad=002 yum and AR=1-5um. We evaluated D for each x using
cquation (7Y for D,. The larger drop radius R= 308 um was substituted in equation
{10) to evaluate the lower bound + Ad.

For larger x the mean square error +Ad is determined mainly by the random
errorin R. The majority of the experimental points for  lie in the region between the
two mean-square curves +Ad(x). Hence one can conclude that the error in the
optical method is due to random errors in the individual measurements. In other
words, systematic error in the differential-interferometric measurement of curva-
ture has not been found in the investigated range of curvature radii. There is no
pronounced difference between the data for the mercury and water drops, and it
seems that the accuracy of the optical method is not affected by the reflectivity of the
surface.

We made calculations of the influence of variutions in the drop surface tension &
{due to possible impurities) on the valucs of § (see equations (2)—(4)). It turned out
that if one varics & from 30 to 73mN m ™! for the aqueous drops and from 260 to
460 mN m~ ! for the mercury drops, the corresponding changes in d are of the order
of 001 per cent, ie. they are negligible. This is due to the very small gravity
deformation of the studied small drops.

Another way of checking the accuracy of the interferometric method 15 to
compare the results for the radius of curvature b; at the top of the drop obtained by
differential interferometry with a value of the same radius determined by an
independent more direct method. Such a reference vulue, b,, can be found from
equation (3) by using the equatorial drop radius R, which is directly measurable.
(Note that the accuracy of equation (3} is well abave the accuracy of the experimental
tmeasurements.) On the other hand, equations (6), (7) and (9) can be rearranged to
vield b= (1+d%{ D) (&2 + D* 1412,
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From the above equation and the position x of any fringe of the interference
pattern cne can calculate &. By taking the average of & over all fringes for a given
photograph one obtains what can be called the ‘interferometric value’ b; of the drop
radius. In figure 7, b; is plotted against the reference value b, (for the same drop) for
all studied drops. One sees that b, and &, coincide for each drop within the framework
of the experumental accuracy. This fact is additional evidence that differential
interferometry can be utilized for measuring curvatures (at least in the range studied
by us) of fluid interfaces without any correction for systematic errors.

b,‘_'
fum)
200 4

T T -

20 250 30
brf, ,um)
Figure 7. The mterferometrically determined radius of curvature 8, versus the reference

value b, for the sume drop for one mercury (@) and six aqueous () drops. "T'he slope of
the sohid line 15 unity,
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