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1. INTRODUCTION 

In Part I of  this series 2 it was shown that the 
measurement  of  the film and line tension re- 
quires independent determination of the ra- 
dius of curvature, Rf, of  the hat of  the fluid 
particle, attached to the liquid interface (in the 
case of  a bubble the hat is the thin film inter- 
vening between the bubble and the bulk gas 
phase). This could have been done in principle 
by taking side-view pictures of the system (4) 
but  the precision for the very small bubbles 
studied by us would have been very low. Per- 
haps the only technique suitable for our pur- 
poses is differential interferometry [see, e.g., 
Refs. (5-7)]. Although the latter method is 
widely used for studying solid surfaces, to the 
best of  our knowledge it has been applied to 
fluid surfaces only by Zorin (8), del Cerro and 
Jameson (9), and Mingins and Nikolov (10). 
Unfortunately, neither of  the approaches in 
these works is suitable for the present study. 
Zorin (8) studied a biconcave meniscus in 
transmitted light; del Cerro and Jameson (9) 

t Author to whom correspondence should be addressed. 
2 The other papers in this series are quoted hereafter as 

Part I (1), Part II (2), and Part IV (3). 
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and Mingins and Nikolov (10) applied differ- 
ential interferometry in reflected light to float- 
ing lenses. None of these authors has ac- 
counted for the gravity deformation of  the 
fluid surfaces whereas for our systems and the 
precision we require (for calculation of  film 
and line tensions) this effect is of  t remendous 
importance. In addition, the very low intensity 
of  the light reflected by the thin film and the 
rapid shrinking of  the bubble give rise to spe- 
cific experimental and theoretical problems 
not encountered by the previous investigators. 
Hence, in this paper we develop a theoretical 
approach to the calculation of  surface shapes 
from the observed interference pattern and 
describe the experimental procedure used. 

The paper is organized as follows. In Section 
2 we derive the equations allowing the cal- 
culation of Rf; Section 3 is devoted to a special, 
but important,  p rob lem-- the  correct ther- 
modynamic  determination of  the radius rc of  
the three-phase contact line; the experimental 
procedure and some illustrative results are 
given in Section 4; the effect of  gravity defor- 
mation on the interferometric pattern is dis- 
cussed in somewhat more detail in the Ap- 
pendix. 

122 
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2. CALCULATION OF THE H A T  
(HLM) C U R V A T U R E  F R O M  THE 

INTERFERENCE P AT T E R N 

The basic principle of differential interfer- 
ometry consists of splitting the original image 
into two images. This is achieved by means of  
two optical wedges in the Mach-Zehnder  in- 
terferometer (7). We have used only horizontal 
splitting, when the two images are shifted at a 
distance d, the so-called "shearing parameter." 
The light beams coming from the two images 
interfere, thus creating a rather complicated 
interference pattern. Some examples are 
shown in Figs. 1-3. Figure 1 was obtained with 
a lens (looked at from the top) of  methyl 
caprate of radius 27.2 um floating over pure 
water. One observes two distinct kinds of  in- 
terference fringes--straight lines and circular 
segments, which we will call "streaks" and 
"rings," respectively. Note that the number of  
streaks is equal to the number of tings (if one 
does not count the central streak) and the two 
ends of  each ring are connected with the ends 
of a streak over the image of the lens perimeter. 
The picture was taken with shearing distance 
d = 26.42 ~m. Figure 2a shows a smaller lens, 
whose radius satisfies the condition rc < d < 2r¢ 
(re = 18.3 #m, d = 26.42 #m). In this case 
some of  the rings are closed and form full cir- 
cles, whereas others are still connected by 

FIG. 1. Differential interference pattern in light reflected 
from a lens of  methyl caprate over water at d < rc 
(re = 27.2 #m and d = 26.42 #m). 

FIG. 2. Differential interference pattern in fight reflected 
from lenses of  methyl caprate over water (d = 26.42 urn): 
(a) case rc < d < 2re (re = 18.3 urn); (b) case 2r¢ < d 
(re = 12.4 #m). 

streaks. In the limit 2re < d (Fig. 2b) the two 
images do not overlap, the streaks are missing, 
and all tings become full circles. In all these 
cases, because of the small density difference 
between the two liquid phases, the water sur- 
face is horizontal [if there were any slope it 
would probably be smaller than 0.1 o (11)] and 
looks uniform in the picture. With a bubble 
attached to a liquid surface, the deformation 
of the liquid surface is stronger. This is re- 
flected by the appearance in Fig. 3 of diffuse 
fringes, which we call "moustaches." The cen- 
tral "dark" streak merges with the central 
moustache, which far away from the bubble 
reaches the undeformed surface. The two 
rings, beginning on the dark streaks, neigh- 
boring the central streak (Fig. 3a), are inter- 
rupted on the contact line where they give rise 
to the first two dark moustaches (one on each 
side). If the surface were deformed more 
strongly (Fig. 3b), one would observe more 

Journal of Colloid andlnterface Science, VoL 112, No. i, July 1986 



124 NIKOLOV, KRALCHEVSKY, AND IVANOV 

FIG. 3. Differential interference pattern in light reflected from two bubbles, attached to a deformed 
air/liquid surface. The different number of "moustaches" indicates that the smaller bubble (a) (r~ = 45.4 
tzm, objective 25×) causes a smaller deformation of the surface than the larger bubble (b) (r, = 51.7 um, 
objective 12.5×). 

moustaches  and  the two ends o f  each mous-  
tache would be connected with the two ends 
o f  one (degenerated) ring; this situation is vi- 
sualized in the lower part  o f  Fig. 4. 

We now proceed with the derivation o f  the 
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FIG. 4. A sketch of the cross section of the reflecting 
surfaces shifted at a distance d (upper part) and of the 
resulting interference pattern (lower part). Rf is the radius 
and Zo is the coordinate of the center of the circumference 
corresponding to the film (the hat); rc is the radius of the 
contact line. 
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equations of  the interference fringes and show 
how to use them to recover f rom the interfer- 
ence pattern the shapes of  the liquid surface 
and the hat  (the upper  surface o f  the lens or  
the thin film intervening between the bubble 
and the gas phase). To  avoid unnecessary 
complications part  o f  the derivations are given 
in the Appendix,  

The upper  part  o f  Fig. 4 is a sketch o f  the 
cross section (in the plane x0z) o f  the two im- 
ages of  the reflecting surfaces split at a distance 
d along the x axis. The plane x0y  coincides 
with the contact  line (of  radius re). Rf is the 
radius o f  curvature o f  the hat  (assumed spher- 
ical) and 

Zo = ~ -  r 2 [1] 

is the coordinate o f  the center o f  the respective 
circumference. The equat ions o f  the surfaces 
are z = z(x, y) and whenever  necessary the 
superscripts " m "  and  " h "  (denoting external 
meniscus and hat, respectively) and the sub- 
scripts ' T '  and " r "  (referring to the left- and  
right-hand side images) will be used. The lower 
part  o f  the figure is a sketch o f  the resulting 
interference pattern. One clearly discerns three 
regions corresponding to the interference o f  
light reflected by the two images o f  the 
respective surfaces: (i) meniscus-meniscus  
(moustaches), (ii) meniscus-ha t  (rings), and 
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(iii) hat-hat  (streaks). In fact, all fringes are 
loci of points for which the distance between 
the reflecting surfaces satisfies the requirement 

IZl(X, y )  --  Zr(X, Y)l = In = 17 -~ ; 

n = 0, 1, 2, . . . ,  [2] 

where ), is the light wavelength and n is the 
order of interference (n is odd for dark fringes 
and even for bright fringes). Equation [2[ de- 
termines the fringe that corresponds to a given 
n. If  the functions zl(x, y) and Zr(X, y) are con- 
tinuous, the fringes will be continuous too. In 
our case, sketched in Fig. 4, this means 
matching of rings with streaks or moustaches 
of similar n at the contact lines. 

In this paper we assume that the hat is al- 
ways spherical. For a thin film, whose weight 
is negligible, this is an excellent approximation 
[see Part I and (4)]. (For a drop or a lens one 
can easily account, if necessary, for the gravity 
deformation of its shape by using the equations 
derived in Part II.) Hence, the equation of the 
hat is 

z~hr= - x_+ _ y 2 _ z 0  [3] 

where the upper sign (+) refers to the left-hand 
side image, and the lower sign ( - )  to the right- 
hand side image. 

If the deformation of the liquid surface can 
be neglected, i.e., if zm(x, y) ------ 0, Eqs. [2] and 
[3] yield 

X .a,_ _}_ y 2  _~ R 2 _ ( z  0 + ln)2. [4] 

Therefore in region II one has circles (the rings) 
that are concentric with the respective images 
of the contact line, 

( x + + y2 = re2 [5] 

and whose radii (cf. Eq. [1]) 

r z = r 2 - l~ z - 2l, fR-{ - r~ 2 [6] 

decrease as n increases. When the liquid sur- 
face is deformed, the rings obey Eq. [25]; see 
the Appendix. 

In region III one has 

Iz~(x, y) - z~(x, y){ = l, [7] 

which, along with [3], leads to 

x2/a~ + y2/b~ = 1 [8] 
with 

an = b n / , , ;  b ,  V R  2 2 2 = - ~ , l , /4  

~, = (1 + d2/12,) '/2. [9] 

Therefore, the streaks are parts of  ellipses and 
the reason why they look like straight lines is 
the high eccentricity e, ~ d/l ,  >> 1 (see below). 
By making use of the exact equations of the 
interference fringes (Eqs. [8], [14], and [25]) 
one can describe theoretically the transition 
of streaks to rings and then to moustaches, 
observed experimentally as described above 
(see the Appendix). 

The hat curvature is most conveniently cal- 
culated from the coordinates, x, ,  of  the inter- 
section of the streaks or rings (more precisely, 
of the lines with maximum intensity) with the 
x axis. The result for the streaks can be derived 
by setting, in [8], y = 0. Thus, using also Eqs. 
[9], we obtain 

R,: = ~.nVx 2 + 12,/4; [10] 

one observes that x,  = a,.  
The function Rf(xn) for the rings is derived 

from the following simple geometric consid- 
erations. From Fig. 4 one has A C  = A B  + BC, 
whereAC = 1,,,AB = Zhr(X,, 0 ) a n d B C  = Q(x, 
+ d/2). Here (cf. Eq. [72] of  Part II) 

Q(x) = re{[arc c o s h ( ~ )  

1 cosh( )lsm 
2 X F 1 

where q = (Aog/e) 1/2 (40 is the density differ- 
ence between the liquid and gas phases, o- is 
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the liquid/gas surface tension, g is the gravity 
acceleration, and ffc is the slope angle of the 
external meniscus at the contact line) and the 
function F is defined by Eq. [69] in Part II. 
By introducing the notation 

Dn--- ln -  Q(xn + ~ = z~(xn, O) [12] 

and making use of [3] and [1] one obtains 

R~ = rZc + [ r2~ - DZ~ - (x"-~-~ - d/ 2 )2] z. [13] 

The hat does not contribute to the forma- 
tion of the moustaches. Therefore, they can 
be used only for the calculation of re. The re- 
spective equation can be derived from the re- 
lationship 

, .  

However, this equation is of little avail because 
of the diffusivity of the moustaches. Some 
other characteristic points of the moustaches 
might prove to be more useful than xn, but 
we will not dwell on this point. 

3. ON THE THERMODYNAMIC DEFINITION 
OF THE RADIUS OF THE CONTACT LINE 

As already pointed out in Part I in close 
vicinity of the contact line the surface tensions 
no longer have their macroscopic values. The 
shapes &the  interfaces also deviate from what 
they would be if the surface tensions were 
constant. It is therefore paramount to have a 
correctly defined radius of the contact line, re, 
in order to obtain reliable values for the ther- 
modynamic characteristics of the system. 

With sufficiently thin films the reflecting 
surfaces undergo an abrupt change of slope at 
the contact line, so that the image of the con- 
tact line is sharp and one can measure its ra- 
dius with high precision. However, when the 
film is thicker, the slopes of the interfaces at 
the contact line may change so little that the 
location of the contact line becomes uncertain. 
Moreover, the transition region, where the 
surface tensions deviate from their macro- 

scopic values, can then, in principle, be large 
enough to include some parts of the surfaces 
that give rise to the interference fringes. As 
pointed out in Part I, under these conditions 
the only correct way of defining the contact 
line is to solve the Laplace equation for the 
three surfaces (external meniscus, hat, and 
lower surface of the bubble) and to extrapolate 
the solutions at constant (macroscopic) surface 
tensions until they intersect. 

For the system considered here this problem 
can be resolved by making use of Eqs. [10] 
and [ 13]. If all streaks yield the same value of 
Rf, the transition region does not affect the 
fringes. (Incidentally, if  it did, there would be 
a smooth transition from streaks to rings in- 
stead of a break.) If the same value of Rf is 
obtained from Eq. [13] (which contains (re), 
this is a guarantee that rc has been correctly 
measured. On the contrary, if  either of these 
conditions is not met, one can proceed in the 
following way: one calculates Rf from [ 10] for 
these streaks that yield a constant value of Rf. 
It is then substituted in [ 13] and one calculates 
r~ from those rings that yield the same value 
for re. Although simple and in principle im- 
peccable, this procedure is connected with 
considerable computational difficulties, be- 
cause calculation of~b~ also requires knowledge 
of r~. Hence, we propose below an iterative 
procedure (for details and notations see 
Part ID. 

(i) One measures experimentally an ap- 
proximate value of rc (denoted by r °) which 
will serve as a zeroth approximation. 

(ii) From the experimentally measured ra- 
dius of the equator of the bubble, R, and Eq. 
[15] of Part II 

V ~2 1 -l 
-~+/3- - f f ( ln2  ~11 , i 3 = ( q b )  2 b =Rt_l 

[15] 
one determines b (the radius of curvature at 
the bottom of the bubble) by iterations, using 
R as a zeroth approximation for b. 

(iii) From Eq. [ 13] of Part II 

sin ~ = rdb - ~ul(~o~) - ~32u2(~o~) [16] 
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one calculates ~o, using ~o~ °) -- arc s in ( re~b)  as 
a zeroth approximation. 

(iv) From Eq. [ 13] of Part IV 

sin ¢c = -~ 1 + ( z ~  - h e )  - sin ~o~, 

where z~(~) and h~(~) are defined by Eqs. [14] 
and [711 of  Part II, one calculates ¢c by iter- 
ations using ~ = 0 as a zeroth approximation. 

(v) From [1 l] and [121 one calculates Dn. 
(vi) From the equation 

re = xn  - + 2 D n  

(which follows from [11, [3], and [121) one cal- 
culates the first iteration of to, using the con- 
stant value of Rf determined from the streaks. 
Then, one starts over with step iii. Note that 
the procedure makes use of  equations for the 
three interfaces, which intersect at the contact 
line. 

To demonstrate the feasibility and the pre- 
cision of this procedure we have applied it to 
a photograph of one bubble with R = 118.6 
izm (b = 118.7 #m) and Rf  = 240.8 #m (de- 
termined from the streaks). The results are 
shown in Table I for three rings. For each ring 
three zeroth approximations, r °, have been 
used (25, 30, and 35 ~m) and all of  them lead 
to the same results, shown in the last column. 
The calculated average value re = 30.0 _+ 0.1 
~m is in excellent agreement with the directly 
measured (from the photograph) value, 
30.04 #m. 

TABLEI 

Order of 
interference Ring coordinate Calculated re 

n x, ~m) (~m) 

4 32.1 30.0 
6 29.2 30.0 
8 25.5 29.9 

4. EXPERIMENTAL PROCEDURE 
AND RESULTS 

A detailed description of the experimental 
procedure and the materials used is given in 
Part IV. We describe here only the interfero- 
metric techniques and the procedure used to 
determine the radius of  curvature of the hat, 
Rf.  The experiments were carried out with a 
differential microscope (Epival Interphako) 
using an eyepiece (× 16) and objective (×25). 
The light source was a high-pressure mercury 
lamp (HBO-50, 50 W) combined with an in- 
terferometric filter with X = 0.546 tzm. When 
a single slit was being used the image lacked 
contrast. That is why we used the multiple slit 
48. The value of the shearing parameter used, 
d = 12.08 + 0.02 t~m (in some experiments 
d = 24.16 #m), was determined as described 
in the manual for the microscope (10). The 
focal depth of  the objective used was found to 
be +2.5 izm. The aperture correction was de- 
termined by performing measurements of  the 
radii of  curvature of model systems (Nikolov, 
Kralchevsky, Dimitrov, to be published) and 
since it turned out to be random and smaller 
than 1.5%, it was assumed to be zero. 

All examples of measurements of  Rf given 
in the present paper were obtained with 0.05% 
solutions of sodium dodecyl sulfate (Fisher 
Scientific) containing 0.25 kmole/m 3 NaCI. 
We must point out that the films formed by 
these solutions are so thin that they are almost 
absolutely transparent; they look black in re- 
flected light. As low as the intensity of the light 
reflected by these films might be, it is sufficient, 
as our experiments proved, to produce differ- 
ential interference fringes. However, we must 
warn the potential user of this method that we 
were able to obtain sufficiently good interfer- 
ence patterns only when we took extreme care 
to avoid all possible perturbations (especially 
vibrations) and strictly observed the experi- 
mental conditions as formulated in the begin- 
ning of this section; for example, the replace- 
ment of  the multiple slit by a single slit would 
considerably worsen the quality of  the picture. 

Due to the diffusion of the gas across the 
film, the gas bubble dimensions steadily de- 

Journal of Colloid and Interface Science, Vol. 112, No. I, July 1986 



128 NIKOLOV, KRALCHEVSKY, AND IVANOV 
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FIG. 5. The results for the radius of curvature of the 
film Rf (calculated from streaks) as a function of the in- 
terference order n for three bubbles, whose equatorial radii 
R are also shown on the figure. The lines correspond to 
the average values of Rf, calculated by means of the min- 
imization procedure, as explained in the text. 

crease with time. Down to bubble radii R ~ 80 
~m it was possible to take pictures (with ex- 
posure times of  8-9 s) and to measure from 
the photographs the distance between the 
fringes with sufficient precision. With smaller 
bubble radii the shrinking of the bubble was 
so rapid that only visual observations were 
possible (see below). 

The experimental results and their use in 
calculation of the full set of system parameters 
are described in Part IV. In this paper we give 
only a few illustrative examples to show how 
the film curvature is calculated from the ex- 
perimental data and to emphasize the need to 
correctly account for the gravity effects in order 
to obtain reliable results. 

The Rr values calculated from the streaks 
and Eq. [ 10] are extremely sensitive to the co- 
ordinates x~. While it is relatively easy to find 
the distance between two symmetric streaks, 
it is much more difficult to locate the axis of 

symmetry of the picture, i.e., to find the zero 
of the axis 0x (see Fig. 4). The best procedure 
is to measure the coordinates x ,  of  the fringes 
with respect to an arbitrarily chosen origin of 
the coordinate axis and to construct the func- 
tion 

• (a') = ~ [Rf(x{. - a ' ) -  R f ( x ' .  - a')] 2 [18] 
n 

where x~, and x~n are the coordinates of  each 
pair of symmetric streaks and R f ( x ~ ,  - a ' )  and 
Rf(X'rn - a ' )  are calculated from Eq. [10]; the 
summation is carded out over all pairs of  
symmetric streaks. The value d of  a', which 
minimizes the function ~(a'), is the most 
probable value of the coordinate of the center, 
and x~ = x" - E are the coordinates of the 
streaks with respect to this center. 

Figure 5 shows the results for Rf calcu- 
lated in this way from three photographs 
(Rf = 295.4, 239.9, and 227.7 #m). The co- 
ordinate of  each streak was measured twice 
from the photographs and the two points for 
a given n correspond to the two values of Rf 
calculated from these two measurements. The 
standard deviation is shown in the figure. 

An important check on the precision of the 
experimental procedure is the comparison of  
the Rf values calculated independently from 
streaks (Eq. [10]) and rings (Eq. [13]) for the 
same photograph. This was possible only when 
the elevation of the hat over the contact line 
was small enough so that both the streaks and 
the rings appeared distinctly on the photo- 
graph. Two examples are given in Table II; 
the differences are within the range of the 
standard deviation. 

TABLE II 

Rf Calculated Independently from Streaks (Eq. [10]) 
and Rings (Eq. [13]) 

/~ (~ra) 
r~ R 

(~m) (~m) Streaks Rings 

30.0 118.6 240.8 + 3.8 242.8 
27.6 110.9 224.7 + 5.3 225.6 
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I 

FIG. 6. A scheme of the reflecting surfaces in the case 
of complete splitting (sheafing distance d > 2r¢). 

Visual determination of  Rf was performed 
with complete splitting (see Fig. 2b), i.e., with 
r~ < d/2 (d was increased to 24.16 #m in this 
case in order to avoid a gap between photo- 
graphic and visual measurements). The es- 
sence of the method is to record ro at the mo- 
ment when the top ring shrinks to a point. 
From Fig. 6 it follows that at this moment  

Do + Q(d) = l, [191 

(Q is again calculated from Eq. [11]). Then 
Eq. [13] written for x ,  = d/2 leads to 

+ 
Rf - [20] 

2D0 

The error involved in this procedure can be 
estimated by means of the following semi- 
quantitative considerations. Let us assume that 
the width of a fringe (along the axis 0z) is 
),/4: (i) if the top ring is dark the bright spot 
within it will disappear when the location of  
the ring (more precisely, of its darkest part) is 
at a distance AI ~ ~/8 from the pole of the 
hat; (ii) the pole will become darker than its 
environment when AI < X/16; (iii) the inten- 
sity at the pole will be maximum at AI = 0 
(this corresponds to the condition [19]); and 
(iv) the dark spot will completely disappear 
when the ring is at a distance X/8 above the 
pole. The radius of  the dark spot in any of  
these cases is of  the order of  2~ fAI .  Simple 
calculations show that an error AI in l, leads 

to an error Arc ~ (Rf/rc)Al and, according to 
[20], 

A R f  ~ (Rf/I ,)AI.  [211 

Experimentally the moment  h of  disap- 
pearance of  the spot inside the ring (situation 
i above, IAll = X/8)  is established by changing 
several times the brightness of  the top ring 
from dark to bright and vice versa (by means 
of the micrometric screw inside the Max-  
Zehnder interferometer). The moment  t2 of 
complete disappearance of the dark spot itself 
(situation iv above, IA/I = X/8) is established 
in the same way. The average time, t = (tl 
+ t2)/2, will approximately correspond to sit- 
uation iii, i.e., to Al = 0. The respective value 
of re is taken from the experimental curve r~ 
= re(t) (see Part IV). The same procedure was 
followed when the top ring was bright. By 
counting the number k of  the rings of  the same 
brightness as the top spot one calculates l,: if  
the liquid surface is visually planar (no mous- 
taches) and has the same brightness as the top 
spot, l, = k(X/2); in the opposite case, l, = k(X/ 
2) - X/4. If there are also moustaches, they 
must be accounted for when calculating l,. 
The error is within the range 0 < AI < X/16. 
For our visual measurements l. >~ 2X and Rf 

100 #m (see Table IV) so that from Eq. [21] 
ARf _---< 3 #m. 

In conclusion we quote a few data dem- 
onstrating the importance of  the gravity cor- 
rection Q for the correct calculation of  Rf. Ta- 
ble III refers to a photograph of a relatively 
small bubble: re = 30.0 ~tm, R = 118.6/zm, 
and ~¢ = 0.636 °. Each row corresponds to a 

TABLE Ili 

Values of Rf for a Photograph Calculated from Rings 
(Eq. [13]) with and without Gravity Correction Q 

Rf 0,m) 

x. /. Q ~ .  With 
(,am) (,am) (urn) [ 13] Q = 0 

32.06 0.546 0.079 242.8 208.0 
29.16 0.819 0.053 241.5 226.1 
25.54 1.092 0.017 244.1 240.4 
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TABLE W 

Values of  Rf from Visual Measurements  for Two Bubbles with and without Gravity Correction Q 

Rf(.m) 
rc R fie I, Q 

(~m) (gin) (°) (~,m) (*,m) Eq. [201 Wire Q = 0 

15.8 70.5 0.25 0.9555 0.0298 135.6 131.3 
13.4 60.7 0. ! 9 0.8190 0.0266 113.6 109.9 

ring. The last column contains the Rf values 
that one would have obtained if the gravity 
correction were neglected. One clearly sees that 
although Q is more than one order of mag- 
nitude smaller than In it strongly affects the 
values of Rf. Note that the gravity correction 
varies with the number of the ring; the latter 
is also evident from Eq. [ 11 ]. 

Even with very little bubbles, when the liq- 
uid surface seems uniform Q should not be 
disregarded. This is demonstrated in Table IV 
containing data from visual measurements 
(d = 24.16 gin) for two bubbles. 

APPENDIX 

R I N G S ,  S T R E A K S ,  M O U S T A C H E S ,  A N D  

T H E I R  C O N N E C T I O N  

Equations of the rings (in the presence of 
gravity) and the moustaches are derived again 
from the general condition [2]. The generatrix 
of the external meniscus is given by Eq. [74] 
of Part II. The two images of the external me- 
niscus have cylindrical symmetry around the 
axes passing through x = +d/2 and parallel to 
Oz. Hence, we introduce the cylindrical co- 
ordinates (not to be confused with re) 

r,,r = x + + yEj [22] 

where the subscripts 'T '  and "r"  again denote 
left- and right-hand side images, respectively. 
Then the distance B C  (see Fig. 4) of the ex- 
ternal meniscus from the plane z = 0 will again 
be given by [ 11 ] if the argument x is replaced 
by r~ or rr. In this way for the equations of  the 
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right-hand side rings (x > 0) one has (cf. the 
derivation of [ 13]) 

In = Q(rO + z~(x, y) [231 

and similarly for x < 0. Defining 

Dn(rO = In - -  Q(rO [24] 

and using [1] and [3] we thus obtain 

(x - d/2) 2 + y2 = r2 _ 2D,~/-~ _ r 2 _ D]. 

[25] 

If there were no gravity deformation, Q(r) =- 0, 
Dn ~/~,  and the right-hand side of [25] would 
coincide with [6]; i.e., the rings would have 
been perfect concentric circles. In the presence 
of gravity the rings deviate from this shape. 
The equation of the moustaches (for x > 0) is 

& = Q(rr) - Q(rO. [26] 

The coordinates xs and Ys of the intersection 
of a streak with the left-hand side image of the 
contact line are obtained by solving together 
Eqs. [8] and [5] (with upper sign). The result 
is 

y s = + ~ / r 2 c - ( X s + ~ d )  2. [27] 

It is easily shown that the coordinates of the 
intersection points of a circular ring lying at 
x > 0 (lower sign in [4]) with the left-hand 
side image of the contact line are again given 
by [27]. Indeed, over the left-hand side image 
of the contact line rl = r~ and Q(rO = 0 (see 
Eq. [I I]), D,(rc) =/~,  so that [25] transforms 
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into [4] and the intersection points remain the 
same. Therefore, whatever the deformation of 
the surface, a ring always starts over the in- 
tersection point of a streak with the contact 
line. 
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