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By using the method of matched asymptotic expansions analytical equations for the shapes of a sessile 
(pendant) bubble or drop and the external meniscus around it are derived. The results are compared 
with the numerical solutions of  S. Hartland and R. W. Hartley, for the bubble or drop ("Axisymmetric 
Fluid-Liquid Interfaces," Elsevier, Amsterdam, 1976), and C. Huh and L. E. Scriven, for the external 
meniscus [J. Colloid InterJace Sci. 30, 323 (1969)]. When the capillary number is small, the analytical 
solutions are in excellent agreement with the computer calculations. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

It was already pointed out in Part 12 that 
the determination of the film and line tensions 
requires knowledge of the angles ~c and ~bc (for 
definitions see Figs. 1 and 2 below) at which 
the surfaces of the bubble (drop) and the ex- 
ternal meniscus meet the horizontal plane. 
These angles are not amenable to direct ex- 
perimental determination but  can be calcu- 
lated from the measured values of  some other 
geometric characteristics of  the system (more 
specifically, the radius of the contact line rc 
and the radius of the bubble at its equator R) 
and the solutions of the Laplace equations of  
the two surfaces. Such numerical solutions are 
now available (4, 5), but they are not entirely 
appropriate for our needs. They have a rela- 
tively large step with respect to the angles [5 ° 
in (5)] and do not cover the range ffc < 0.5 ° 
whereas we require a precision of the angle 
calculation of  the order of  0.01%, and values 
of  ~ as small as 0.1 o are still o f  importance 
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in the calculation of the differential interfer- 
ence pattern (see Part III). In addition, the 
equation of the external meniscus surface is 
calculated in (4) with a precision lower than 
needed for the theoretical evaluation of the 
observed differential interference pattern. Last 
but not least, calculation of  ~c and ¢c is only 
an intermediate step toward our final goal - -  
calculation of  the film and line tensions (see 
Part IV). Had we used computer results at this 
stage, we would have had to use much more 
complicated computer programs for the final 
calculations with the ensuing decrease in the 
precision of  the results. We also believe that 
the relatively simple analytical expressions for 
the shapes of  the bubble (drop) and the exter- 
nal meniscus derived here can be useful for 
other purposes as well, e.g., for measurement 
of the surface tension by the methods of sessile 
or pendant drop where exact knowledge of  the 
shape of  the surface is o f  crucial importance 
to the precision of the final result (6). 

We will be concerned here only with very 
small particles (of radius smaller than say 1 
ram). Then the capillary number is usually 
much smaller than unity and it can serve as a 
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small parameter, so that the method of 
matched asymptotic expansions (7, 8) can be 
used to derive the equations of the surfaces of 
interest. Since, however, solutions of the La- 
place equation for the bubble (drop) surface 
and the external meniscus are carried out in 
quite different ways, these two particular 
problems will be dealt with in different sec- 
tions, Sections 2 and 3, respectively. In both 
cases the results will also be valid for a system 
in a centrifugal field, provided that the gravity 
acceleration is replaced by wR 2, where w is the 
angular velocity and R0 is the distance between 
the mass center of the particle and the axis of 
rotation. With minor alterations the method 
described in Section 2 can be applied to derive 
the shape of a pendant drop as well. Although 
we will skip the details, the initial equations 
and the final results (Eqs. [1], [13]-[16], and 
[22]) will be written so that they could be used 
for this system as well. The precision and range 
of validity of our analytical solutions are 
checked against the numerical results of Huh 
and Scriven (4) and Hartland and Hartley (5) 
in Section 4. Calculation of the shapes of the 
bubble (drop) and the external meniscus is 
treated in the present paper as two separate 
problems, that is, why 4¢ in Eqs. [73] and [74] 
is looked at as an independent parameter, In 
fact, both ~oc and ~kc can be calculated from 
the experimentally measured values of re and 
R and the equations derived in the present 
paper. The procedure to be followed to achieve 
these results is explained in Part IV. 

0 x(o) x[r¢l 
o x(o) x(~) 

~'///////////////~////////, 
FIO. 1. A fluid particle at an interface: (A) fluid interface, 

(B) solid interface. R and P~ are the radii of  curvature of 
the generatrix of the bubble surface at its equator and at 
the contact line, ~ is the running slope angle and ~c is its 
value at the contact line, whose radius and distance from 
zero of  the coordinate system are denoted by rc and zc. 
The extrapolated bubble surface is depicted by a dashed 
line and x(O) is the abscissa of  the extremum of  z at 
~ = 0 .  

of these systems, z(x), obey the Laplace equa- 
tion, which can also be written in the para- 
metric form 3 (9) 

1 d 2 Apg 
----- - -  %" - -  Z ,  xdx(XSin~°) b -  a 

dz 
= - tg~o ,  [1]  

dx 

2. PERTURBATIONAL EQUATIONS FOR THE 
SHAPE OF SMALL BUBBLES AND DROPS 

Having in mind our purpose, in this section 
we will focus our attention mainly on a bubble 
attached to a fluid interface (Fig. 1A). The re- 
suits are also valid, however, for a bubble 
pressed against a solid wall and a drop lying 
on a fluid or solid interface (Fig. 1B). The 
equations obtained describe not only the sur- 
face existing in the real system, but also its 
extrapolation as shown in Fig. 1. The shapes 

where ~p is the angle between the normal to 
the curve z(x) and the positive direction of the 
z axis, b is the radius of curvature at z = 0, 
Ap is the density difference between the 
heavier and the lighter phases, a is surface ten- 
sion, and g is gravity acceleration. By intro- 
ducing the dimensionless variables 

=x/b, g= z/b, fl= Apgb2/ff, [2] 

3 The upper sign refers to a sessile interface and the 
lower one, to a pendant interface. 
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we have 

l d  
- - -  (£ sin SO) = 2 + 3~, 

dZ d~ 
G = -tgso d~o [31 

which must be solved along with the boundary 
conditions 

Y = 0 ,  £ = 0  at SO= 180 ° . [4] 

The solution of[3] fo r3  = 0 leads to a spherical 
shape, i.e., to 

Xo = sin ¢, Zo = 1 + cos ~o. [5] 

Therefore, for small 3 we seek a solution of  
the form 4 

Y(~o, 8)  = sin So + ~ 3"Y.(~o), 
n>_-I 

f(SO, 8) = I + cos ~o + X 3"z.(SO)- [6] 
n>~l 

By substituting [6] in [3] and equating the 
coefficients before each power of  3 we obtain 
systems of equations for Y.(SO) and f.(SO) 

1 d £ .  Yn 
- -  + . = w . ( s o ) ,  

cos so dso sin so 

dG d~. 
G = - t g ~ ° ~ - '  n =  1,2 . . . . .  [7] 

where (the prime denotes differentiation with 
respect to SO) 

w~(so) = - ( 1  + cos ~)  = -go(so), 

w~(so) = ~c-ff~s w + ~si- i~w - el(so), [81 

etc. The solution of [7], subjected to the 
boundary conditions 

4 In principle o is a function of b via the Tolman-Buff 
(10, 11) equation a = c% (1 + 2~Jb), where ~oo is the 
distance between the equimolecular dividing surface and 
the surface of tension. If this expression for cr is substituted 
in [2] the analytical result will remain the same and the 
contribution of the curvature effect due to cr will be of the 
order of 2~Jb, which for our experiments is negligible. 

£ . ( ~  = 1 8 0  ° )  = o ,  ~ . ( so  = 1 8 0  ° )  = o ,  

n = 1, 2 . . . . .  [9] 
reads 

1 SO 1 1 
~(~o) = ~ ctg ~ - g sin 2~o - ~ sin SO, [10] 

= + ~ cos ~ - ~ sin2~ - ~ In sin 

× s i n ~ - ~  1 + ~ c t g  ctg-~ 

zl(SO) = ~ sin2~ + ~ In sin 

1 
- - ( l + c o s s o ) ,  [12] 

2 

so that the final solution can be put in the 
form (see footnote 3) 

~(~) = sin ~ + 3x~(SO) 

+ 32~2(SO) + O(33y3(SO)), [131 

~(so) = 1 + cos so _+ 3g~(so) + o(32~2(so)). 

[14] 

The error involved in Eqs. [13] and [14] as a 
function of the system parameters is analyzed 
in Section 4. 

The values of  Y and ~ at the equator, i.e., 
at SO = 90 °, is of  importance for the measure- 
ment  of  surface tension by the sessile and pen- 
dant drop methods. From [ 13] and [ 14] these 
are (see footnote 3) 

61 £(90 ° ) =  1 + ~ + - ~  l n 2 -  + . . . ,  

[15] 

3 £(90 ° ) =  1-T-~(I  + I n 4 ) +  . - . .  [16] 

An alternative approach for solving [3] is 
to eliminate ~by  differentiating the first equa- 
tion with respect to x and substituting in the 
result dZ/d£ from the second equation. For 
90 ° < ~o < 180 ° the result is 
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d (1 a x s ) ]  = s 
x : /3 s ' 

where S stands for sin ~o. The boundary con- 
ditions that we will use are 

1 d(~S) 
S = 0  and - - - = 2  at ~?=0. [18] 

dY 

The second condition states that the curvature 
at £ = ~ = 0 must be 2/b. The result of the 
solution is (see footnote 3) 

S(x-) --- sin ~o 

= ~___/3S~(Y) +/32S2(Y) + • • -, [19] 

with 

where 

s ~ ( x )  = Uv [v - 2 (v  - 1)21, 

) $2(~)= - l n - -  1 , 
V 

by introducing, following the standard pro- 
[17] cedure (7, 8), inner variables: 

z = z ,  [23] 

We again write the solution as a power series 
with respect to/3, namely, 

~(~,/3) = Z /3"~,(~), 
n~>0 

Y(~,/3) = ~ /3"~,(~), [241 
n~0 

where)?,(~) and zn(~) are coefficient functions. 
Since the series [24] are needed only for ~o < 5 o 
(see Section 4), a region of no interest for the 
system studied by us, we present here only a 
brief outline of the asymptotic procedure. 

Upon substitution of [24] in [3] (written in 
[20] inner variables), one obtains the following 

equations for the coefficient functions: 

_ _  __ dzo [21] d~ + ~ = 2, = 0, [25] 
x0 

v = 1 + VI -)72. [221 

In some cases Eq. [19] is more convenient 
than Eq. [13] because it yields directly ~o as a 
function of X. Its shortcoming is the restricted 
range of validity: 90 ° ~< ~o ~< 180 °. In the region 
0 < ~p < 90 ° a "minus" sign must be taken in 
the right-hand side of [17]. The integration 
constants arising by solution of the latter 
equation can be determined by matching it 
with [22] at the equator. However the match- 
ing procedure affects the precision of the result 
and makes it much worse than Eq. [ 13] (which 
is also valid at ~o < 90°). 

A closer inspection of Eqs. [10]-[14] reveals 
that due to the terms with ctg(9/2) and 
In(sin(9/2)) the series for Y(9) and ~(~o) diverge 
as 9 ~ 0. This should not be surprising be- 
cause they represent the outer solution of a 
singular perturbation problem. Indeed, when 
the series [6] are substituted in [3] the small 
parameter 13 turns out to multiply the highest 
derivative, which is one of the cases when a 
singular perturbation arises. Therefore, we will 
now try to find an inner solution (for small 9) 

dX0 + - - +  + = dxo ~ 6lXo 
-Zo, [261 

etc. Solution of this system yields 

Xo(~) = ½ (~ + ~/~2 + 4cl), Zo = c2, 

~o 

F _(1 I2,1 × [¢3  q- ~ - ~  "~-)X0 

where cl, c2, and c3 are integration constants 
to be determined by matching the series [24] 
with [13] and [14]. The matching procedure 
yields cl = 2/3, c2 = 2 and c3 = -8 /9 .  The 
final results for the inner expansion, written 
in outer variables, is 

:~(~) = u(~) 

× [ 1 -  27u6 + 108/3u4 + 144flZu2-- 8/33] 
54(3u 4 + 2/3u 2) 

[281 

where 
u(so) = ½ (¢ + ~ + 3s-/3). [29] 
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For ~o = 0, Eq. [28] yields 

)?(0) = 21/2~(1 - ¢/), [ 301  

where 2(0) is the abscissa of the extremum of 
the dashed lines in Fig. 1. Interestingly, if one 
sets within the parentheses in [30]/3 = 0, the 
resulting expression 

x(O) = b ~ / 3  [31] 

(cf. [2]) coincides with the expression of Hart- 
land and Hartley (5) for the radius rc of the 
contact line of a bubble of radius b pressed 
against a fiat solid plate. If one introduces the 
buoyancy force Fb = 4frb3Apg, Eq. [31] is 
transformed into the result of Derjaguin and 
Kussakov (12), r 2 = bFb/27ra. The latter is a 
particular case of the more general expression 
(13) for the radius rc of the contact line between 
two bubbles of radii bl and b2 and surface ten- 
sions ~1 and a2, pressed against each other by 
a force Fb, 

r~ = [~FD/2rS, [32] 
where 

= ~1~2/(~1 + a2), [~ = blb2/(bl + b2). 

Equation [32] was derived in (14) in an alter- 
native way using semiquantitative force bal- 
ance considerations.. This derivation showed 
that Eq. [32] (and hence Eq. [31] too) is valid 
only when the bubble surfaces meet the film, 
formed between them, at zero contact angle. 
This result is in agreement with the fact that 
E(0) in [30] has the meaning of the smallest 
possible radius of contact between a bubble 
(or drop) and another interface; in other words, 
i f g  v ~ 0, no contact in one point is possible. 

3. PERTURBATIONAL EQUATIONS FOR THE 
SHAPE OF THE MENISCUS AROUND 

THE PARTICLE 

The unbounded interface Z(x)  [for nota- 
tions see Fig. 2; it was denoted in Part I by 
S(z)] "feels" the particle only through the 
boundary conditions at the contact line. 
Therefore, the corresponding solution of the 
Laplace equation is valid for any axisymmetric 

INNER REGION OUTER REGION 

hc .i - _ - - - _ ~  

O' rc xI(,H) I 
l r 

i 
! t 

/ i 
/ /  l 

/ I 
i 

FIG. 2. The external meniscus around an axisymmetric 
particle (the latter is shown with a dashed line); ro and hc 
are the radius and elevation of the contact line above the 
horizontal liquid surface and ~bc is the value of the running 
slope angle ff at x = re. The vertical dashed line conven- 
tionally separates the inner and outer regions. 

subject in contact with this interface, called 
hereafter the external meniscus. 

An approximate solution of this problem 
was published long ago by Poisson (15) and 
Rayleigh (16). It was based on the assumption 
that the slope of the interface is small, and the 
resulting simplified form of the Laplace equa- 
tion (this is our Eq. [49]), was assumed uni- 
formly valid for the whole interface. The real 
situation is, however, different; the slope is 
small and varies slowly everywhere outside the 
close vicinity of  the particle, but in the latter 
region it undergoes a sharp increase to the 
bounding value ~Pe- Therefore, we have to deal 
again with a singular perturbation problem 
that can be solved efficiently by the method 
of matched asymptotic expansions (7, 8). It is 
worthwhile noting that well before van Dyke 
explicitly formulated the above method (7), 
Derjaguin (17), by making some clever ap- 
proximations, derived an analytical expression 
for he. His procedure is absolutely correct and 
equivalent to matching the zeroth-order terms 
of the inner and outer asymptotic expansions. 
James (I8) tried to improve on Derjaguin's 
result, but his higher order terms are erroneous 
(see below). 

In this section we will derive equations for 
hc and Z(x) within terms of  the order of ~3, 
where E is the small parameter (see Eq. [35]). 
However, since some of the first-order terms 

Journal of Colloid and Interface Science, Vol. 112, No. 1, July 1986 



F I L M  A N D  LINE T E N S I O N  E F F E C T S  O N  P A R T I C L E - I N T E R F A C E  A T T A C H M E N T ,  II 1 13 

turn out to be zero and this simplifies many 
of the following calculations we will at first 
consider only the terms with ~0 and c and will 
use these simpler expressions to describe in 
more detail in Appendix II the matching pro- 
cedure. 

The Laplace equation for the external me- 
niscus reads (9) 

Z" Z'  hog Z. [33] 
(1 + Z t 2 )  3/2 -t- x(1 + Z t2 )  112 ~-- o 

The boundary conditions that the solution of 
[33] must satisfy are 

Z(oo) = 0; Z'lro = -tg¢~. [34] 

Let us introduce the parameters 

q = - -  ~ = qr~, [35] 

and the outer dimensionless variables (see Fig. 
2) 

:£= qx,  2 =  Z/r¢,  x = h¢/rc. [36] 

The quantity q-1 has the dimension of length. 
The parameter e is a measure of the ratio of 
the capillary to the gravity force. For small 
particles rc ~ q-' ,  so that e ~ 1. With [35] and 
[36], Eq. [33] acquires the form 

~" 5 '  
+ = 5. [37] (1 + e22a)3/2 :£(1 "~ E22¢2) 112 

We look for a solution of [37] as a power series 

Z(:£, e) = 50(:£) + e21(:£) + e2Z2(:£) + • • ". 

[381 

This solution is valid only in the outer region 
and will satisfy only the outer boundary con- 
dition 5(00) = 0. Therefore, each function 2n 
must satisfy 

Z , ( o o ) = 0 ,  n = 0 , 1 , 2 ,  . - . .  [39] 

In the inner region we will replace the in- 
dependent variable :£ by the inner variable 

l~ = 2/~ [40] 

and the dependent variable 2 will be kept the 
same. It is more convenient in this case to use 

the parametric form of the Laplace equation 
(9). In inner variables Eq. [33] is then replaced 
by the system of equations 

1 d(~ sin if) = _E2Z ' [41] 
d~ 

d2 
- -  = -tg~b, [42] 
d~ 

where ~b is the slope angle (see Fig. 2). (At the 
expense of much longer calculations we could 
have used [37] as basic equation in the inner 
region as well.) We now seek a solution of the 
form 

2(,~, ,) = 20(0 + ,21(0 + ,222(0 + • • . ,  

[43] 

¢(E~, 0 = % ( 0  + , ¢ , ( 0  + , 2 % ( 0  + • • ". 
[44] 

It must satisfy at ~ = 1 the inner boundary 
condition (see [34]) 

d2/d~],=l =-tg¢/c or ¢/(1)=~c, [45] 

which in view of [44] becomes 

% ( 1 )  = ¢~c; ¢~.(1) = o .  n = l .  2 ,  3.  • • .. 

[461 

By setting ~ = 1 in [43] we will obtain in view 
of [36] an expansion for X, 

X "= X0 "]- ~Xl "~- t2X2 "]- • " " ,  [47] 

where 

x n = Z n ( l ) ,  n = 0 , 1 , 2 ,  ' ' ' .  [481 

3.1. Zero th -  a n d  F i r s t -Order  T e r m s  

By substituting [38] into [37], expanding in 
series with respect to E, and setting equal the 
coefficients before ~" on both sides of the re- 
sulting equation, we obtain the following set 
of equations for the coefficient functions: 

1 - t  
2~ + - Z o  - Zo = 0, [49] 

X 

1 - t  
2'~ + - Z I  - 2 ~  = 0 ,  [50 ]  

X 
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etc. Similarly, Eqs. [41 ]-[44] lead to 

1 d(~ sin $o) d2o 
- 0 ,  - -  = - t g ~ 0 ;  [ 5 1 ]  

a t  d~ 

t d((~klcos ~o) d21 
- 0, - -  = -~dcos2~0. [521 

d~ d~ 

Equations [49] and [50] are standard Bessel- 
type equations and their solutions are (see also 
[391) 

2o = AKo(5); 21 = BKo(.ff), [53] 

where Ko(x) is Macdonald's function of the 
zeroth order [see, e.g., (19)] and A and B are 
constants to be determined by the matching 
procedure. 

The solutions of [51] and [52] along with 
the conditions [461 are 

C 
sin if0 = ~, 

2o(0 = Xo + c arc cosh ~ - c arc cosh 
C 

~(~) =- o, 

where 

and 

ZI(~) = const = X~, 

° 

C 

[541 

[55] 

c = sin ff~, [ 5 6 ]  

arc cosh ( = ln(( + ~ -  1), [57] 

(c = .~c/e = qrc/qre = 1. [58] 

By substituting [53] in [38] one obtains the 
two terms of outer expansion, which must be 
matched with the two terms of inner expan- 
sion (following from [54], [55], and [43]) in 
order to determine the constants A, B, ×0, and 
×1. This is done in Appendix II. Here we want 
to draw the reader's attention only to a subtlety 
of the procedure. In [54] we have purposely 
used the notation ~c for the boundary value of 

(although (~ = 1), because when going back 
to outer variables this will no longer be 1, but 
will give us terms with 2c (see Eq. [58]). On 
the other hand, because of the scaling used 
(see Eqs. [35] and [36]) we have ~¢ = e. Nev- 
ertheless, when carrying out the expansion in 

series with respect to E during the matching 
procedure, the Y~, which originates from the 
boundary conditions, must be treated as a 
constant. 

The matching procedure yields (see Eqs. 
[84] and [85] in Appendix II) 

A = s i n f f c ,  B = X l = 0 ,  [59] 

4 
Xo = sin ff~ln %qr~(1 + cos ff~)' [60] 

where ye = 1.781072418. • • is Euler's con- 
stant. The latter equation exactly coincides 
with Derjaguin's formula, whose error is 
therefore of the order of E2; cf. [47] and [59]. 
As shown by James (18) this formula is also 
valid within the same accuracy for ~c > 90 °, 
i.e., for an interface with a "neck." 

3.2. Second- and Third-Order Terms 
and Final Results 

In view of[59], Eq. [53] yields ZI ---- 0. Then 
from [37] and [38] one obtains in the outer 
region 

2 ~  -t- 1 2 ~  - -  2 2 "= 1 d _-,3 
x ~-~-~(xZo),  [61] 

2 ]  + 1 2 ~  - 2 3  = 0 .  [ 6 2 ]  
X 

The solution of [61] for small ~ is 

Zz(Y) = C l n  %2-~--~c3( In ~ ) 2  

C 3 C 3 

+ ~-25 + i-~ + . -  . .  [63] 

The first three terms in the right-hand side of 
[63] were derived by James (18). The solution 
of [62] is 

Z3 = DKo(Y). [64] 

The integration constants C and D will be de- 
termined by the matching procedure. 
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The calculations for the second- and third- 
order terms in [43] and [44] are simple but 
time consuming and therefore we quote only 
the final results: 

C 3 
¢2(0cos ~0(~) = ~ [,I,(~/c) - ,I,(1/c)], [65] 

2~2(0 = X2 + F(~/c) - F(1/c), [66] 

¢/3(0 -= 0, 2~3(0 - const = X3, [67] 

where 

= - arc cosh x 

1 x x ~ -  1 - xZln ___~4., [681 
2 cyeqrc 

X 
F(x)= B,x~x  2 -  1 + 92 ~x z _  1 

c 3 2 x -  x3~ 
+ ~3 + ~ . ~ ) a r c  cosh x 

C 3 
+ ~- Ix 2 - (arc cosh x)Z]; 

B~ = sin3~ In 4 
4 3,eqr~sin ¢/~ ' 

B2 = 1 XoCOS2~c sin3~c 
2 4 

[69] 

1 
× ln(ctg ~ )  + ~ sin 2¢c, 

sin3¢° ln(ctg -~) 
B3 = T  

1 1 
- ~ (2 - 3 sinZ~e)X0 - ~ sin 2~bc. [70] 

In these equations c and X0 are given by [56] 
and [60], respectively, and the integration 
constants Xz and x3 are to be determined by 
the matching procedure. It yields D = X3 = 0 
so that the e3 terms vanish similarly to the E 
terms. 

The final results for the inner region in di- 
mensional variables Z and x are 

he 1[  
= X = X0 q- 62 re ~ (sin @~ + x0cos ¢o) 

( , ) × 1 + xoctg ~b~ - ~ cos ¢~ 

1 1 1 - ~ X 0 + ~ s i n 3 ~ p c  +O(64), [71] 

Z(x)  _ h~ 

rc rc 
sin   Earc cosh( ) 
-arc osq )l 

2 X + F 1 

[72] 

where the function F is determined by [69]- 
[70]. For comparison we quote the expression 
for he~re derived by James (18): 

ho sin~cln( 4 ) - -  = 
rc 3"eqrc(l + cos ~ )  

sin3¢c ~2(1 n 6) 2. 
4 

[731 

The first term in the right-hand side of [73] 
coincides with Derjaguin's formula [60]. As 
James himself admits: "A comparison with 
numerical data showed that this new estimate 
for he is not an improvement over Derjaguin's 
formula: the additional term must in fact be 
positive to increase the accuracy" (18). On the 
contrary, the leading term (for small angles 
~be) in the square brackets in our solution [71 ] 
is (x0E/2)sin ~bcctg2~ke and although it also yields 
formally an ~2(ln 02 term, similar to that in 
[73], its contribution to hc/r~ is positive. The 
whole ~2 term in [71] is also positive for all 
angles 0 < ~b~ < 90 ° (except those in the vi- 
cinity of  90 ° for very small values of  E). And 
finally, as the comparison with computer cal- 
culations reveals (see next section, Fig. 4) our 
Eq. [71 ] is an improvement over Derjaguin's 
formula. 
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4. NUMERICAL RESULTS AND ESTIMATION 
OF ERRORS 

In this section we compare the numerical 
values obtained from our asymptotic solutions 
with the exact computer calculations of Hart- 
land and Hartley (5) for the bubble surface 
and Huh and Scriven (4) for the external me- 
niscus. 

4.1. Bubble (Drop) Surface 

In Table I the results for 5 and ~, obtained 
from [13] and [14] (for sessile interface), are 
compared with those from (5), 5i~i~ and zn~, 
for three values of  3 and two angles 9. The 
second angle for each 3 (10 and 60 °) is the 
limit above which our asymptotic results co- 
incide with the exact values 5nr~ and Zrm [note 
that the authors in (5) use variables different 
from ours: X = 53, Z = Z3, and 0 = 180 ° 
- 9)- It is noteworthy that in spite of formally 
being of  lower order with respect to 3, Eq. [ 14] 
has the same precision as [13]. More impor- 
tantly, the range of  applicability of Eqs. [13] 
and [ 14] increases with the angle ~o. The latter 
is also evident from Table II where 5(90 °) and 
~(90 °) from [15] and [16] are compared with 
the exact values 5nil(90 °) and fHH(90 °) and 
the results obtained from the respective ap- 
proximate equations of Dorsey (20) YD(90 °) 
and Rayleigh (16)gR(90 °) [see also (5, p. 650)]. 
The precision of  the solution becomes very 
high as ~o ~ 7r, because 

l i m  )?l . )2z z l  - -  = hm _-=- = lim - -  = O, [ 7 4 ]  
~ X0 ~--~ )Co ~ z0 

In other words at ~o = 7r the function ~ = ~(Y), 
defined by [ 13] and [ 14], is tangent to the cir- 
cumference 92 = sin 9, f = 1 + cos ~p. This 
property of the analytical solution is impor- 
tant, because due to specific computational 
difficulties the tables of Hartland and Hartley 
do not contain values for ~o > 175 °. 

For ¢ > 15 ° the inner solution [28] gave 
resuRs that were satisfactory, but  worse than 
those obtained from our outer solution [13]. 
We quote in Table III only the results for 5(0) 
from both Eqs. [30] and [31]. It is evident that 
even at 3 = 1 0 - 4 ,  Eq. [30] is a considerable 
improvement over Eq. [31 ]. 

The above findings are better visualized by 
the plots of the dependence 3(¢), correspond- 
ing to a given constant error of  the analytical 
solution. Since for small ~o the leading terms 
in [13] are those with ctg(~o/2) and ctg3(¢/2), 
a natural limit between the regions of" large"  
and "small" angles is obtained by setting (cf. 
Eqs. [10] and [11]) 

1 ~o 1 3~p 
c t g ~ c t g  ~ 1 

This condition is fulfilled for ~ ~ 40 °. For 
~o > 40 ° one has )7, _-< 1 (n = 0, 1, 2) and 
one can expect the same to be true for n > 3. 
Let &f  = Y - (Xo + 35~ + 3252), where 5o 
= sin ~ and 5 is the exact value. If the above 
assumption holds, :~3 ~ 52, so that 

TABLE I 

Numerical Test of Eqs. [ 13] and [ 14] against the Tables of Hartland and Hartley (5) 

~uu x 2an Z 
log t~ (*) (5) [131 (5) [14] 

-4 5 0.0879053 0.0879052 1.99589 1.99589 
10 0.174014 0.174014 1.98455 1.98455 

-3.6 5 0.0890142 0.0890124 1.99543 1.99542 
10 0.174564 0.174564 1.98415 1.98415 

-2 30 0.508121 0.508100 1.8490 1.8485 
60 0.866003 0.866002 1.4905 1.4904 
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TABLE II 

Comparison of Values Predicted by Eqs. [15] and [16] with Those from the Equations of 
Rayleigh (16) and Dorsey (20) and Computer Calculations (5) 
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2-'(90 ° ) Yrm(90 °) .:?(90 ° ) g(90 °) Z(90 °) Zrm(90 °) 
Iog# [151 (5) (16) (20) [161 (5) 

- 4  0.999983 0.999983 0.997753 1.318646 0.999960 0.999963 
- 3  0.999833 0.999833 0.999928 1.030388 0.999602 0.999602 
- 2  0.998342 0.998342 0.998045 1.009856 0.996023 0.996054 
-1  0.984211 0.984151 0.985767 0.990834 0.960228 0.963129 

~ 133 23 ~ / 3 3  22(~o) [751 
2 x 2o(~)  

I f  one fixes here the relative error A.f/2,  one 
can calculate by  means  o f  [11] the curves o f  
constant  error/3(~o) for ~o > 40 °. 

With  small  angles, m o r e  precisely with 5 ° 
< ~o < 40 °, the values of2,(~o) (n = 1, 2, 3) are 
a lmost  entirely de te rmined  by the leading 
t e r m s  ctgZn-l(~o/2) (see also Appendix  I). 
Therefore  we assume 23(~o) = cons t ,  ctg5(~p/ 
2). Since ~Lf ~ /3323 ,  the cons tant  can be de- 
t e rmined  by mak ing  use o f  [10], [11], [13], 
and  the exact value o f £  f rom (5). For  several 
different values o f /3  we found const  ~ (2/ 
15). 2 Therefore,  the curves of  constant  error 
can be calculated f rom the equat ion  

= 225 /2) ' 5 o < ~p < 40 o. 

[761 

Four  curves o f  constant  error zk2/2 = 1, O. 1, 
0.01, and  0.001%, calculated f rom Eqs. [75] 
and  [76], are plot ted in Fig. 3. For  all points  
below a given curve the precision o f  the 

asympto t ic  solution is higher than  that  cor- 
responding to the curve. The  curves have a 
small break  at ~p = 40 °, which is not  surprising 
in view of  the approx imate  m e t h o d  o f  error  
calculation. 13 sharply increases as ~p --* 180 °, 
because then the asympto t ic  solution tends to 

TABLE III 

Numerical Test of Eqs. [30] and [31 ] against Computer 
Results (5) 

;~(ohn ~(0) £(0) 
log/3 (5) [30] [31 ] 

- 4  8.16415 5< 10 -3 8.16415 × 10 -3 8.16497 × 10 -3 

- 3 . 6  1.29373 × 10 -3 1.29373 × 10 -2 1.29406 × 10 -2 
- 2  8.08481 × 10 -2 8.08332 X 10 -2 8.16497 × 10 -2 

FIG. 3. Curves of constant error A.2/5 of Eq. [13]. For 
all points below a given curve the precision of [ 13] is higher 
than that corresponding to the curve (shown in %). The 
data for 5 ° < So < 25 ° are shown on the inset in an enlarged 
scale; the shaded area indicates the range of values of/~ 
and So encountered in our experiments (see Part IV). 
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the exact  shape (see Eq. [74] above).  F o r  con-  
venience  the  inset  shows on  an  enlarged scale 
only  par t  o f  the  results for 5 ° < So < 25 °. The  

shaded  area  cor responds  to the  values of/3 a n d  
So encoun te red  in our  exper imen t s  descr ibed  
in Par t  IV. 

4.2. External Meniscus 

Several  curves o f  cons tan t  er ror  Ahdhc for 
the  external  meniscus  for our  so lu t ion  [71] 
(full l ines) and  De l j agu in ' s  fo rmula  [60] 
(dashed lines) are shown on Fig. 4. As  one  
could  expect  Eq. [71 ] has  a lmos t  everywhere  
cons iderably  be t te r  precis ion.  The  prec is ion  
o f  the  equa t ion  o f  the  meniscus  surface [72] 
is checked in Table  IV for qrc = e = 0.04159 
and  ~ = 90 °. The  first c o l u m n  yields the  run-  
n ing  slope angle 6(x). The  Z~s values  were 
t aken  f rom the tables  o f  H u h  and  Scriven (4). 
O u r  a sympto t i c  so lu t ion  intersects  the  x axis 

1.5 1 0 ~  EII-O 

0 .7  

0.5 1/ 
1 

I 
J 

i 
/ 

0 . 2  / 
t /  

/ 0.1 /" 
0 o 1'0 ° ~0 o 3"0 o i o  o 50 ° 6"0 o 7 ; °  8'0 o 90 ° 

~c D 
FiG. 4. Curves of  constant error Ahdh~ of  Eq. [71 ]. For  

all points below a given curve the precision of Eq. [71] is 
higher than that corresponding to the curve (shown in %). 
The respective curves for Derjaguin's formula [60] are de- 
picted by dashed lines. 

TABLE IV 

Numerical Test of Eq. [72] against the Tables of Huh 
and Scriven (4): ¢/c = 90 °, e = qxc = 0.04159 

qZm qZ 
(°) qx (4) [72] 

80 0.04223 0.15863 0.15862 
70 0.04424 0.15116 0.15116 
60 0.04797 0.14320 0.14321 
50 0.05418 0.13441 0.13441 
40 0.06444 0.12425 0.12425 
30 0.08253 0.11177 0.11177 
20 0.11954 0.09499 0.09499 
10 0.22701 0.06828 0.06828 
5 0.41476 0.04519 0.04514 
2 0.81523 0.02303 0.02250 

0.5 1.70000 0.00690 0.00034 
- -  1.71600 - -  0.00000 

at qx = 1.71600 so tha t  close to  this  value it 
is no  longer  valid.  On ly  very far away  f rom 
the contac t  l ine (qx > 0.8) does  the  er ror  o f  
the analyt ical  solut ion become  noticeable.  F o r  
smaller  e, namely ,  for e = 0.01012, the  Z values 
ca lcula ted  analyt ica l ly  coinc ide  exact ly  wi th  
those o f  H u h  and  Scriven for all ffc < 90 ° (our  
so lu t ion  is no t  val id  for $c > 90°). Since for 

0.1 

0.01 

k~c~ 5 ° 

1 2 3 
rc 

FIG. 5. Relative contribution of ~2 term in [72]. Each 
curve corresponds to a constant ratio of this term to (he 
- Z(x))/rc; this ratio is smaller for the points lying below 
the respective curve. The shaded area comprises the values 
ofx/rc and ~ encountered in our experiments in Part IV. 
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TABLE V 

True and Apparent Parameters at the Three-Phase Contact Line 
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rc R b R~ ¢c ~b~ ~g ~ Aec ~¢ 
(~m) (#m) (~m) (ttm) (°) (°) (°) (°) (°) (°) 

50.9 159.8 160.0 167.3 17.72 0.93 18.57 0 0.85 0.93 
41.2 158.4 158.6 169.9 14.03 1.09 15.08 0 1.05 1.09 

~c < 5 0 the function Z(x, ~p¢) turns out to be 
not sensitive to the variations of  ~c, it is pos- 
sible to calculate in this case curves of  constant 
ratio of  the 4 2 term to (h - z)/ro. They are 
shown in Fig. 5 where the shaded area corre- 
sponds to the values of  e and X/rc observed in 
our experiments, described in Part IV. 

In conclusion we want to warn the reader 
from trusting too much  the "experimental  ev- 
idence" for the negligible effect of  the gravity 
deformation of the surfaces. This danger is il- 
lustrated in Table V containing the experi- 
mentally measured values of rc and R for two 
bubbles (for details see Part IV). R~ is the radius 
of curvature of  the generatrix of the bubble 
surface at the contact line (with ~ = ~o~ cal- 
culated from our equations). One sees that the 
deformation occurs mostly near the contact 
line: R and b are practically equal and Re dif- 
fers from them appreciably. I f  one takes side 
views of  the two bubbles, one can measure 
only R and b and one could conclude that the 
bubbles are spherical. One can then calculate 
apparent values of  the angles ~a = 0 and ~ 
= arc sin(rJR), which will be different from 
the real values ~pc and ~ .  The errors A~p¢ = [~p¢ 

- ~o~1 and A~o = [~c - ~ l  (the last two columns 
in Table V) are well above what is admissible 
at least for the calculation of film and line ten- 
sions (see Part IV). 

5. CONCLUDING REMARKS 

We have derived analytical formulae for the 
shapes of a sessile (pendant) bubble or drop 
(Section 2) and an interface (external menis- 
cus) "at tached" to a circular ring of radius r~, 
where the slope angle of  the interface with re- 

spect to the horizontal surface is ~kc (Section 
3). In both cases we have used asymptotic ex- 
pansions with respect to a small parameter: t3 
= Apgb2/~r in the former case, and E = (Apg/ 
a)l/2rc in the latter case. 

The "outer"  solution for the bubble is rep- 
resented by Eqs. [10]-[14] as a parametric 
function of  the coordinates z and x on the 
running slope angle ~ (see Fig. 1). It is valid 
with good precision for 5 ° < ~ < 180 °. The 
" inner"  solution, which must be used for ~p 
< 5 °, is given by Eq. [28], and allows the cal- 
culation of the min imum possible radius of  
contact x(0), Eq. [30]. Another form of the 
outer solution (for 90 ° < ~o < 180 °) is repre- 
sented by Eqs. [ 19]-[21 ], yielding the depen- 
dence of  sin ~ on x. 

The " inner"  solution for the shape of  the 
external meniscus Z(x) and for its m a x i m u m  
elevation at the contact line, h~, is given by 
Eqs. [72] and [71]. Our  " inner"  solution is 
compared with that of  James (18) and it is 
shown that the latter is not correct. 

In Section 4 our analytical results are 
checked against the computer  calculations of  
Hartland and Hartley (5) and Huh  and Scriven 
(4). For sufficiently small values of/3 and e (of 
the order of those usually encountered in ex- 
periments with small bubbles and drops) our 
solutions proved to be as accurate as the com- 
puter calculations. 

APPENDIX I 

THE LEADING TERM IN THE SMALL-ANGLE 
A S Y M P T O T I C S  O F  -~3 

When Wn -= 0 the first equation [7] is sat- 
isfied by 1/sin ~. Therefore the general solution 
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of the nonhomogeneous equation has the form 
~, = C,(so)/sin ~. This yields 

dC, 
- -  = sin so cos so W,(so). 
dso 

Equations [8] and [10]-[12] show that for 
small so, W~(so) ~ - 2  and W2(so) ~ so-4. The 
exact expression for W3(so) is 

( ~ t ~ ( 92~1 ~ w~(~) = - - ~  ~ j  - ~ 1  

+ 2 92v~2 x~x2 
sin~-- ~ + 2 --cos2~ - e2(~). 

Therefore, one could expect that W3 ~ ~-6, 
C3 ~ ~-4, and 9?3 ~ ~-5. Since the leading 
terms for ~ ~ 0 are 921 "~ ctg(~/2) ~ SO-I and 
£2 "~ ctg3(~/2) "~ ~-3 one can infer that the 
leading term in £3 will be ctgS(~/2). 

APPENDIX II 

MATCHING OF THE INNER AND OUTER 

ASYMPTOTIC EXPANSIONS FOR THE 

EXTERNAL MENISCUS 

According to van Dyke 's  principle the m- 
terms outer expansion of  (the n-terms inner 
expansion) must match the n-terms inner ex- 
pansion of  (the m-terms outer expansion). 

We begin with the two terms expansion 
from Section 3.1. From [54] and [55] we have 
for the inner expansion 

Z(~ ,  E) = ×0 + c arc cosh ~-~ 
C 

- c arc cosh -~ + exl + O(fl). [77] 
C 

The second and third terms can be rewritten 
in terms of the outer variable £ = e~ (we recall 
that according to Eq. [58] ~ in outer variables 
must  be replaced by 92~/~ ~- 1) 

arc cosh ~ - arc cosh -~ 
C C 

~/+  ~/~2 _ c 2 97 + x ~  - ~27 
= - I n  - -  = - l n  

~ + ~ - c ~ x~(1 + f i - 2 - - ~ )  • 

The latter expression is expanded in series with 
respect to E, 

- I n  £ + ~ y  - C2c2 = In 2 
92~(I + cos  ¢J~) 92c(1 + cos  ~ )  

1 2 c  2 
- l n £ + ~ E  £--5 +O(E4) [78] 

where we have also used [56]. By substituting 
the zeroth-order terms of [78] back into [77] 
we obtain 

2 
Z(£, ~) = x0 - c In 

£~(1 + cos ~c) 

- -c lnY+E×l+O(f l ) .  [79] 

We must  now write the two-terms of  outer 
expansion (cf. [53]) 

Z(£, ~) = AKo(£) + ~BKo(92) + O(E z) [80] 

in terms of the inner variable ~ = Y/e, expand 
it in series with respect to ~ (keeping ~ con- 
stant), rewrite it back in terms of 92, and retain 
in the result the zeroth- and first-order terms 
with respect to E. It  is easy to realize that this 
merely means retaining in [80] the first terms 
in the expansion of  K0(92) for small £ [see (19)]: 

[81] 

Since [79] and [81] must  match, we thus ob- 
tain 

2 
X0 - c In 92c(1 + cos ffc) - cln 92 

= - A  In 2 - A In £, [82] 

Since [82] and [83] must  hold identically for 
any £, we set (cf. [56]) 

A = c = sin ~c, [84] 

B = 0 ;  x l = 0 -  [85] 
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I f  by means  o f  Eqs. [63]-[67] we calculate 
the next  two te rms  (~2 and  c 3) in [81] and  [79], 
we will obtain (see also [84] and  [85]) 

2~(£, ~, = c I - l n  ~ -~  + ( 2 ) 2 ( 1 -  In ~-~11 

I c3 c 3 (  2e~)2 
+~2 X 2 + 4 2 ~  4 I n -  

+ Alln ~---~'~ + A2] + ~3X3 q'- O(¢~ 4) [86] 

where 

A 1 sin3~kc xo 
= ~ (1 - cos fie) - ~ -  (2 - sin2~c) 

sin ~ko 
A2 = - - -  (I + X0ctg ~'c) 

2 

( X 1 +x0ctg~kc co ~kc + 4 _  [87] 

and  

2(£,  , ) =  c [ - l n  ~ - +  ( 2 ) 2 (  1 - l n ~ )  1 

if2 _ _  

- e3D In ~-~  + O(e4). [881 

The  match ing  of  [86] and  [88] yields 

X2 = - A 2  + 1c'3, [891 

C = M 1 ,  [90] 

X3 = D = 0, [911 

which lead to the final results [71] and  [72]. 
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Note added in proof. This paper was already submitted 
for publication, when we became aware of the work of 

L. L. Lo (J. FluidMech. 132, 65 (1983)) which is in some 
respects similar to Section 3 of the present paper. Lo ob- 
tained the second order terms in the equation of the ex- 
ternal meniscus by using matching in terms of the "inner 
variables", whereas we do the matching in "outer vari- 
ables". This difference in procedures has lead to different 
gauge functions and hence to analytically different results 
(compare, e.g., her equation ]3, 21] with our [71]). Since 
however both procedures are correct, the numerical results 
for hc that we obtained from our Eq. [71 ] and from her 
Eq. [3, 21] were practically the same. 
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