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A general variational approach has been applied to derive the conditions for mechanical equilibrium 
of  fluid and solid particles at an  interface in the presence of  an  external field. It is shown thai Young's  
equation for solid particles does not  follow from force balance, which is due to the difference between 
the surface tension and the specific surface free energy of  the solid. The correct definition of  the contact 
angles in the presence of an external field is discussed. © 1986 Academic Press, Inc. 

1. I N T R O D U C T I O N  

The interest in line tension kept increasing 
during the last decade. To a large extent it was 
stimulated by the role of the line tension in 
the occurrence of a number of processes of 
practical importance: heterogeneous nucle- 
ation (1, 2), flotation of ores (3), droplet co- 
alescence in emulsions (4), microbial adhesion 
(5), etc. Line tension effects may prove im- 
portant for other phenomena like membrane 
fusion, plasmapheresis, etc. 

The foundations of the thermodynamic 
theory of systems with line tension were laid 
by Gibbs (6) and further developed by Buff 
and Saltsburg (7) and Boruvka and Neumann 
(8). The theory of the line tension for systems 
containing planar thin liquid films in contact 
with fluid phases was worked out in Refs. (9- 
1 I). Tarazona and Navascues (12) and Rus- 
anov (13) considered the case when one of the 
bulk phases was solid (Rusanov accounted also 
for the deformation of the solid). Similarly to 
the surface tension of small drops, the line 
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tension must depend on the radius of the (three 
phase) contact line (10) and more generally 
speaking--on the geometry of the system. This 
viewpoint was confirmed by the model cal- 
culations of the line tension for particular sys- 
tems performed in Refs. (9, 13, 14-16). 

All these theoretical developments as well 
as the plausible practical implications of the 
line tension effects called for direct experi- 
mental measurement. The line tension can in 
principle be measured by studying any phe- 
nomenon that is supposed to be affected by it, 
e.g., from the rate of heterogeneous nucleation 
(2). This approach requires, however, knowl- 
edge (and/or fitting) of several parameters. 
Therefore, in a way it is better to determine 
the line tension directly from the conditions 
for mechanical equilibrium of small particles 
at another interface. Pethica (17) was the first 
to introduce a line tension term in Young's 
equation and Lane (18) modified it for the case 
when the drop is formed in a conic pore. Torza 
and Mason (4) wrote the force balanee equa- 
tions (in the absence of gravity) for the attach- 
ment of two drops of different radii and Pujado 
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and Scriven (19) formulated the general con- 
ditions for equilibrium of a bubble or drop 
pressed against another fluid interface by the 
gravity force. 

As far as we are aware, the first attempt for 
measuring the line tension was undertaken by 
Langmuir (20) for a floating lense. However, 
he used the wrong force balance equation (19) 
and as pointed out by Princen (see (2 I), p. 6 I) 
the quantity he measured was not the Gibbs 
line tension. 

In a series of papers Scheludko, Platikanov, 
and co-workers experimentally determined the 
line tension by investigating the attachment 
of a solid sphere (22, 23) to a liquid surface. 
In Refs. (23, 25) they used the shrinking bubble 
method of Princen and Mason (26) combined 
with the equilibrium conditions of Pujado and 
Scriven (19). These works will be discussed in 
more details in Part IV of the present series. 
For the time being we will only mention that 
the authors of Refs. (22-25) as opposed to 
Churaev et al. (15, 16), have neglected the de- 
pendence of the line tension on the radius of 
the contact line and when interpreting their 
data they have made use of some hypothesis 
in order to make up for the insufficiency of 
their experimental information. Besides, if the 
line tension of a bubble depends on the geo- 
metrical parameters of the system studied, the 
film tension may also depend on them, i.e., 
the latter may have no longer the same value 
as for an infinite planar film. 

Therefore, we decided to undertake mea- 
surements of the film and line tension for gas 
bubbles attached to a liquid interface. We also 
used the shrinking bubble method of Princen 
and Mason (26). We tried to put forward a 
systematic approach, free of any hypothesis 
that could not be given firm theoretical or ex- 
perimental justification. Toward this aim we 
had to resolve several auxiliary problems; we 
believe that some of them present independent 
interest and can prove useful in studying other 
phenomena. 

In Section 2 of this paper (Part I of the pres- 
ent series) the conditions for equilibrium of a 
fluid particle are derived and in Section 3 the 

same is done for a solid particle. It is shown 
that the difference between these two systems 
resides in the fact that the solid/liquid surface 
free energy differs from the respective surface 
tension. Some problems connected with the 
correct definition of the contact angles are dis- 
cussed in Section 4. In the Appendix the effect 
of the weight of the film on the conditions for 
equilibrium is discussed. 

In Part II (Ref. (27)) we derive perturba- 
tional equations for the shape of the bubble 
and the external meniscus, necessary for the 
calculation of the slope angles of these surfaces 
at the contact line. Part III (Ref. (28)) is de- 
voted to the theoretical foundation and the 
experimental realization of a differential-in- 
terferometric method for the determination of 
the radius of curvature of the bubble hat, i.e., 
of the film intervening between the bubble and 
the gas phase. The basic results from Parts I- 
III (necessary to perform the final calculations) 
are summarized and the experimental proce- 
dure is described in Part IV (Ref. (29)), where 
measured values of the film and line tension 
as functions of the system parameters are pre- 
sented and discussed. 

2. EQUILIBRIUM OF A FLUID PARTICLE AT 
A FLUID INTERFACE 

The conditions for mechanical equilibrium 
in a capillary system in most cases can be easily 
derived on the grounds of simple intuitive 
force balance considerations. However, in 
more complicated cases this approach can lead 
(and has led sometimes) to erroneous conclu- 
sions. Therefore, we prefer to derive the con- 
ditions for mechanical equilibrium by means 
of the general method of Gibbs (6), which 
consists in the minimization of the appropriate 
thermodynamic potential of the system. This 
allowed us to shed some light on several some- 
what obscure problems (see below), e.g., to re- 
veal the fundamental difference between the 
conditions for equilibrium of a fluid and a 
solid particle. 

Let us consider a fluid particle (bubble, 
drop, or lense--phase l) attached to the in- 
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FIG. 1. A fluid particle (phase 1) at the interface between two other fluid phases 2 and 3. The system is 
enclosed in a rigid cylindrical vessel of radius Rv and height L = LI + L2. B(z), H(z), and S(z) are, respectively, 
the equations of the lower bubble surface, the hat of the bubble (the film), and the external meniscus, and 
a~2, ~rls, and a2B are the interfacial tensions. The three interfaces meet the plane z = zc at angles ~oc, 0, and 
fie; rc and zc are the radius and elevation of the contact line above the horizontal liquid surface z = 0. 

terrace be tween two o ther  fluid phases  2 and  
3 (see Fig. 1). The  whole  system is enclosed in 
a rigid cylindrical  vessel o f  radius  Rv and  height 
L (=L1 + L2) and  is unde r  the ac t ion  o f  an  
accelera t ion  g (gravi ta t ional  or  inert ial)  di-  
rec ted  oppos i te  to the  axis z. I f  one  assumes  

that  the  interfacial  tens ions  o'12 , 0"13 , and  0"23 

and  the l ine tens ion  (the specific l ine free en- 
ergy) K do no t  d e p e n d  on  the acce lera t ion  the  
la t ter  on ly  makes  the pressures Pi (i = 1, 2, 3) 
in the  bu lk  phases d e p e n d e d  on  z. In  the  case 
o f  nonzero  gravi ty and  negligible change o f  
the  densi t ies  Pi wi th  z, 

pi = p T -  oigz [1] 

where  p0 is the  reference pressure at  z = 0. F o r  
the  sake o f  brevi ty  we will call  somet imes  the 
par t ic le  "bubb le . "  (That  is the  case dep ic ted  
in Fig. 1. Note  tha t  in this  case the  interface 
1/3 mus t  be  a th in  film, whose to ta l  tension,  
whenever  necessary, will be deno t ed  by  T. A 
thin  film can  be present  even when  phase  1 is 
liquid). The  interface 1/2 will be called "bubble  
surface,"  the  interface 1 / 3 - - " h a t , "  and  the in-  
terface 2 / 3 - - " s u r f a c e . "  Cor respond ing ly  the  

equat ions o f  the generatrices o f  these interfaces 
will be deno ted  by  B(z) ,  H(z ) ,  and  S(z).  

I f  one leaves ou t  the  t empe ra tu r e  and  
chemica l  po ten t ia l  t e rms  ( they lead to the  tr iv- 
ial condi t ion  for un i formi ty  o f  the t empera tu re  
and  the chemica l  potent ia l s  t h roughou t  the  
system) the free energy 5 t o f  the  whole  system 
will consist  o f  a sum of  three  k inds  of  p rod-  
ucts2: pressure to volume,  interfacia l  t ens ion  
to surface area, and  l ine tens ion  to (three- 
phase-contac t - l ine)  length. By using s tandard  
geometr ica l  cons idera t ions  one  can write then  
the expression for the free energy of  the system 
as follows (the p r imes  deno te  di f ferent ia t ion 
with respect  to z): 

fo J = rc ~ j d z  + ~r ~2dz  
1 

+ ~r O3dz + const  [2] 
c 

2 An alternative approach, used in (30), is to assume 
that the bulk pressures are constant (equal to p~) and to 
account for the acceleration by introducing potential en- 
ergy terms. We will make use of this approach in the Ap- 
pendix, to estimate the contribution of the thin film weight 
to the free energy and the force balance. 
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where 

~bl(z, B, B') = (P2 - Pl)B 2 + 2aI2BVl + B '2 

[3] 

• 2(z, S, S')  = (P3 - p2)S 2 + 2a23S1/1 + S '2 

[4] 

'I~3(z, H, H ' )  = (P3 - P O H  2 

+ 2a13HV1 + H '2 - 2KH' [5] 

and the constant contains all terms that do 
not depend on B, S, and H. 

Hence, the free energy turns out to be a 
functional of B(z), H(z) ,  and S(z) and their 
derivatives• According to the Gibbs' principle 
(6) the necessary condition for equilibrium of 
the system is 6(~)Y = 0 at constant R~ and L. 
If, however, the bubble radius is much smaller 
than R~, i.e., ifR~ ~ 0% the variation can be 
taken at constant L1 and L2. One of the con- 
ditions for extremum of the functional [2] is 
that each integrand in [2] ,b; (i = I, 2, 3) must 
satisfy Euler's equation (see (31) Chap. 6, Sect. 
3): 

. (0®q 
OK~ dz  kOK~] = 0 [6] 

where K~ (i = 1, 2, 3) stands for B or S or H. 
This leads naturally to three Laplace's equa- 
tions for the three interfaces (p~ in the equa- 
tions below are the local values of the pressures 
in the respective phases at a given point at the 
interface): 

where 

D(Kg) = 

D(B) = ( P 2  - Pl)/al2 [ 7 1  

D(S) = ( P 3  - PZ)/CrZ3 [ 8 ]  

D(H) = ( P 3  - -  PO/a13 [ 9 1  

K: 1 
(1 + K~) s/z Ki(1 + K~)  1/2' 

i = 1, 2, 3. [10] 

The solution of  Eqs. [7]-[9] with the ap- 
propriate boundary conditions will give the 
equations of B, S, and H. This problem is in- 
vestigated in great details in the excellent re- 
view of Princen (21). 

The other necessary conditions for the ex- 
t remum of  the functional [2] will be obtained 
below by taking the variation o f ~  with respect 
to the boundaries zl ,  z2, and zc. Since however 
by definition 

B(z0 = 0; O~] = 0 ;  
z=z1 

t1111 Z=Z2 

the variations with respect to zj and z2 do not 
lead to new results. 

When taking the variations with respect to 
z e one must keep in mind that the point 
(zc, rc) is a point of intersection of the three 
curves, in other words, it must satisfy the con- 
ditions 

B(zc) = S(zc) = H(z~) = rc 

and 
6B(z~) = 6S(z~) : 6H(z~) = 6re• 

Besides, because of  the fluidity of  all interfaces 
the variations with respect to z~ and r~ are in- 
dependent so that in order to have ~o)y = 0, 
the following equations must hold (see (31) 
Chap. 7, Sect. 2): 

(~1 + - - B' 0~----! ~ 2  
OB' 

_ s ,a¢2 -ffff; + OH'!  z:~c = 0 [121 

+as' 0-h)~:~c=°" [131 

Let ~Pc, ¢c, and 0 be t h e  angles comprised 
between the positive axis z and the normals 
to the curves B, S, and H at z = Zc (see Fig. 
1), so that 

B'(z~) = - c tg  ~oc, S'(z~) = - c tg  ~kc, 

H'(zc) = -c tg  0. [ 14] 

Then Eqs. [12] and [13], along with [3]-[5] 
and [14] yield the sought equilibrium condi- 
tions 
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a13sin 0 = a12sin q~c + tr23sin ~Pc [15] 

K 
- - .  [16] 0-13COS 0 = ff12COS .~O c + 0-23COS ~ c  rc 

Note that all terms in [2], containing the pres- 
sures p,- and hence, the acceleration, have 
identically cancelled. Taking into account the 
definition of the angles 9o ~P~, and 0 one can 
write the system [ 15] and [ 16] in the equivalent 
vectorial form 

O'i3 q- 'orr  + O"12 + 0-23 = 0 ,  [17] 

where the vector 0-,(la, I = r/rc) accounts for 
the line tension effect and is directed toward 
the center of curvature of the contact line, (see, 
e.g., (32) or (23)). Equations [15] and [16] were 
formulated in (19) using force balance consid- 
erations. In the absence of gravity (i.e., for 6~ 
= 0) they were also used in (4) for two drops 
of different radii and in (33) for a lense at a 
fluid interface. 

We will transform now the normal force 
balance Eq. [15] into an alternative form in- 
cluding explicitly the buoyancy and the mass 
forces. With that end in view we observe that 
(cf. also Eqs. [10] and [11]) 

~P~ z~ d B 

and 

~ Zc 
= - BB'D(B)dz,  [ 18] 

t 

~ d  H r inO fo 
£ = - H H ' D ( H ) d z .  

Then from Eqs. [71-[9] and [15] one has 

rcaE3sin ~c = (P2 - pOBB'dz 
1 

+ (P3 - p l )HH'dz  

f z  z2 = (~  - pOKK'dz  
1 

[19] 

[20] 

where 

~(z) = p20(z,: - z) + p30(z - z,:) [21] 

K(z) = B(z)O(zc - z) + H(z)O(z - zc) [22] 

and 

{; at 
O(z)  = [23] 

at z < 0 ,  

is Heaviside's stepwise function. 
The general definition of the buoyancy force 

Fb acting on the fluid particle (phase 1) is 

Fb = - f / ~ d s ,  [24] 

where the integral is taken over the whole sur- 
face of phase 1 and the normal to the surface 
is oriented outward. Further, since the external 
force acceleration is acting along the z axis, 
one obtains the following expression for the 
magnitude, Fb, of the buoyancy force, which 
coincides with its z component: 

Vb : (Fb)z : - - f  z~k" ds 

= 2~ ~KK'dz, [251 
1 

where k is the unit vector of the z axis. So [20] 
takes the form 

2ra23rcsin ~c +/~m = Fb, [26] 
where 

Fm = 27r plKK'dz [27] 
1 

is the magnitude of the mass force acting on 
phase 1. Indeed, from the theorem of Gauss- 
Ostrogradsky one has 

Fro-- - f  plk" ds = - f v b )  d iv (p lk )dV 

= - f(vb) ~ z  d V  [28] 

and from Eq. [ 1 ] 

F~ = plgVb [29] 

where Vb is the particle volume. 
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The origin of the buoyancy force Fb and the 
way it must be calculated for capillary systems 
are clear from its definition, Eq. [25]. Yet, the 
literature abounds with erroneous calculations 
of Fb (some of them have been analyzed by 
Princen (21)), whence, we will transform [25] 
in a simpler form, similar to [29]. In the same 
way as [28] was derived, one can put [25] in 
the form 

= -f(vb) 0/~ dV. Fb . [ 3 0 1  

When differentiating [21] (see also [1]) one 
must keep in mind that dO/dz = b(z), the 
function of Dirac. Using also the properties of 
the 6 function (see, e.g., Sect. 21.9-2 of (34)), 
we obtain from [30] 

F b = pEgVl q- p3gVu q- [p2(Zc) - p3(Zc)]Sc 

[31] 

where V1 and Vu are the volumes of  the lower 
(z < zc) and upper (z > z~) parts of the bubble 
(Vl + Vu = Vb) and S~ is the area inside the 
contact line. From [1] p2(zc) - p3(Zc) --- - ( p 2  

-- p3)gZc, SO that 

Fb = g[p2Vl q- p3Vu T (P2 - p3)Vc] [32] 

where V~ is the volume of the cylinder lying 
over the contact line and having a height ]z~]; 
the upper sign in [32] is for Zc > 0 (see Fig. 1) 
and lower one for z~ < 0 (see Fig. 2). Note that 
when deriving [32] we did not make any as- 
sumption regarding the shape or symmetry of 
the particle. Equations of the same kind were 
formulated (and used) by Princen (21), Nutt 
(35), Nikolov and Scheludko (36), and others 
without proof on the grounds of force consid- 
erations. 

3. EQUILIBRIUM OF A SOLID PARTICLE 
AT A FLUID INTERFACE 

The system under consideration represents 
an axisymmetric particle 1 of "length" I at- 
tached to a liquid interface (Fig. 2). Using the 
same considerations as in Section 2 one can 
write the free energy of the system as 

r¢ ,y -  

\ ® 
3(z) 

X 

FIG. 2. A solid axisymmetric particle 1 of length I and 
equation of the generatrix B(z) at the fluid interface S(z) 
between the phases 2 and 3; rc and z¢ are the radius and 
the distance from the contact line to the horizontal liquid 
surface z = O, 

E = 7r ~(z, S, S') 
c 

+ ~rF(zc, zl,  re) + const [33] 

where 

• (z, S, S')  = (p2 - p3)S2(z) 

+ 2o'238(z) Vl  d- S '2 [34] 

and 

F(z~, zl,  re) = dz[paB2(z) 
1 

f 
zl+l 

+ 2al2B(z)~/1 + B '2] + [p3BZ(z) 
Ze 

+ 2aa3B(z)V1 + B'2]dz + 2 t rek  

+ mg(zm + Zl). [35] 

Here a~2, cr13, and a23 are the specific surface 
free energies of the respective interfaces. The 
last term in [35] is the potential energy of a 
particle of mass m, whose center lies at a dis- 
tance Zm from zl. To have full correspondence 
with Section 2, we have accounted in [35] for 
the line tension. We have done the whole der- 
ivation for an ideal solid. As shown by Rus- 
anov (13) the energy of deformation of the 
solid also leads to an effect thermodynamically 
equivalent to a line tension term. 
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The variation of Y at fixed boundary points 
will obviously lead to the Laplace's equation 
[8] for the equilibrium curve S(z). The vari- 
ations with respect to z~, z~, and r~, however, 
are not independent, because whatever values 
z~ and zl acquire, the point (zc, re) must lie on 
the curve B(z), which describes the (constant) 
shape of the particle. Therefore, the variation 
~r~ can be expressed through 6z~ and 6Zl: 

OB 
6r~ = °B ] 6z~ +-;--[  6zt. 

Oz ] ~=zc azl I ~=~c 
[361 

This is the transversality condition. 
On the other hand, the variation of z~ will 

move the particle up and down without af- 
fecting its shape. In other words B depends on 
z and zl only through the difference z - zl, 
which means 

OB OB 
- [ 3 7 ]  

Oz~ Oz 

Keeping in mind that r~ = S(z~), the con- 
dition 6(x)~ = 0 can be written in the form (cf. 
(31), Chap. 7, Sect. 2): 

Off Off 
( - ~  + S' -U~, ] 6z¢ - (-U~, ] 6rc 

OF OF OF 
+ = 0 .  

By setting equal to zero the coefficients before 
the independent variations 6z~ and 6z~ (see also 
[36] and [37]) we obtain the following two 
equations: 

[ O~_B, OF] OF O, 
• Oz - 

r , o® _ OF l OF 
7c[B ~ ,  Orc.J~=zc + ~r Oz----i = 0. [39] 

By using the relationships 

B'lz=zc = -c tg  0, 

S'[z=zc = ctg ~b~, 

and 

0 + f f c + f l = T r  [41] 

from [38], along with [34] and [35], one can 
easily obtain 

K 
0 . 2 3 C O S  ~ --'~ 0"12 - -  0"13 - -  - -  C O S  0 .  [42] 

rc 

When taking the derivative OF/Ozl in [39] one 
must keep in mind that F depends on 21 both 
through the limits of the integrals and through 
B(z - zO. In this way, by using also [37], [40], 
and [41], one obtains from [39] 

2a-re 
F m =  F b  + s i n  0 (0.12 - -  0.13 

+ azaCOS 0 cos fie) -- 27rK ctg 0 [43] 

where 

and 
Fm = mg [44] 

f 
zl+l 

Fb = 2~r `6(z)BB'dz, [45] 

,6 being defined by [21 ]. If one eliminates 0.~2 
- 0.13 by means of [42], Eq. [43] will yield 

F m =  Fb + 27rrc0.23sin ~bc [46] 

which is analogous to [26]. Note that in this 
case the "surface force" is directed upward. 

4. DISCUSSION 

It was already pointed out in Section 2 that 
the conditions for equilibrium [15] and [16] 
are in some cases force balance equations (see 
[17]) and could have been derived much easier 
by simply taking the projections along the axis 
x and z of all forces acting on the contact line. 
The major advantage of the variational ap- 

[38] proach used in the present paper is its univer- 
sality and physical transparency which in turn 
gives answers to several somewhat obscure 
questions. 

One of them is connected with the number 
of independent equations of mechanical bal- 
ance at the contact line. In the case of a fluid 
particle there are two independent equations 

[40] [15] and [ 16], which can be combined to yield 
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the vectorial Eq. [17]. The two equations [15] 
and [ 16] correspond to the  two independent 
variations 6rc and 6z¢ of the coordinates of the 
boundary point (r~, z~) (see Fig. 1). However, 
in the case of a floating solid particle (see Fig. 
2) the variations 6rc and bzc are no longer in- 
dependent, because the boundary point (ro zc) 
can move along the particle surface only. So, 
there is one degree of freedom which results 
in the existence of only one condition for me- 
chanical equilibrium at the contact line. In- 
deed, we obtained only one relationship be- 
tween the as and r, Eq: [42]. Moreover, we 
found out that contrary to what "intuition" 
would suggest, no force balance can be written 
for the contact line on a solid particle. There- 
fore in spite of its resemblance to a force bal- 
ance along the tangent to the solid surface it 
is not the result of compensation of forces. 
(Remarkably, with K = 0, it has the same form 
as Young's equation for the equilibrium of a 
drop on a flat solid surface.) We believe that 
the reason for this fundamental difference be- 
tween fluid and solid particles lies in the fact 
that surface tensions and specific surface free 
energies do not coincide for solid surfaces as 
they do for fluid surfaces (for detailed discus- 
sion of this difference see e:g., (6, 37, 38). The 
o's entering in the expressions for the system 
free energy (Eqs. [2] and [33]) are specific sur- 
face free energies but for the fluid surfaces they 
are equivalent to surface tensions, i.e., to forces 
(per unit length). That is why when all surfaces 
are fluid the variation of the free energy leads 
to a force balance. However, the solid/fluid 
specific surface free energies 0"12 and O'13 in 
Section 3 cannot be looked at as forces and 
no force balance can be written for the contact 
line. The only forces acting on the particle are 
Fb, Fm, and the fluid/fluid surface tension a23 
and their balance leads to Eq. [46]. Inciden- 
tally, another important result of  the varia- 
tional procedure is that this equation, which 
is usually written on the grounds of intuitive 
considerations (and more specifically its sur- 
face tension term 27rrctrE3sin ~kc) could have 
been derived here from first principles. 

An important  question, that was a matter 
of controversy in the literature (see e.g., (39- 

41)) is whether or not the contact angles de- 
pend on the gravity and/or other external 
fields. In order to analyze this problem let us 
introduce the contact angles 

a = ~oc - ~c [47] 

(between o'12 and trE3) and 

/3 = ~r - 0 + ¢c [48] 

(between 0.23 and 0.13). With these notations 
Eqs. [15] and [16] can be rewritten as 

(o-13sin/5 - -  a12sin cocos ¢c 

- -  (0.1sCOS/~ + 0.12COS O/ "~- o'23)sin ~bc = 0 [49] 

(0.13sin/~ -- 0.12sin a)sin ~b c 

K 
+ (0.13C0S fl + 0.12C0S a -[-:ff23)C0S ¢ c  = - - .  

rc 
[ 5 0 ]  

Since the matrix 

cos ¢c - s i n  ¢c] 

s ince cos~b~] 

corresponds to a rotation at angle ¢~ clockwise, 
if K/r~ were zero the only result of the action 
of  the external field would have been such a 
rotation of Neumann's triangle without any 
change of the angles a and 3- Indeed, if  one 
solves the system of [49] and [50] with K/rc 
= 0 (the respective angles are denoted by a0 
and/30) one easily gets (19) 

0 . h  - - 
COS OL 0 : 

20"12o"23 

c o s  3o = , [ 5 1 ]  
2o'130.23 

i.e., ao and 30 do not depend on the field. 
Note, however, that if  some of the 0.s depend 

on the external field (this maybe the case when 
a thin film intervenes between the phases 1 
and 3) the contact angles may depend on it 
too. The angle 0 (see Fig. 1) between o'13 and 
the plane of the three-phase contact line will 
however always depend on the external field, 
because it is not a real contact angle between 
two interfaces. 
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The situation will change if r/re 4 = O. The 
solution of  Eqs. [49] and [50] is 

0"120-23(COS O/x - - .COS 0£)-• K [0.23( 1 _ COS ~c)  
r~ 

-l- 0-12(C0S Ogr - -  COS(O/ + ~//c))], [ 5 2 ]  

ff13ff23( cOS ~x - -  COS ~ )  = ~ [0"23(1 - -  COS ~e)  
r~ 

+ 0.13(cos 3~ - cos(3 ~ ¢c))] [53] 

where 

0~13 7- 0~12 - -  (0-23 - -  K/rc)  2 
COS Ot~ = 20-12(0"23 -- r/rc) [54] 

and 

4 2  - 0-~3 - (0-23 - r / r 3 2  
c o s  3~ = [55 ]  

"20"13(0"23 - -  r / r e )  

are gravity independent quantities. Therefore, 
if r/rc ¢ 0 the contact angles a a n d  3 will de- 
pend on the external field. 

We must emphasize that the above conclu- 
sions about the behavior of  the contact angles 
are valid only for the true, i.e., correctly de- 
fined, contact angles. Experimentally the con- 
tact angles are usually measured by determin- 
ing with some optical method the shape of  the 
interfaces at some distance from the contact 
line and then by extrapolating them until they 
intersect. 

The first problem encountered when this 
procedure is carried out in practice is that the 
minimum ~stance from the contact line at 
which one can still obtain experimental infor- 
mation about the shape of  the interfaces is 
limited by the microscope magnification (41). 
At the same time the deformation of  the in- 
terfaces caused by the gravity is much larger 
close to the contact line then away from it (see 
Table V in Part II of this series): Therefore, if 
this effect is not properly taken into account 
one will determine only an apparent contact 
angle and its value will depend not only on 
the gravity but also on the optical method 
used. 

The second problem is related t o  the so- 
called "transition region." As a matter of  fact 
the microscopic contact angle between fluid 

interfaces should be zero, because in the tran- 
sition region, where the interfaces meet each 
other, they should undergo a smooth transition 
from the one interface to the other (e.g., from 
B and S to H in Fig. 1). Although the width 
of  the transition-region is most probably 
smaller (it was estimated to 1 #m in (9)) than 
the resolution of  the optical methods if  some 
of the experimental points happen to lie there 
this will again affect the extrapolation proce- 
dure and hence-- the  value of  the macroscopic 
contact angle. 

The only way to avoid these two errors is 
(i) to make sure that all experimental points 
used lie outside of  the transition region and 
(ii) to carry out the extrapolation of the surface 
in such a way that its shape all the time satisfies 
Laplace's equation with the macroscopic value 
of the surface tension. (In the absence of ex- 
ternal fields the second statement means that 
the extrapolation must be carried out at con- 
stant capillary pressure as suggested in (I 0).) 
Toward this aim in Part II we will present an 
asymptotic solution of  the Laplace's equation 
for the system from Fig. 1 and in Part III it 
will be shown how the extrapolation must be 
carried out so that the contact line and angles 
can be properly defined. 

The final point we want to discuss in this 
Section is the number of geometric parameters 
that must be measured for the determination 
of  some unknown interfacial or line tensions. 
For a bubble at an interface one can assume 
0"12 = 0"23 = 0. and 3' must be substituted for 
a13. Then Eqs. [15] and [16] can be written in 
the form (cf. also Eq. [47]) 

O/ 
"¢ sin 0 = 20- sin 00cos ~ [56] 

where 

y cos 0 = 20- cos 0oCOS - - - 
O/ K 

[ 5 7 ]  
2 r~ 

I 
Oo = ~ (~,c + ~e). [58] 

The angles ~c and ffc (and hence a and 0o) can 
be calculated from the measured radii of  the 
contact line rc and of  the bubble maximum 
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cross section R (see Part III). To calculate 0 
one must also measure the radius of curvature 
Rf of  the hat (see Part III). Then [56] allows 
the calculation of the film tension 7. An equa- 
tion only for the line tension can be derived 
by eliminating 3' between [56] and [57]. The 
result reads 

K ~ sin(0o - 0) 
- = 2~ cos [59] 
r~ 2 sin 0 

One observes that the line tension effect K/r~ 
manifests itself through the difference between 
the angles 0 and 00. Consequently, the as- 
sumption 0 =:0o (or 0 = a/2 in the absence of 
gravity) is according to [59] tantamount to 
setting ~/r~ = 0 and should not be used when 
line tension effects are being studied. 

I f - / i s  known, one can eliminate 0 between 
[56] and [57] and obtain an equation allowing 
the calculation of K from the measured values 
of  r~ and R. The exact result is 

1 [- 2 o  K a 
cos(a/2) [ 1 - 4 --3' --3'r~ cos ~ sin ~ s in  ffc 

- sin 2 = . [60] 
"Y 3' r c 

An approximate form of  this equation and its 
suitability for the calculation of  the line tension 
will be discussed in Part IV. 

5. CONCLUDING REMARKS 

A general variational approach has been 
applied to derive the conditions for mechanical 
equilibrium of  an axisymmetric little particle 
(fluid or solid) at a fluid interface in the pres- 
ence of an external field. In the case of a fluid 
particle (Section 2) two conditions (Eqs. [ 15] 
and [16]), having the form of  a force balance, 
for the equilibrium of the contact line are ob- 
tained. It is shown that the buoyancy force 
equation [26] follows from the vertical force 
balance equation [ 15] and the Laplace's equa- 
tion. In the case of a solid particle (Section 3) 
there is only one relationship between the as 
and the line tension r at the contact line (Eq. 
[42]). The latter is not a result of  a force bal- 
ance. It is pointed out that the reason for this 

difference between fluid and solid particles is 
due to the fact that the specific surface free 
energies at a solid/fluid interface have no 
meaning as surface tensions. 

It is demonstrated that the contact angles 
can depend on the external field only when a 
line tension effect is present. Some problems 
that may arise with the correct definition of  
the contact angles, when they are experimen- 
tally measured are discussed in Section 4. 

When the conditions for equilibrium are 
used for the experimental measurement of 
some intensive parameters (surface or line 
tensions) the number of  the geometric param- 
eters that have to be measured will depend of  
course on the number of unknown parame- 
ters. It is shown that when a bubble is attached 
to a fluid interface the film and line tension 
can be determined only if  three angles (0, ~c, 
and ~c on Fig. 1) are measured. 

APPENDIX 

On the Effect of  the Film Weight on the 
Conditions for Mechanical Equilibrium 

As we have already pointed out, when a thin 
film intervenes between the phases 1 and 3 
(see Fig. l) its tension 3, must be substituted 
for al3 in Eqs. [9], [15], and [16]. A problem 
that arises as this is how to account for the 
gravitational energy of  the film. Indeed, al- 
though the film is very thin and light (of thick- 
ness h < 100 nm), its weight can still in prin- 
ciple lead to an additional deformation of  the 
interface H(z) and also affect the contact line 
force balance. We will estimate this effect by 
using the same approach as in (30). When the 
phases 1 and 3 are gases (in this case the effect 
must be the largest) the additional gravitational 
energy (with respect to the level zc) equals 

ofg(z - zc)hdA 

= 2rchpfg (z - zc)H(z)V1 + H'Zdz [611 
,i ZC 

where O f ~ 02 is the average film density. This 
energy will lead only to the appearance of  an 
additional term 

2/~(z - z~)HV1 + H '2 [62] 
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(fi = hpfg) in  the  r i gh thand  side of[5] .  Car ry ing  

ou t  the  s a m e  ca lcu la t ions  as in  Sec t ion  2, o n e  

arr ives  at  the  fo l lowing  n e w  c o n d i t i o n s  for 

e q u i l i b r i u m  ( ins tead  o f  [9] a n d  [17]): 

H '  
7 ( z ) O ( n )  = (P3 - Pl)  - / 9  V1 + H '2 [63] 

"Yc q- O't2 q- 0"23 q" 0"~ = 0 [64] 

where  3'c = 3'(zc) a n d  

v ( z )  = "rc + f i ( z  - zc). [65] 

T h e  f i lm th ickness ,  h, is u sua l ly  1 0 - 1 0 0  n m ,  
so t ha t /~  does  n o t  exceed 10 -3 N / m  2. The re -  

fore, the  t e r m  wi th  fi i n  [63] c a n  be  o f  a n y  

i m p o r t a n c e  o n l y  w h e n  P3 = P l .  T h e  q u a n t i t y  
o f  in te res t  i n  t h i n  f i lm s tudies  is u sua l ly  the  
difference ~ -- 2o  - % It  c a n  be  m e a s u r e d  

wi th  a p rec i s ion  o f  the  o rde r  o f  10 -3 m N / m ,  

so tha t  the  t e r m  f i ( z  - z¢) i n  [65] c a n  b e c o m e  
percept ib le  o n l y  w h e n  the  di f ference (z - z¢) 

i n  [65] is larger  t h a n  1 cm.  
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